Ruiter D, Bogenrieder T, Elder D, Herlyn M. Melanoma-stroma interactions: structural and functional aspects. Lancet Oncol. 2002;3:35–43. https://doi.org/10.1016/S1470-2045(01)00620-9.
Article
CAS
PubMed
Google Scholar
Gurzu S, Beleaua MA, Jung I. The role of tumor microenvironment in development and progression of malignant melanomas-a systematic review. Rom J Morphol Embryol. 2018;59:23–8.
PubMed
Google Scholar
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal cells present in the melanoma niche affect tumor invasiveness and its resistance to therapy. Int J Mol Sci. 2021;22:529. https://doi.org/10.3390/ijms22020529.
Article
CAS
PubMed Central
Google Scholar
Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30:1002–19.
Article
CAS
Google Scholar
Liu T, Zhou L, Yang K, Iwasawa K, Kadekaro AL. The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fi broblasts. Signal Transduct Target Ther. 2019. https://doi.org/10.1038/s41392-019-0100-7.
Article
PubMed
PubMed Central
Google Scholar
Zhou L, Yang K, Andl T, Randall Wickett R, Zhang Y. Perspective of targeting cancer-associated fibroblasts in melanoma. J Cancer. 2015;6:717–26.
Article
Google Scholar
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 2022;20:1–19. https://doi.org/10.1186/S12964-022-00871-X.
Article
Google Scholar
Xue Q, Roh-Johnson M. Sharing is caring. Dev Cell. 2019;49:306–7. https://doi.org/10.1016/j.devcel.2019.04.023.
Article
CAS
PubMed
Google Scholar
Lopes-Coelho F, Gouveia-Fernandes S, Serpa J. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumor Biol. 2018;40:1–15. https://doi.org/10.1177/1010428318756203.
Article
CAS
Google Scholar
Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50. https://doi.org/10.1016/J.SEMCANCER.2019.08.002.
Article
CAS
PubMed
Google Scholar
Simiczyjew A, Dratkiewicz E, Mazurkiewicz J, Ziętek M, Matkowski R, Nowak D. The influence of tumor microenvironment on immune escape of melanoma. Int J Mol Sci. 2020;21:8359. https://doi.org/10.3390/ijms21218359.
Article
CAS
PubMed Central
Google Scholar
Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–90. https://doi.org/10.3390/CANCERS6031670.
Article
PubMed
PubMed Central
Google Scholar
Mansoub NH. The role of keratinocyte function on the defected diabetic wound healing. Int J Burns Trauma. 2021;11:430. https://doi.org/10.5603/dk.a2022.0004.
Article
CAS
Google Scholar
Wang JX, Fukunaga-Kalabis M, Herlyn M. Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma. J Cell Commun Signal. 2016;10:191–6.
Article
Google Scholar
Kuphal S, Bosserhoff AK. E-cadherin cell-cell communication in melanogenesis and during development of malignant melanoma. Arch Biochem Biophys. 2012;524:43–7. https://doi.org/10.1016/j.abb.2011.10.020.
Article
CAS
PubMed
Google Scholar
Hsu MY, Andl T, Li G, Meinkoth JL, Herlyn M. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci. 2000;113(Pt 9):1535–42. https://doi.org/10.1242/JCS.113.9.1535.
Article
CAS
PubMed
Google Scholar
Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156:1515–25. https://doi.org/10.1016/S0002-9440(10)65023-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swope VB, Starner RJ, Rauck C, Abdel-Malek ZA. Endothelin-1 and α-melanocortin have redundant effects on global genome repair in UV-irradiated human melanocytes despite distinct signaling pathways. Pigment Cell Melanoma Res. 2020;33:293–304. https://doi.org/10.1111/pcmr.12823.
Article
CAS
PubMed
Google Scholar
Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest. 2002;110:443–52. https://doi.org/10.1172/JCI13729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith MP, Rowling EJ, Miskolczi Z, Ferguson J, Spoerri L, Haass NK, Sloss O, McEntegart S, Arozarena I, Kriegsheim A, et al. Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med. 2017;9:1011–29. https://doi.org/10.15252/emmm.201607156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal cells present in the melanoma niche affect tumor invasiveness and its resistance to therapy. Int J Mol Sci. 2021;22:1–21.
Article
Google Scholar
Belleudi F, Cardinali G, Kovacs D, Picardo M, Torrisi MR. KGF promotes paracrine activation of the SCF/c-KIT axis from human keratinocytes to melanoma cells. Transl Oncol. 2010;3:80. https://doi.org/10.1593/TLO.09196.
Article
PubMed
PubMed Central
Google Scholar
Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM. Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell. 2011;22:4068. https://doi.org/10.1091/MBC.E10-08-0703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodet O, Lacina L, Krejčí E, Dvořánková B, Grim M, Štork J, Kodetová D, Vlček Č, Šáchová J, Kolář M, et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer. 2015;14:1. https://doi.org/10.1186/1476-4598-14-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu C, Vickers MF, Kerbel RS. Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proc Natl Acad Sci U S A. 1992;89:9215. https://doi.org/10.1073/PNAS.89.19.9215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busse A, Keilholz U. Role of TGF-β in melanoma. Curr Pharm Biotechnol. 2011;12:2165–75. https://doi.org/10.2174/138920111798808437.
Article
CAS
PubMed
Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. https://doi.org/10.1038/227680a0.
Article
CAS
PubMed
Google Scholar
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci. 1979;76:4350–4. https://doi.org/10.1073/PNAS.76.9.4350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazurkiewicz E, Mrówczyńska E, Simiczyjew A, Nowak D, Mazur AJ. A fluorescent gelatin degradation assay to study melanoma breakdown of extracellular matrix. Methods Mol Biol. 2021;2265:47–63. https://doi.org/10.1007/978-1-0716-1205-7_3.
Article
CAS
PubMed
Google Scholar
Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 2005;25:8581–91. https://doi.org/10.1128/MCB.25.19.8581-8591.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park GB, Kim DJ, Kim YS, Lee HK, Kim CW, Hur DY. Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents. Int J Oncol. 2015;46:185–94. https://doi.org/10.3892/IJO.2014.2721/HTML.
Article
CAS
PubMed
Google Scholar
Cardoso ACF, Andrade LNS, Bustos SO, Chammas R. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol. 2016;6:127. https://doi.org/10.3389/FONC.2016.00127/BIBTEX.
Article
PubMed
PubMed Central
Google Scholar
Dange MC, Agarwal AK, Kalraiya RD. Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem. 2015;404:79–86. https://doi.org/10.1007/S11010-015-2367-5/FIGURES/4.
Article
CAS
PubMed
Google Scholar
Machado CML, Andrade LNS, Teixeira VR, Costa FF, Melo CM, dos Santos SN, Nonogaki S, Liu FT, Bernardes ES, Camargo AA, et al. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages. Cancer Med. 2014;3:201–14. https://doi.org/10.1002/CAM4.173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MSG. Extracellular galectin-3 in tumor progression and metastasis. Front Oncol. 2014;4:138. https://doi.org/10.3389/FONC.2014.00138/BIBTEX.
Article
PubMed
PubMed Central
Google Scholar
Gurzu S, Beleaua MA, Jung I. The role of tumor microenvironment in development and progression of malignant melanomas—a systematic review. Rom J Morphol Embryol. 2018;59:23–8.
PubMed
Google Scholar
Rikken G, Niehues H, van den Bogaard EH. Organotypic 3D skin models: human epidermal equivalent cultures from primary keratinocytes and immortalized keratinocyte cell lines. Methods Mol Biol. 2020;2154:45–61. https://doi.org/10.1007/978-1-0716-0648-3_5.
Article
CAS
PubMed
Google Scholar
Ayuso JM, Sadangi S, Lares M, Rehman S, Humayun M, Denecke KM, Skala MC, Beebe DJ, Setaluri V. Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. Lab Chip. 2021;21:1139–49. https://doi.org/10.1039/D0LC00988A.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleicher J, Swords DS, Mali ME, McGuire L, Pahlkotter MK, Asare EA, Bowles TL, Hyngstrom JR. Recurrence patterns in patients with Stage II melanoma: the evolving role of routine imaging for surveillance. J Surg Oncol. 2020;122:1770–7. https://doi.org/10.1002/JSO.26214.
Article
PubMed
Google Scholar
Tarhini A, Ghate SR, Ionescu-Ittu R, Manceur AM, Ndife B, Jacques P, Laliberté F, Nakasato A, Burne R, Duh MS. Postsurgical treatment landscape and economic burden of locoregional and distant recurrence in patients with operable nonmetastatic melanoma. Melanoma Res. 2018;28:618–28. https://doi.org/10.1097/CMR.0000000000000507.
Article
PubMed
PubMed Central
Google Scholar
Rutkowski P, Ługowska I. Follow-up in melanoma patients. Memo Mag Eur Med Oncol. 2014;7:83–6. https://doi.org/10.1007/S12254-014-0151-Y/TABLES/1.
Article
Google Scholar
Rutkowski P, Wysocki PJ, Nasierowska-Guttmejer A, Jeziorski A, Wysocki WM, Kalinka-Warzocha E, Świtaj T, Kozak K, Fijuth J, Kawecki A, et al. Cutaneous melanomas. Oncol Clin Pract. 2017;13:241–58. https://doi.org/10.5603/OCP.2017.0038.
Article
Google Scholar
Damsky WE, Rosenbaum LE, Bosenberg M. Decoding melanoma metastasis. Cancers (Basel). 2011;3:126. https://doi.org/10.3390/CANCERS3010126.
Article
Google Scholar
Companjen AR, Van der Velden VHJ, Vooys A, Debets R, Benner R, Prens EP. Human keratinocytes are major producers of IL-18: Predominant expression of the unprocessed form. Eur Cytokine Netw. 2000;11:383–90.
CAS
PubMed
Google Scholar
Jung MK, Song HK, Kim KE, Hur DY, Kim T, Bang S, Park H, Cho DH. IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol Lett. 2006;107:125–30. https://doi.org/10.1016/J.IMLET.2006.08.004.
Article
CAS
PubMed
Google Scholar
Brocks T, Fedorchenko O, Schliermann N, Stein A, Moll UM, Seegobin S, Dewor M, Hallek M, Marquardt Y, Fietkau K, et al. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. FASEB J. 2017;31:526. https://doi.org/10.1096/FJ.201600860R.
Article
CAS
PubMed
Google Scholar
Soumoy L, Kindt N, Ghanem G, Saussez S, Journe F. Role of macrophage migration inhibitory factor (MIF) in melanoma. Cancers (Basel). 2019;11:529. https://doi.org/10.3390/CANCERS11040529.
Article
CAS
PubMed Central
Google Scholar
Rumpler G, Becker B, Hafner C, McClelland M, Stolz W, Landthaler M, Schmitt R, Bosserhoff A, Vogt T. Identification of differentially expressed genes in models of melanoma progression by cDNA array analysis: SPARC, MIF and a novel cathepsin protease characterize aggressive phenotypes. Exp Dermatol. 2003;12:761–71. https://doi.org/10.1111/J.0906-6705.2003.00082.X.
Article
CAS
PubMed
Google Scholar
Higgins PJ, Czekay RP, Wilkins-Port CE, Higgins SP, Freytag J, Overstreet JM, Klein RM, Higgins CE, Samarakoon R. PAI-1: an integrator of cell signaling and migration. Int J Cell Biol. 2011. https://doi.org/10.1155/2011/562481.
Article
PubMed
PubMed Central
Google Scholar
Durand MKV, Bødker JS, Christensen A, Dupont DM, Hansen M, Jensen JK, Kjelgaard S, Mathiasen L, Pedersen KE, Skeldal S, et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 2004;91:35–46. https://doi.org/10.1160/TH03-12-0784.
Article
Google Scholar
Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4:1–12. https://doi.org/10.1186/1479-5876-4-48/FIGURES/5.
Article
Google Scholar
Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007;98:621–8. https://doi.org/10.1111/J.1349-7006.2007.00434.X.
Article
CAS
PubMed
Google Scholar
Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 2003;17:7–30. https://doi.org/10.1101/GAD.1039703.
Article
CAS
PubMed
Google Scholar
Abuduhadeer X, Xu X, Aihesan K, Yilihamu M, Zhao Y, Zhang W. Clinical significance of kallikrein 5 as a novel prognostic biomarker in gastric adenocarcinoma. J Clin Lab Anal. 2021;35:958. https://doi.org/10.1002/JCLA.23958.
Article
Google Scholar
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med. 2022;88: 101086. https://doi.org/10.1016/J.MAM.2022.101086.
Article
CAS
PubMed
Google Scholar
Homma T, Kageyama S, Nishikawa A, Nagata K. Melanosome degradation in epidermal keratinocytes related to lysosomal protease cathepsin V. Biochem Biophys Res Commun. 2018;500:339–43. https://doi.org/10.1016/J.BBRC.2018.04.070.
Article
CAS
PubMed
Google Scholar
Hofmann UB, Westphal JR, Van Muijen GNP, Ruiter DJ. Matrix metalloproteinases in human melanoma. J Invest Dermatol. 2000;115:337–44. https://doi.org/10.1046/J.1523-1747.2000.00068.X.
Article
CAS
PubMed
Google Scholar
McCawley LJ, Wright J, LaFleur BJ, Crawford HC, Matrisian LM. Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. Am J Pathol. 2008;173:1528. https://doi.org/10.2353/AJPATH.2008.080132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoshan E, Braeuer RR, Kamiya T, Mobley AK, Huang L, Vasquez ME, Velazquez-Torres G, Chakravarti N, Ivan C, Prieto V, et al. NFAT1 directly regulates IL8 and MMP3 to promote melanoma tumor growth and metastasis. Cancer Res. 2016;76:3145–55. https://doi.org/10.1158/0008-5472.CAN-15-2511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Kilsdonk JWJ, Bergers M, Van Kempen LCLT, Schalkwijk J, Swart GWM. Keratinocytes drive melanoma invasion in a reconstructed skin model. Melanoma Res. 2010;20:372–80. https://doi.org/10.1097/CMR.0B013E32833D8D70.
Article
PubMed
Google Scholar
Krenzer S, Peterziel H, Mauch C, Blaber SI, Blaber M, Angel P, Hess J. Expression and function of the Kallikrein-related peptidase 6 in the human melanoma microenvironment. J Invest Dermatol. 2011;131:2281. https://doi.org/10.1038/JID.2011.190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44–46:200–6. https://doi.org/10.1016/J.MATBIO.2015.01.019.
Article
PubMed
Google Scholar
Bønnelykke-Behrndtz ML, Steiniche T. Ulcerated Melanoma: Aspects and Prognostic Impact. Cutan Melanoma Etiol Ther. 2017;2017:67–75. https://doi.org/10.15586/CODON.CUTANEOUSMELANOMA.2017.CH5.
Article
Google Scholar
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90. https://doi.org/10.1038/sj.onc.1210421.
Article
CAS
PubMed
Google Scholar
Senbanjo LT, Aljohani H, Majumdar S, Chellaiah MA. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal. 2019. https://doi.org/10.1186/s12964-019-0395-6.
Article
PubMed
PubMed Central
Google Scholar
Silberman A, Goldman O, Assayag OB, Jacob A, Rabinovich S, Adler L, Lee JS, Keshet R, Sarver A, Frug J, et al. Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res. 2019;79:518–33. https://doi.org/10.1158/0008-5472.CAN-18-1062.
Article
CAS
PubMed
Google Scholar