Meier S, Gehring C. Emerging roles in plant biotechnology for the second messenger cGMP - guanosine 3′, 5′-cyclic monophosphate. Afr J Biotechnol. 2006;5(19):1687–92.
CAS
Google Scholar
Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot. 2002;53(372):1237–47.
Article
CAS
PubMed
Google Scholar
Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signaling. Plant Cell. 2002;14(Suppl):S401–17.
CAS
PubMed
PubMed Central
Google Scholar
Newton RP, Roef LUC, Witters E, Van Onckelen H. Tansley Review No. 106. New Phytol. 1999;143(3):427–55.
Article
CAS
Google Scholar
Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci. 1999;36(4):275–328.
Article
CAS
PubMed
Google Scholar
Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol. 2006;68:375–401.
Article
CAS
PubMed
Google Scholar
Bridges D, Fraser ME, Moorhead GB. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC bioinform. 2005;6:6.
Article
CAS
Google Scholar
Newton RP, Kingston EE, Evans DE, Younis LM, Brown EG. Occurrence of guanosine 3′, 5′-cyclic monophosphate (Cyclic GMP) and associated enzyme systems in Phaseolus vulgaris. Phytochemistry. 1984;23(7):1367–72.
Article
CAS
Google Scholar
Bowler C, Neuhaus G, Yamagata H, Chua NH. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell. 1994;77(1):73–81.
Article
CAS
PubMed
Google Scholar
Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, Mcainsh MR, Hetherington AM, et al. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytol. 2011;191(1):57–69.
Article
CAS
PubMed
Google Scholar
Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR. Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem. 2001;39(5):385–94.
Article
CAS
Google Scholar
Hu X, Neill SJ, Tang Z, Cai W. Nitric Oxide Mediates Gravitropic Bending in Soybean Roots. Plant Physiol. 2005;137(2):663–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL. cGMP Is Required for Gibberellic Acid-Induced Gene Expression in Barley Aleurone. Plant Cell. 1996;8(12):2325–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, et al. Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol. 2009;181(4):860–70.
Article
CAS
PubMed
Google Scholar
Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Ebermann R. Gaseous nitric oxide stimulates guanosine-3′, 5′-cyclic monophosphate (cGMP) formation in spruce needles. Phytochemistry. 1994;36(2):259–62.
Article
CAS
Google Scholar
Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A. 1998;95(17):10328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K. Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett. 2004;569(1–3):317–20.
Article
CAS
PubMed
Google Scholar
Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C. Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav. 2009;4(4):307–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludidi N, Gehring C. Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem. 2003;278(8):6490–4.
Article
CAS
PubMed
Google Scholar
Meier S, Seoighe C, Kwezi L, Irving H, Gehring C. Plant nucleotide cyclases: an increasingly complex and growing family. Plant Signal Behav. 2007;2(6):536–9.
Article
PubMed
PubMed Central
Google Scholar
Gehring C. Adenyl cyclases and cAMP in plant signaling - past and present. Cell Commun Signal. 2010;8:15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C. The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One. 2007;2(5):e449.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C. The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One. 2010;5(1):e8904.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, et al. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem. 2011;286(25):22580–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, et al. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A. 2010;107(49):21193–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, et al. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett. 2011;585(17):2693–7.
Article
CAS
PubMed
Google Scholar
Dubovskaya LV, Molchan OV, Volotovsky ID. Cyclic GMP-Binding Activity in Avena sativa Seedlings. Russ J Plant Physiol. 2002;49(2):216–20.
Article
CAS
Google Scholar
Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J. Biochemical evidence for a cGMP-regulated protein kinase in Pharbitis nil. Phytochemistry. 2003;63(6):635–42.
Article
CAS
PubMed
Google Scholar
Talke IN, Blaudez D, Maathuis FJ, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci. 2003;8(6):286–93.
Article
CAS
PubMed
Google Scholar
Hoshi T. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J Gen Physiol. 1995;105(3):309–28.
Article
CAS
PubMed
Google Scholar
Lemtiri-Chlieh F, Berkowitz GA. Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem. 2004;279(34):35306–12.
Article
CAS
PubMed
Google Scholar
Hall BP, Shakeel SN, Amir M, Ul Haq N, Qu X, Schaller GE. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol. 2012;159(2):682–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng Q, Mercier RW, Yao W, Berkowitz GA. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 1999;121(3):753–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng Q, Mercier RW, Hua B-G, Fromm H, Berkowitz GA. Electrophysiological Analysis of Cloned Cyclic Nucleotide-Gated Ion Channels. Plant Physiol. 2002;128(2):400–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua B-G, Mercier RW, Leng Q, Plants BGA, Do I. Differently. A New Basis for Potassium/Sodium Selectivity in the Pore of an Ion Channel. Plant Physiol. 2003;132(3):1353–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, et al. Death Don’t Have No Mercy and Neither Does Calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and Innate Immunity. Plant Cell. 2007;19(3):1081–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, et al. A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses. Plant J. 2012;70(6):1056–69.
Article
CAS
PubMed
Google Scholar
Wang Y-F, Munemasa S, Nishimura N, Ren H-M, Robert N, Han M, et al. Identification of Cyclic GMP-Activated Nonselective Ca2 + −Permeable Cation Channels and Associated CNGC5 and CNGC6 Genes in Arabidopsis Guard Cells. Plant Physiol. 2013;163(2):578–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balagué C, Lin B, Alcon C, Flottes G, Malmström S, Köhler C, et al. HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide–Gated Channel Ion Channel Family. Plant Cell. 2003;15(2):365–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clough SJ, Fengler KA, Yu I-c, Lippok B, Smith RK, Bent AF. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci. 2000;97(16):9323–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshioka K, Moeder W, Kang H-G, Kachroo P, Masmoudi K, Berkowitz G, et al. The Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen Resistance Responses. Plant Cell. 2006;18(3):747–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moeder W, Urquhart W, Ung H, Yoshioka K. The Role of Cyclic Nucleotide-Gated Ion Channels in Plant Immunity. Molecular Plant. 2011;4(3):442–52.
Article
CAS
PubMed
Google Scholar
Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf Senescence Signaling: The Ca (2+)-Conducting Arabidopsis Cyclic Nucleotide Gated Channel2 Acts through Nitric Oxide to Repress Senescence Programming. Plant Physiol. 2010;154(2):733–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chin K, Defalco TA, Moeder W, Yoshioka K. The Arabidopsis Cyclic Nucleotide-Gated Ion Channels AtCNGC2 and AtCNGC4 Work in the Same Signaling Pathway to Regulate Pathogen Defense and Floral Transition. Plant Physiol. 2013;163(2):611–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortuna A, Lee J, Ung H, Chin K, Moeder W, Yoshioka K. Crossroads of stress responses, development and flowering regulation—the multiple roles of Cyclic Nucleotide Gated Ion Channel 2. Plant Signal Behav. 2015;10(3):e989758.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM. Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot. 2006;57(4):791–800.
Article
CAS
PubMed
Google Scholar
Guo K-M, Babourina O, Christopher DA, Borsics T, Rengel Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant. 2008;134(3):499–507.
Article
CAS
PubMed
Google Scholar
Jin Y, Jing W, Zhang Q, Zhang W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na + transport in Arabidopsis. J Plant Res. 2014;128(1):211–20.
Article
PubMed
CAS
Google Scholar
Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, et al. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J. 2000;24(4):533–42.
Article
CAS
PubMed
Google Scholar
Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P. Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance. Plant Cell. 2012;24(8):3333–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA. The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta. 2006;225(3):563–73.
Article
PubMed
CAS
Google Scholar
Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M. Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H + −ATPase, and BAK1. The Plant Cell. 2015;27(6):1718–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih H-W, DePew CL, Miller ND, Monshausen GB. The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana. Current Biology. 2015;25(23):3119–25.
Article
CAS
PubMed
Google Scholar
Frietsch S, Wang Y-F, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, et al. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA. 2007;104(36):14531–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Q-F, Gu L-L, Wang H-Q, Fei C-F, Fang X, Hussain J, et al. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci. 2016;113(11):3096–101.
Article
CAS
PubMed
Google Scholar
Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, et al. A Cyclic Nucleotide-Gated Channel (CNGC16) in Pollen Is Critical for Stress Tolerance in Pollen Reproductive Development. Plant Physiol. 2013;161(2):1010–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S, et al. Cyclic Nucleotide Gated Channels 7 and 8 Are Essential for Male Reproductive Fertility. PLoS One. 2013;8(2):e55277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maathuis FJ. cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J. 2006;45(5):700–11.
Article
CAS
PubMed
Google Scholar
Bastian R, Dawe A, Meier S, Ludidi N, Bajic VB, Gehring C. Gibberellic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana. Plant Signal Behav. 2010;5(3):224–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isner JC, Nuhse T, Maathuis FJ. The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot. 2012;63(8):3199–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholten A, Poh MK, van Veen TA, van Breukelen B, Vos MA, Heck AJ. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. J Proteome Res. 2006;5(6):1435–47.
Article
CAS
PubMed
Google Scholar
Luo Y, Blex C, Baessler O, Glinski M, Dreger M, Sefkow M, et al. The cAMP capture compound mass spectrometry as a novel tool for targeting cAMP-binding proteins: from protein kinase A to potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channels. Mol Cell Proteomics. 2009;8(12):2843–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donaldson L, Meier S. An affinity pull-down approach to identify the plant cyclic nucleotide interactome. Methods Mol Biol. 2013;1016:155–73.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J. 2005;43(1):153–63.
Article
CAS
PubMed
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004;136(1):2621–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, et al. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 2004;136(1):2483–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.
CAS
PubMed
Google Scholar
Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS. Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell. 2012;24(1):336–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macheroux P, Massey V, Thiele DJ, Volokita M. Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization. Biochemistry. 1991;30(18):4612–9.
Article
CAS
PubMed
Google Scholar
Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011;2011:bar009.
Article
CAS
Google Scholar
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2012;40(Database issue):D306–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoraghi R, Corbin JD, Francis SH. Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol. 2004;65(2):267–78.
Article
CAS
PubMed
Google Scholar
Aravind L, Ponting CP. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci. 1997;22(12):458–9.
Article
CAS
PubMed
Google Scholar
Ho YS, Burden LM, Hurley JH. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J. 2000;19(20):5288–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J Mol Biol. 2008;380(5):844–55.
Article
CAS
PubMed
Google Scholar
Narikawa R, Ishizuka T, Muraki N, Shiba T, Kurisu G, Ikeuchi M. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proc Natl Acad Sci U S A. 2013;110(3):918–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindermayr C, Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005;137(3):921–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romero-Puertas MC, Campostrini N, Mattè A, Righetti PG, Perazzolli M, Zolla L, et al. Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics. 2008;8(7):1459–69.
Article
CAS
PubMed
Google Scholar
Lozano-Juste J, Colom-Moreno R, Leon J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot. 2011;62(10):3501–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cecconi D, Orzetti S, Vandelle E, Rinalducci S, Zolla L, Delledonne M. Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis. 2009;30(14):2460–8.
Article
CAS
PubMed
Google Scholar
Wang Y-Q, Feechan A, Yun B-W, Shafiei R, Hofmann A, Taylor P, et al. S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity. J Biol Chem. 2009;284(4):2131–7.
Article
CAS
PubMed
Google Scholar
Raines CA. The Calvin cycle revisited. Photosynth Res. 2003;75(1):1–10.
Article
CAS
PubMed
Google Scholar
Foyer CH, Bloom AJ, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol. 2009;60:455–84.
Article
CAS
PubMed
Google Scholar
Jebanathirajah JA, Coleman JR. Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta. 1998;204(2):177–82.
Article
CAS
PubMed
Google Scholar
Meier S, Gehring C. A guide to the integrated application of on-line data mining tools for the inference of gene functions at the systems level. Biotechnol J. 2008;3(11):1375–87.
Article
CAS
PubMed
Google Scholar
Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C. Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC Plant Biol. 2008;8:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology. 1997;48(1):251–75.
Article
CAS
PubMed
Google Scholar
Scholten A, van Veen TA, Vos MA, Heck AJ. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue. J Proteome Res. 2007;6(5):1705–17.
Article
CAS
PubMed
Google Scholar
Pelligrino DA, Wang Q. Cyclic nucleotide crosstalk and the regulation of cerebral vasodilation. Prog Neurobiol. 1998;56(1):1–18.
Article
CAS
PubMed
Google Scholar
Dubovskaya LV, Volotovsky ID. Affinity chromatography isolation and characterization of soluble cGMP binding proteins from Avena sativa L. seedlings. Bulg J Plant Physiol. 2004;30(1–2):14–24.
CAS
Google Scholar
Laukens K, Roef L, Witters E, Slegers H, Van Onckelen H. Cyclic AMP affinity purification and ESI-QTOF MS-MS identification of cytosolic glyceraldehyde 3-phosphate dehydrogenase and two nucleoside diphosphate kinase isoforms from tobacco BY-2 cells. FEBS Lett. 2001;508(1):75–9.
Article
CAS
PubMed
Google Scholar
Goldberg JM, Bosgraaf L, Van Haastert PJ, Smith JL. Identification of four candidate cGMP targets in Dictyostelium. Proc Natl Acad Sci U S A. 2002;99(10):6749–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosgraaf L, Russcher H, Snippe H, Bader S, Wind J, Van Haastert PJ. Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in dictyostelium. Mol Biol Cell. 2002;13(11):3878–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52(3):375–414.
CAS
PubMed
Google Scholar
Kuo W-N, Kreahling J, Shanbhag V, Shanbhag P, Mewar M. Protein nitration. Mol Cell Biochem. 2000;214(1):121–9.
Article
CAS
PubMed
Google Scholar
Aggarwal S, Gross CM, Rafikov R, Kumar S, Fineman JR, Ludewig B, et al. Nitration Of Tyrosine 247 Inhibits Protein Kinase G-1α Activity By Attenuating Cyclic Guanosine Monophosphate Binding. Journal of Biological Chemistry. 2014;289(11):7948–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray CI. New concepts in cardiovascular regulation by post-translational cysteine modification. Baltimore, MD: Johns Hopkins University; 2012.
Google Scholar
Allocco DJ, Kohane IS, Butte AJ. Quantifying the relationship between co-expression, co-regulation and gene function. BMC bioinform. 2004;5:18.
Article
Google Scholar
Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P. Coexpression analysis of human genes across many microarray data sets. Genome Res. 2004;14(6):1085–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot. 2012;63(5):2089–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 2000;24(5):667–77.
Article
CAS
PubMed
Google Scholar
Neill SJ, Barros R, Bright J, Desikan R, Hancock J, Harrison J, et al. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot. 2008;59(2):165–76.
Article
CAS
PubMed
Google Scholar
Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, et al. Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell. 2013;25(2):558–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol. 2010;12(1):87–93. sup pp 1–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder JI. Central functions of bicarbonate in S‐type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 2011;30(8):1645–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno JI, Martin R, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J. 2005;41(3):451–63.
Article
CAS
PubMed
Google Scholar
Turek I, Gehring C. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Molecular Biology. 2016:1–12.
Trapet P, Kulik A, Lamotte O, Jeandroz S, Bourque S, Nicolas-Francès V, et al. NO signaling in plant immunity: A tale of messengers. Phytochemistry. 2015;112:72–9.
Article
CAS
PubMed
Google Scholar
Li J, Jia H. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana. Plant Signal Behav. 2013;8(8):e25052.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li J, Wang X, Zhang Y, Jia H, Bi Y. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. Planta. 2011;234(4):709–22.
Article
CAS
PubMed
Google Scholar
Yun B-W, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478(7368):264–8.
Article
CAS
PubMed
Google Scholar
Yang H, Mu J, Chen L, Feng J, Hu J, Li L, et al. S-Nitrosylation Positively Regulates Ascorbate Peroxidase Activity during Plant Stress Responses. Plant Physiol. 2015;167(4):1604–15.
Article
CAS
PubMed
PubMed Central
Google Scholar