Skip to main content
Fig. 3 | Cell Communication and Signaling

Fig. 3

From: The arabidopsis cyclic nucleotide interactome

Fig. 3

The Calvin cycle and photorespiration pathway. The CNBP candidates are depicted in red font. Additional photorespiratory enzymes that were pulled down during the affinity purification procedure but excluded during the stringent elimination process (Table S2) are shown in blue font, where SAGT is ALANINE: GLYOXYLATE AMINOTRANSFERASE and CAT2 is CATALASE 2. The Calvin cycle and photorespiration pathway are connected by the dual-functioning enzyme RUBISCO shown in green. The CNBP candidate CA1 interconverts soluble HCO3− to gaseous CO2 and controls the supply of CO2 to RUBISCO and regulates stomatal closure through HCO3− effects on anion channels thereby further affecting the supply of CO2 to the plant. The CNBP candidates PGK1, GAPB and TKL are enzymes in the Calvin cycle. PGK1 and GAPB convert Ribulose-1, 5-bisphosphate (RuBP) into the triose phosphate, D-glyceraldehyde-3-phosphate which can feed into sucrose and starch biosynthesis. TKL is involved in the regeneration of RuBP and significantly controls carbon flux through the Calvin cycle. The CNBP candidates GOX1 and SHMT1 are enzymes in the photorespiration pathway. GOX1 catalyses the conversion of glycolate to glyoxylate with the concomitant release of H2O2 as a by-product. SHMT1 converts two molecules of glycine to serine, CO2, NH3 and NADH. This CO2 can feedback into the Calvin cycle while NH3 can feed into nitrogen assimilation

Back to article page