Met Ö, Jensen KM, Chamberlain CA, Donia M, Svane IM. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019;41(1):49–58.
Article
PubMed
Google Scholar
Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson PC, Abramson JS. Engineered T cells: CAR T cell therapy and beyond. Curr Oncol Rep. 2022;24(1):23–31.
Article
CAS
PubMed
Google Scholar
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell Oncol. 2021;44(3):495–523.
Article
CAS
Google Scholar
Campana D, Schwarz H, Imai C. 4–1BB chimeric antigen receptors. Cancer J. 2014;20(2):134–40.
Article
CAS
PubMed
Google Scholar
Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 4–1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol. 2002;169(9):4882–8.
Article
PubMed
Google Scholar
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philipson BI, O’Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4–1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal. 2020;13(625):eaay8248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, May MJ, Kopp EB. NF-κB AND REL PROTEINS: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–60.
Article
CAS
PubMed
Google Scholar
Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science. 2001;293(5534):1495–9.
Article
CAS
PubMed
Google Scholar
Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol. 2008;9(12):1371–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih VFS, Tsui R, Caldwell A, Hoffmann A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 2011;21(1):86–102.
Article
CAS
PubMed
Google Scholar
Mori N, Prager D. Transactivation of the interleukin-1alpha promoter by human T-cell leukemia virus type I and type II Tax proteins. Blood. 1996;87(8):3410–7.
Article
CAS
PubMed
Google Scholar
Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol. 1993;13(10):6231–40.
CAS
PubMed
PubMed Central
Google Scholar
Son YH, Jeong YT, Lee KA, Choi KH, Kim SM, Rhim BY, et al. Roles of MAPK and NF-κB in interleukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J Cardiovasc Pharmacol. 2008;51(1):71–7.
Article
CAS
PubMed
Google Scholar
Cao S, Zhang X, Edwards JP, Mosser DM. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem. 2006;281(36):26041–50.
Article
CAS
PubMed
Google Scholar
Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N, et al. Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem. 1997;272(48):30412–20.
Article
CAS
PubMed
Google Scholar
Zhou J, Zhang J, Lichtenheld MG, Meadows GG. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J Immunol. 2002;169(3):1319–25.
Article
CAS
PubMed
Google Scholar
Altan-Bonnet G, Germain RN. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 2005;3(11):e356.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cess CG, Finley SD. Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. J Theor Biol. 2020;489:110125.
Article
CAS
PubMed
Google Scholar
Tserunyan V, Finley SD. Modeling predicts differences in CAR T cell signaling due to biological variability. bioRxiv. 2022;
Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1241–5.
Article
CAS
PubMed
Google Scholar
Kearns JD, Hoffmann A. Integrating computational and biochemical studies to explore mechanisms in NF-κB signaling. J Biol Chem. 2009;284(9):5439–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev. 2012;246(1):221–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharp GC, Ma H, Saunders PTK, Norman JE. A computational model of lipopolysaccharide-induced nuclear factor kappa B activation: a key signalling pathway in infection-induced preterm labour. PLoS ONE. 2013;8(7):e70180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schliemann M, Bullinger E, Borchers S, Allgöwer F, Findeisen R, Scheurich P. Heterogeneity reduces sensitivity of cell death for TNF-stimuli. BMC Syst Biol. 2011;5:204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipniacki T, Paszek P, Brasier AR, Luxon B, Kimmel M. Mathematical model of NF-κB regulatory module. J Theor Biol. 2004;228(2):195–215.
Article
CAS
PubMed
Google Scholar
Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information transduction capacity of noisy biochemical signaling networks. Science. 2011;334(6054):354–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tudelska K, Markiewicz J, Kochańczyk M, Czerkies M, Prus W, Korwek Z, et al. Information processing in the NF-κB pathway. Sci Rep. 2017;7(1):15926.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maity A, Wollman R. Information transmission from NFkB signaling dynamics to gene expression. PLOS Comput Biol. 2020;16(8):e1008011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. A mathematical model of combined CD8 T cell costimulation by 4–1BB (CD137) and OX40 (CD134) receptors. Sci Rep. 2019;9(1):10862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arch RH, Thompson CB. 4–1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol Cell Biol. 1998;18(1):558–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, et al. CD137 (4–1BB) signalosome: complexity is a matter of TRAFs. Front Immunol. 2018;9:2618.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee TH, Shank J, Cusson N, Kelliher MA. The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2 *. J Biol Chem. 2004;279(32):33185–91.
Article
CAS
PubMed
Google Scholar
Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim E, et al. Sphingosine-1-phosphate: a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010;465(7301):1084–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell. 2004;15(4):535–48.
Article
CAS
PubMed
Google Scholar
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22(2):245–57.
Article
CAS
PubMed
Google Scholar
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–51.
Article
CAS
PubMed
Google Scholar
Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999;284(5412):309–13.
Article
CAS
PubMed
Google Scholar
Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene. 1999;18(49):6867–74.
Article
CAS
PubMed
Google Scholar
Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91(2):243–52.
Article
CAS
PubMed
Google Scholar
Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science. 1997;278(5339):866–9.
Article
CAS
PubMed
Google Scholar
Faeder JR, Blinov ML, Hlavacek WS. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol. 2009;500:113–67.
Article
CAS
PubMed
Google Scholar
Nerreter T, Letschert S, Götz R, Doose S, Danhof S, Einsele H, et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019;10(1):3137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol. 2008;254(1):178–96.
Article
PubMed
PubMed Central
Google Scholar
Furusawa C, Suzuki T, Kashiwagi A, Yomo T, Kaneko K. Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophys (Nagoya-shi). 2005;1:25–31.
CAS
Google Scholar
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423.
Article
Google Scholar
Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information. Phys Rev E. 2004;69(6): 066138.
Article
CAS
Google Scholar
Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012;2(3):a007724–a007724.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mieczkowski J, Kocyk M, Nauman P, Gabrusiewicz K, Sielska M, Przanowski P, et al. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma. Oncotarget. 2015;6(32):33077–90.
Article
PubMed
PubMed Central
Google Scholar
Veerappan K, Natarajan S, Ethiraj P, Vetrivel U, Samuel S. Inhibition of IKKβ by celastrol and its analogues—an in silico and in vitro approach. Pharm Biol. 2016;55(1):368–73.
Article
PubMed Central
CAS
Google Scholar
Tostevin F, ten Wolde PR. Mutual information in time-varying biochemical systems. Phys Rev E. 2010;81(6):061917.
Article
CAS
Google Scholar
Mansouri V, Yazdanpanah N, Rezaei N. The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy. Int Rev Immunol. 2021;1–20.
https://doi.org/10.1080/08830185.2021.1984449
Cheong R, Bergmann A, Werner SL, Regal J, Hoffmann A, Levchenko A. Transient IκB kinase activity mediates temporal NF-κB dynamics in response to a wide range of tumor necrosis factor-α doses*. J Biol Chem. 2006;281(5):2945–50.
Article
CAS
PubMed
Google Scholar
Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443(3):603–18.
Article
CAS
PubMed
Google Scholar
Ramos AL, Niemann FS, Duarte ASS, Ferro KP, Santos I, Bigarella CL, et al. Comparison of different methods to overexpress large genes. J Biol Res Bollettino della Società Italiana di Biologia Sperimentale. 2018;91(2):80–9.
Article
Google Scholar
Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25(1):82–8.
Article
CAS
PubMed
Google Scholar
Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, et al. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother. 2010;59(12):1781–9.
Article
PubMed
Google Scholar
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol. 2017;31:37–54.
Article
CAS
PubMed
Google Scholar
Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK cell-based immunotherapies in cancer. Immune Netw. 2020;20(2):e14.
Article
PubMed
PubMed Central
Google Scholar
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083–9.
CAS
PubMed
PubMed Central
Google Scholar
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silla L, Valim V, Pezzi A, da Silva M, Wilke I, Nobrega J, et al. Adoptive immunotherapy with double-bright (CD56bright/CD16bright) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: a proof-of-concept study. Br J Haematol. 2021;195(5):710–21.
Article
CAS
PubMed
Google Scholar
Tabbaa OP, Jayaprakash C. Mutual information and the fidelity of response of gene regulatory models. Phys Biol. 2014;11(4):046004.
Article
PubMed
Google Scholar
Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol. 2009;87(1):11.9.D.1-11.9.D.19.
Article
Google Scholar
Shiio Y, Aebersold R. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc. 2006;1(1):139–45.
Article
CAS
PubMed
Google Scholar
Meier-Soelch J, Mayr-Buro C, Juli J, Leib L, Linne U, Dreute J, et al. Monitoring the levels of cellular NF-κB activation states. Cancers. 2021;13(21):5351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Tan J, Tarlov MJ, Zachariah MR. Absolute quantification method for protein concentration. Anal Chem. 2014;86(24):12130–7.
Article
CAS
PubMed
Google Scholar
Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63(6):1424–33.
Article
CAS
PubMed
Google Scholar
Nadler LM, Korsmeyer SJ, Anderson KC, Boyd AW, Slaughenhoupt B, Park E, et al. B cell origin of non-T cell acute lymphoblastic leukemia. A model for discrete stages of neoplastic and normal pre-B cell differentiation. J Clin Invest. 1984;74(2):332–40.
Article
CAS
PubMed
PubMed Central
Google Scholar