Zhu Y-X, Yao J, Liu C, Hu H-T, Li X-M, Ge H-M, et al. Long non-coding RNA MEG3 silencing protects against light-induced retinal degeneration. Biochem Biophys Res Commun. 2018;496(4):1236–42.
CAS
PubMed
Google Scholar
Paskowitz DM, LaVail MM, Duncan JL. Light and inherited retinal degeneration. Br J Ophthalmol. 2006;90(8):1060–6.
CAS
PubMed
PubMed Central
Google Scholar
Rose K, Walston ST, Chen J. Separation of photoreceptor cell compartments in mouse retina for protein analysis. Mol Neurodegeneration. 2017;12(1):28.
Google Scholar
Contín MA, Benedetto MM, Quinteros-Quintana ML, Guido ME. Light pollution: the possible consequences of excessive illumination on retina. Eye (London, England). 2016;30(2):255–63.
Google Scholar
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739.
CAS
PubMed
Google Scholar
Xue L, Zeng Y, Li Q, Li Y, Li Z, Xu H, et al. Transplanted olfactory ensheathing cells restore retinal function in a rat model of light-induced retinal damage by inhibiting oxidative stress. Oncotarget. 2017;8(54):93087–102.
PubMed
PubMed Central
Google Scholar
Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res. 2010;29(2):113–34.
PubMed
Google Scholar
Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT. Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis. 2008;14:782–806.
PubMed
PubMed Central
Google Scholar
Hirakawa M, Tanaka M, Tanaka Y, Okubo A, Koriyama C, Tsuji M, et al. Age-related maculopathy and sunlight exposure evaluated by objective measurement. Br J Ophthalmol. 2008;92(5):630–4.
CAS
PubMed
PubMed Central
Google Scholar
Farnoodian M, Wang S, Dietz J, Nickells RW, Sorenson CM, Sheibani N. Negative regulators of angiogenesis: important targets for treatment of exudative AMD. Clin Sci (London, England : 1979). 2017;131(15):1763–80.
CAS
Google Scholar
Lambert NG, ElShelmani H, Singh MK, Mansergh FC, Wride MA, Padilla M, et al. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res. 2016;54:64–102.
CAS
PubMed
PubMed Central
Google Scholar
Taylor HR, Muñoz B, West S, Bressler NM, Bressler SB, Rosenthal FS. Visible light and risk of age-related macular degeneration. Trans Am Ophthalmol Soc. 1990;88:163–78.
CAS
PubMed
PubMed Central
Google Scholar
Zhou H, Zhang H, Yu A, Xie J. Association between sunlight exposure and risk of age-related macular degeneration: a meta-analysis. BMC Ophthalmol. 2018;18(1):331.
PubMed
PubMed Central
Google Scholar
Tsuruma K, Shimazaki H, Ohno Y, Inoue Y, Honda A, Imai S, et al. Metallothionein-III deficiency exacerbates light-induced retinal DegenerationMetallothionein-III deficiency. Invest Ophthalmol Vis Sci. 2012;53(12):7896–903.
PubMed
Google Scholar
Hunter JJ, Morgan JIW, Merigan WH, Sliney DH, Sparrow JR, Williams DR. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res. 2012;31(1):28–42.
PubMed
Google Scholar
Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda, Md). 2010;25(1):8–15.
CAS
Google Scholar
Thomas C, Ji Y, Wu C, Datz H, Boyle C, MacLeod B, et al. Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc Natl Acad Sci U S A. 2019;116(20):9941–6.
CAS
PubMed
PubMed Central
Google Scholar
Krietsch J, Caron M-C, Gagné J-P, Ethier C, Vignard J, Vincent M, et al. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res. 2012;40(20):10287–301.
CAS
PubMed
PubMed Central
Google Scholar
Huang C-T, Huang D-Y, Hu C-J, Wu D, Lin W-W. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction. Biochim Biophys Acta (BBA) - Mol Cell Res. 2014;1843(3):531–43.
CAS
Google Scholar
Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, et al. Excessive activation of poly (ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci. 2007;27(38):10311–9.
CAS
PubMed
PubMed Central
Google Scholar
Kaur J, Mencl S, Sahaboglu A, Farinelli P, van Veen T, Zrenner E, et al. Calpain and PARP activation during photoreceptor cell death in P23H and S334ter rhodopsin mutant rats. PLoS One. 2011;6(7):e22181.
CAS
PubMed
PubMed Central
Google Scholar
Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147:233–41.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Dawson VL, Dawson TM. Poly (ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol. 2009;218(2):193–202.
CAS
PubMed
PubMed Central
Google Scholar
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16.
CAS
PubMed
PubMed Central
Google Scholar
Otera H, Ohsakaya S, Nagaura Z-I, Ishihara N, Mihara K. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J. 2005;24(7):1375–86.
CAS
PubMed
PubMed Central
Google Scholar
Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem. 2005;280(8):6447–54.
CAS
PubMed
Google Scholar
Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P, et al. The insulin-like growth factor-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell. 2007;18(9):3545–55.
CAS
PubMed
PubMed Central
Google Scholar
Good DW, George T, Watts BA 3rd. Nerve growth factor inhibits Na+/H+ exchange and formula absorption through parallel phosphatidylinositol 3-kinase-mTOR and ERK pathways in thick ascending limb. J Biol Chem. 2008;283(39):26602–11.
CAS
PubMed
PubMed Central
Google Scholar
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868.
CAS
PubMed
Google Scholar
Sulaimanov N, Klose M, Busch H, Boerries M. Understanding the mTOR signaling pathway via mathematical modeling. Wiley Interdiscip Rev. 2017;9(4):e1379.
Google Scholar
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol. 2012;99(2):128–48.
CAS
PubMed
PubMed Central
Google Scholar
Sinha D, Valapala M, Shang P, Hose S, Grebe R, Lutty GA, et al. Lysosomes: regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res. 2016;144:46–53.
CAS
PubMed
Google Scholar
Nakahara T, Morita A, Yagasaki R, Mori A, Sakamoto K. Mammalian target of Rapamycin (mTOR) as a potential therapeutic target in pathological ocular angiogenesis. Biol Pharm Bull. 2017;40(12):2045–9.
CAS
PubMed
Google Scholar
Zhao D, Yang J, Yang L. Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. Oxid Med Cell Longev. 2017;2017:6437467.
PubMed
PubMed Central
Google Scholar
Fan B, Li F-Q, Zuo L, Li G-Y. mTOR inhibition attenuates glucose deprivation-induced death in photoreceptors via suppressing a mitochondria-dependent apoptotic pathway. Neurochem Int. 2016;99:178–86.
CAS
PubMed
Google Scholar
Besirli CG, Zheng Q-D, Reed DM, Zacks DN. ERK-mediated activation of Fas apoptotic inhibitory molecule 2 (Faim2) prevents apoptosis of 661W cells in a model of detachment-induced photoreceptor cell death. PLoS One. 2012;7(9):e46664.
CAS
PubMed
PubMed Central
Google Scholar
Nakanishi T, Shimazawa M, Sugitani S, Kudo T, Imai S, Inokuchi Y, et al. Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice. J Neurochem. 2013;125(1):111–24.
CAS
PubMed
Google Scholar
Chen W-J, Wu C, Xu Z, Kuse Y, Hara H, Duh EJ. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light. Exp Eye Res. 2017;154:151–8.
CAS
PubMed
Google Scholar
Liu S-Y, Song J-Y, Fan B, Wang Y, Pan Y-R, Che L, et al. Resveratrol protects photoreceptors by blocking caspase- and PARP-dependent cell death pathways. Free Radic Biol Med. 2018;129:569–81.
CAS
PubMed
Google Scholar
Wood JPM, Lascaratos G, Bron AJ, Osborne NN. The influence of visible light exposure on cultured RGC-5 cells. Mol Vis. 2007;14:334–44.
PubMed
PubMed Central
Google Scholar
Wang J, Du X-X, Jiang H, Xie J-X. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappaB modulation in MES23.5 cells. Biochem Pharmacol. 2009;78(2):178–83.
CAS
PubMed
Google Scholar
Takahashi K, Shimazawa M, Izawa H, Inoue Y, Kuse Y, Hara H. Platelet-derived growth factor-BB lessens light-induced rod photoreceptor damage in MicePDGF-BB on light-induced retinal damage. Invest Ophthalmol Vis Sci. 2017;58(14):6299–307.
CAS
PubMed
Google Scholar
Shibagaki K, Okamoto K, Katsuta O, Nakamura M. Beneficial protective effect of pramipexole on light-induced retinal damage in mice. Exp Eye Res. 2015;139:64–72.
CAS
PubMed
Google Scholar
Martín-Oliva D, Martín-Guerrero SM, Matia-González AM, Ferrer-Martín RM, Martín-Estebané M, Carrasco M-C, et al. DNA damage, poly (ADP-ribose) polymerase activation, and phosphorylated histone H2AX expression during postnatal retina development in C57BL/6 MousePostnatal retinal cell DNA damage and death. Invest Ophthalmol Vis Sci. 2015;56(2):1301–9.
PubMed
Google Scholar
Strickfaden H, McDonald D, Kruhlak MJ, Haince J-F, Th'ng JPH, Rouleau M, et al. Poly (ADP-ribosyl)ation-dependent transient chromatin Decondensation and histone displacement following laser microirradiation. J Biol Chem. 2016;291(4):1789–802.
CAS
PubMed
Google Scholar
Hou W-H, Chen S-H, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutation Research/Reviews in Mutation Research. 2019;780:82–91.
CAS
Google Scholar
Donovan M, Carmody RJ, Cotter TG. Light-induced Photoreceptor Apoptosis in vivo is Caspase Independent and Mediated by Nitric Oxide. Sci World J. 2001;1:52.
Google Scholar
Recchia AG, Musti AM, Lanzino M, Panno ML, Turano E, Zumpano R, et al. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol. 2009;41(3):603–14.
CAS
PubMed
Google Scholar
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and Cancer. Curr Neurovasc Res. 2017;14(3):299–304.
CAS
PubMed
PubMed Central
Google Scholar
Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci. 2010;30(3):1166–75.
CAS
PubMed
PubMed Central
Google Scholar
Lafay-Chebassier C, Pérault-Pochat MC, Page G, Bilan AR, Damjanac M, Pain S, et al. The immunosuppressant rapamycin exacerbates neurotoxicity of Aβ peptide. J Neurosci Res. 2006;84(6):1323–34.
CAS
PubMed
Google Scholar
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, bad, and Bcl-xL. Aging. 2012;4(3):187–201.
CAS
PubMed
PubMed Central
Google Scholar
Kurimoto T, Yin Y, Omura K, Gilbert H-Y, Kim D, Cen L-P, et al. Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci. 2010;30(46):15654–63.
CAS
PubMed
PubMed Central
Google Scholar
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38.
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci. 2011;124(Pt 6):833–8.
CAS
PubMed
PubMed Central
Google Scholar
Beneke S, Diefenbach J, Bürkle A. Poly (ADP-ribosyl) ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer. 2004;111(6):813–8.
CAS
PubMed
Google Scholar
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31(2):194–223.
CAS
PubMed
Google Scholar
Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly (ADP-ribose) polymerase 1. Mol Cell Biol. 2009;29(15):4116–29.
CAS
PubMed
PubMed Central
Google Scholar
Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP. Poly (ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Phys Heart Circ Phys. 2006;291(4):H1545–H53.
CAS
Google Scholar
Zhang J. Are poly (ADP-ribosyl) ation by PARP-1 and deacetylation by Sir2 linked? BioEssays. 2003;25(8):808–14.
CAS
PubMed
Google Scholar
Jadeja RN, Powell FL, Jones MA, Fuller J, Joseph E, Thounaojam MC, et al. Loss of NAMPT in aging retinal pigment epithelium reduces NAD(+) availability and promotes cellular senescence. Aging. 2018;10(6):1306–23.
CAS
PubMed
PubMed Central
Google Scholar
Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 2011;13(4):461–8.
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Cai G, Fu B, Feng Z, Ding R, Bai X, et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence. Mech Ageing Dev. 2012;133(6):387–400.
CAS
PubMed
Google Scholar
Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, et al. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent inhibition of sirtuin 1. J Biol Chem. 2011;286(21):19100–8.
CAS
PubMed
PubMed Central
Google Scholar
Cantó C, Sauve AA, Bai P. Crosstalk between poly (ADP-ribose) polymerase and sirtuin enzymes. Mol Asp Med. 2013;34(6):1168–201.
Google Scholar
Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2):e9199.
PubMed
PubMed Central
Google Scholar