Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. Nat Neurosci. 2019;22:1951–60.
CAS
PubMed
Google Scholar
Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65.
CAS
PubMed
PubMed Central
Google Scholar
Koo EH, Kopan R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat Med. 2004;10(Suppl):S26–33.
PubMed
Google Scholar
Bergmans BA, De Strooper B. gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol. 2010;9:215–26.
CAS
PubMed
Google Scholar
Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H, et al. Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell. 2002;110:751–62.
CAS
PubMed
Google Scholar
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, et al. Complexity and selectivity of gamma-secretase cleavage on multiple substrates: consequences in Alzheimer’s disease and cancer. J Alzheimers Dis. 2018;61:1–15.
CAS
PubMed
Google Scholar
Yang W, Wu PF, Ma JX, Liao MJ, Xu LS, Xu MH, et al. Presenilin1 exerts antiproliferative effects by repressing the Wnt/beta-catenin pathway in glioblastoma. Cell Commun Signal. 2020;18:22.
CAS
PubMed
PubMed Central
Google Scholar
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of Sortilin expression and its trafficking function. J Cell Physiol. 2020;235(12):8958–71.
CAS
PubMed
Google Scholar
Xu SY, Jiang J, Pan A, Yan C, Yan XX. Sortilin: a new player in dementia and Alzheimer-type neuropathology. Biochem Cell Biol. 2018;96(5):491–7.
CAS
PubMed
Google Scholar
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T, Wilson CM. Balancing neurotrophin pathway and Sortilin function: its role in human disease. Biochim Biophys Acta Rev Cancer. 2020;1874:188429.
CAS
PubMed
Google Scholar
Yang W, Wu PF, Ma JX, Liao MJ, Wang XH, Xu LS, et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3beta/beta-catenin/twist pathway. Cell Death Dis. 2019;10:208.
PubMed
PubMed Central
Google Scholar
Murakami D, Okamoto I, Nagano O, Kawano Y, Tomita T, Iwatsubo T, et al. Presenilin-dependent gamma-secretase activity mediates the intramembranous cleavage of CD44. Oncogene. 2003;22:1511–6.
CAS
PubMed
Google Scholar
Capell A, Steiner H, Romig H, Keck S, Baader M, Grim MG, et al. Presenilin-1 differentially facilitates endoproteolysis of the beta-amyloid precursor protein and Notch. Nat Cell Biol. 2000;2:205–11.
CAS
PubMed
Google Scholar
LaVoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem. 2003;278:34427–37.
CAS
PubMed
Google Scholar
Marambaud P, Wen PH, Dutt A, Shioi J, Takashima A, Siman R, et al. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell. 2003;114:635–45.
CAS
PubMed
Google Scholar
Georgakopoulos A, Marambaud P, Efthimiopoulos S, Shioi J, Cui W, Li HC, et al. Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol Cell. 1999;4:893–902.
CAS
PubMed
Google Scholar
Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener. 2006;1:3.
PubMed
PubMed Central
Google Scholar
Eggert S, Thomas C, Kins S, Hermey G. Trafficking in Alzheimer’s disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, sortilin, and calsyntenin. Mol Neurobiol. 2018;55:5809–29.
CAS
PubMed
Google Scholar
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32:42–56.
PubMed
PubMed Central
Google Scholar
Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov. 2020;19:447–62.
CAS
PubMed
Google Scholar
Lashley T, Schott JM, Weston P, Murray CE, Wellington H, Keshavan A, et al. Molecular biomarkers of Alzheimer’s disease: progress and prospects. Dis Model Mech. 2018. https://doi.org/10.1242/dmm.031781.
Article
PubMed
PubMed Central
Google Scholar
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of gamma-secretase. Semin Cell Dev Biol. 2020;105:12–26.
CAS
PubMed
Google Scholar
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 2016;12:733–48.
PubMed
Google Scholar
Gustafsen C, Glerup S, Pallesen LT, Olsen D, Andersen OM, Nykjaer A, et al. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. J Neurosci. 2013;33:64–71.
CAS
PubMed
PubMed Central
Google Scholar
Yang M, Virassamy B, Vijayaraj SL, Lim Y, Saadipour K, Wang YJ, et al. The intracellular domain of Sortilin interacts with amyloid precursor protein and regulates its lysosomal and lipid raft trafficking. PLoS ONE. 2013;8:e63049.
CAS
PubMed
PubMed Central
Google Scholar
Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC. Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci. 2003;23:5425–36.
CAS
PubMed
PubMed Central
Google Scholar
Mufson EJ, Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci. 2019;13:533.
PubMed
PubMed Central
Google Scholar
Roperch JP, Alvaro V, Prieur S, Tuynder M, Nemani M, Lethrosne F, et al. Inhibition of Presenilin1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med. 1998;4:835–8.
CAS
PubMed
Google Scholar
Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565–97.
CAS
PubMed
Google Scholar
Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annu Rev Pathol. 2017;12:245–75.
CAS
PubMed
Google Scholar
Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11:64.
PubMed
PubMed Central
Google Scholar
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, et al. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aau6246.
Article
PubMed
Google Scholar
Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y, Sakuma T, et al. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J Thorac Oncol. 2015;10:844–51.
CAS
PubMed
Google Scholar
Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P, et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med. 2006;3:e467.
PubMed
PubMed Central
Google Scholar
Xu J, Yun X, Jiang J, Wei Y, Wu Y, Zhang W, et al. Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma by reducing Notch1 cleavage. Hepatology. 2010;52:142–54.
CAS
PubMed
Google Scholar
Deng H, Lv L, Li Y, Zhang C, Meng F, Pu Y, et al. The miR-193a-3p regulated PSEN1 gene suppresses the multi-chemoresistance of bladder cancer. Biochim Biophys Acta. 2015;1852:520–8.
CAS
PubMed
Google Scholar
Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 2002;21:1948–56.
CAS
PubMed
PubMed Central
Google Scholar
Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, et al. FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell. 2011;20:427–42.
CAS
PubMed
PubMed Central
Google Scholar
Munck PC, Nielsen MS, Jacobsen C, Tauris J, Jacobsen L, Gliemann J, et al. Propeptide cleavage conditions Sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 1999;18:595–604.
Google Scholar
Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, et al. Spadin, a Sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol. 2010;8:e1000355.
PubMed
PubMed Central
Google Scholar
Navarro V, Vincent JP, Mazella J. Shedding of the luminal domain of the neurotensin receptor-3/Sortilin in the HT29 cell line. Biochem Biophys Res Commun. 2002;298:760–4.
CAS
PubMed
Google Scholar
Al-Akhrass H, Naves T, Vincent F, Magnaudeix A, Durand K, Bertin F, et al. Sortilin limits EGFR signaling by promoting its internalization in lung cancer. Nat Commun. 2017;8:1182.
PubMed
PubMed Central
Google Scholar
Martin S, Navarro V, Vincent JP, Mazella J. Neurotensin receptor-1 and -3 complex modulates the cellular signaling of neurotensin in the HT29 cell line. Gastroenterology. 2002;123:1135–43.
CAS
PubMed
Google Scholar