de Duve C. The origin of eukaryotes: a reappraisal. Nat Rev Genet. 2007;8:395–403.
Article
PubMed
CAS
Google Scholar
Mooren OL, Galletta BJ, Cooper JA. Roles for actin assembly in endocytosis. Annu Rev Biochem. 2012;81:661–86.
Article
CAS
PubMed
Google Scholar
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Bio. 2011;12:517–33.
Article
CAS
Google Scholar
Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim Biophys Acta Bba Gen Subj. 2012;1820:264–81.
Article
CAS
Google Scholar
Subtil A, et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc National Acad Sci. 1999;96:6775–80.
Article
CAS
Google Scholar
van der Bliek A, et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol. 1993;122:553–63.
Article
PubMed
Google Scholar
Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biology. 1994;127:915–34.
Article
CAS
Google Scholar
Roth TF, Porter KR. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol. 1964;20:313–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Echarri A, Pozo MAD. Caveolae—mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci. 2015;128:2747–58.
CAS
PubMed
Google Scholar
Echarri A, et al. Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci. 2012;125:3097–113.
Article
CAS
PubMed
Google Scholar
Stoeber M, et al. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. Embo J. 2012;31:2350–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic. 2002;3:311–20.
Article
CAS
PubMed
Google Scholar
Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161:673–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henley JR, Krueger EWA, Oswald BJ, McNiven MA. Dynamin-mediated Internalization of Caveolae. J Cell Biol. 1998;141:85–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955;1:445–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chadda R, et al. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic. 2007;8:702–17.
Article
CAS
PubMed
Google Scholar
Sathe M, et al. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun. 2018;9:1835.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lundmark R, et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol. 2008;18:1802–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhary N, et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. Plos Biol. 2014;12:e1001832.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kirkham M, et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol. 2005;168:465–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell. 2002;2:411–23.
Article
CAS
PubMed
Google Scholar
Langhorst MF, Solis GP, Hannbeck S, Plattner H, Stuermer CAO. Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. Febs Lett. 2007;581:4697–703.
Article
CAS
PubMed
Google Scholar
Ge L, et al. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci. 2011;108:551–6.
Article
CAS
PubMed
Google Scholar
Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol. 2006;8:46–54.
Article
CAS
PubMed
Google Scholar
Basquin C, et al. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor. Embo J. 2015;34:2147–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grassart A, Dujeancourt A, Lazarow PB, Dautry-Varsat A, Sauvonnet N. Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. Embo Rep. 2008;9:356–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matkó J, et al. GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem. 2002;269:1199–208.
Article
PubMed
Google Scholar
Vereb G, et al. Cholesterol-dependent clustering of IL-2Rα and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci. 2000;97:6013–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauvonnet N, Dujeancourt A, Dautry-Varsat A. Cortactin and dynamin are required for the clathrin-independent endocytosis of γc cytokine receptor. J Cell Biol. 2005;168:155–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hémar A, Lieb M, Subtil A, Disanto JP, Dautry-Varsat A. Endocytosis of the β chain of interleukin-2 receptor requires neither interleukin-2 nor the γ chain. Eur J Immunol. 1994;24:1951–5.
Article
PubMed
Google Scholar
Radhakrishna H, Donaldson JG. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol. 1997;139:49–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell. 2004;15:3542–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Souza-Schorey C, Li G, Colombo M, Stahl P. A regulatory role for ARF6 in receptor-mediated endocytosis. Science. 1995;267:1175–8.
Article
PubMed
Google Scholar
Kaplan G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol. 1977;6:797–807.
Article
CAS
PubMed
Google Scholar
Botelho RJ, Grinstein S. Phagocytosis. Curr Biol. 2011;21:R533–8.
Article
CAS
PubMed
Google Scholar
Pratten MK, Lloyd JB. Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta Bba Gen Subj. 1986;881:307–13.
Article
CAS
Google Scholar
Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 1988;9:356–62.
Article
CAS
PubMed
Google Scholar
Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res. 1998;242:265–73.
Article
CAS
PubMed
Google Scholar
Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharmaceut Res. 2008;25:1815–21.
Article
CAS
Google Scholar
Churchward MA, Todd KG. Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain. 2014;7:85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bryan AM, Farnoud AM, Mor V, Poeta MD. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J Vis Exp. 2014. https://doi.org/10.3791/52432.
Article
PubMed
PubMed Central
Google Scholar
Gold ES, et al. Dynamin 2 Is required for phagocytosis in macrophages. J Exp Med. 1999;190:1849–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metchnikoff, E. Untersuchungen über die mesodermalen Phagocyten einiger Wirbeltiere. Biologisches centralblatt 560–565 (1883).
Boucrot E, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460–5.
Article
CAS
PubMed
Google Scholar
Casamento A, Boucrot E. Molecular mechanism of fast endophilin-mediated endocytosis. Biochem J. 2020;477:2327–45.
Article
PubMed
Google Scholar
Clayton EL, Cousin MA. The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem. 2009;111:901–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kokotos AC, Low DW. Myosin II and dynamin control actin rings to mediate fission during activity-dependent bulk endocytosis. J Neurosci. 2015;35:8687–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson-Fish JC, Kokotos AC, Gillingwater TH, Smillie KJ, Cousin MA. VAMP4 is an essential cargo molecule for activity-dependent bulk endocytosis. Neuron. 2015;88:973–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonanomi D, et al. Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. J Cell Sci. 2008;121:3757–69.
Article
CAS
PubMed
Google Scholar
Clayton EL, et al. The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J Neurosci. 2009;29:7706–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marxen M, Volknandt W, Zimmermann H. Endocytic vacuoles formed following a short pulse of K+-stimulation contain a plethora of presynaptic membrane proteins. Neuroscience. 1999;94:985–96.
Article
CAS
PubMed
Google Scholar
Watanabe S, et al. Ultrafast endocytosis at mouse hippocampal synapses. Nature. 2013;504:242–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe S, Boucrot E. Fast and ultrafast endocytosis. Curr Opin Cell Biol. 2017;47:64–71.
Article
CAS
PubMed
Google Scholar
Yue H, Xu J. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse. J Neurochem. 2015;134:247–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe S, et al. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. Elife. 2013;2:e00723.
Article
PubMed
PubMed Central
Google Scholar
Hilgemann DW, Lin M-J, Fine M, Deisl C. On the existence of endocytosis driven by membrane phase separations. Biochim Biophys Acta Bba Biomembr. 2019;1862:183007.
Article
CAS
Google Scholar
Fine M, et al. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domainsAmphipath-activated massive endocytosis. J Gen Physiol. 2011;137:137–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilgemann DW, Fine M, Linder ME, Jennings BC, Lin M-J. Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. Elife. 2013;2:e01293.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lariccia V, et al. Massive calcium–activated endocytosis without involvement of classical endocytic proteins. J Gen Physiol. 2011;137:111–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009;10:364–71.
Article
CAS
PubMed
Google Scholar
Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43.
Article
CAS
PubMed
Google Scholar
Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharmaceut. 2012;9:334–40.
Article
CAS
Google Scholar
Grimmer S, van Deurs B, Sandvig K. Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci. 2002;115:2953–62.
Article
CAS
PubMed
Google Scholar
Lewis WH. Pinocytosis. Johns Hopkins Hosp Bull 1931;17–27.
Pearse BM. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci. 1976;73:1255–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Bio. 2018;19:313–26.
Article
CAS
Google Scholar
Rusk N, et al. Synaptojanin 2 functions at an early step of clathrin-mediated endocytosis. Curr Biol. 2003;13:659–63.
Article
CAS
PubMed
Google Scholar
Taylor MJ, Perrais D, Merrifield CJ. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. Plos Biol. 2011;9:e1000604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bitsikas V, Corrêa IR, Nichols BJ. Clathrin-independent pathways do not contribute significantly to endocytic flux. Elife. 2014;3:e03970.
Article
PubMed
PubMed Central
Google Scholar
Doherty GJ, McMahon HT. Mechanisms of endocytosis. Biochemistry-us. 2009;78:857–902.
CAS
Google Scholar
Cheng Z-J, et al. Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell. 2006;17:3197–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci. 2015;128:1269–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chidlow JH, Sessa WC. Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res. 2010;86:219–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Csh Perspect Biol. 2014;6:a016758.
Google Scholar
Gupta GD, et al. Analysis of endocytic pathways in drosophila cells reveals a conserved role for GBF1 in internalization via GEECs. PLoS ONE. 2009;4:e6768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rivera-Milla E, Stuermer CAO, Málaga-Trillo E. Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci Cmls. 2006;63:343–57.
Article
CAS
PubMed
Google Scholar
Liu J, DeYoung SM, Zhang M, Dold LH, Saltiel AR. The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. J Biol Chem. 2005;280:16125–34.
Article
CAS
PubMed
Google Scholar
Morrow IC, et al. Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem. 2002;277:48834–41.
Article
CAS
PubMed
Google Scholar
Solis GP, et al. Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem J. 2007;403:313–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frick M, et al. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17:1151–6.
Article
CAS
PubMed
Google Scholar
Otto GP, Nichols BJ. The roles of flotillin microdomains—endocytosis and beyond. J Cell Sci. 2011;124:3933–40.
Article
CAS
PubMed
Google Scholar
Schweitzer JK, Sedgwick AE, D’Souza-Schorey C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin Cell Dev Biol. 2011;22:39–47.
Article
CAS
PubMed
Google Scholar
Honda A, et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small g protein arf6 in membrane ruffle formation. Cell. 1999;99:521–32.
Article
CAS
PubMed
Google Scholar
Donaldson JG, Johnson DL, Dutta D. Rab and Arf G proteins in endosomal trafficking and cell surface homeostasis. Small Gtpases. 2016;7:247–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau AW, Chou MM. The adaptor complex AP-2 regulates post-endocytic trafficking through the non-clathrin Arf6-dependent endocytic pathway. J Cell Sci. 2008;121:4008–17.
Article
CAS
PubMed
Google Scholar
Okada R, et al. Activation of the small G protein Arf6 by dynamin2 through guanine nucleotide exchange factors in endocytosis. Sci Rep-UK. 2015;5:14919.
Article
CAS
Google Scholar
Rosales C, Uribe-Querol E. Phagocytosis: a fundamental process in immunity. Biomed Res Int. 2017;2017:1–18.
Article
CAS
Google Scholar
Tohyama Y, Yamamura H. Protein tyrosine kinase, Syk: a key player in phagocytic cells. J Biochem. 2009;145:267–73.
Article
CAS
PubMed
Google Scholar
Gillooly DJ, Simonsen A, Stenmark H. Phosphoinositides and phagocytosis. J Cell Biol. 2001;155:15–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson JA, Yoshida S. Encyclopedia of cell biology 2016;758–765. https://doi.org/10.1016/b978-0-12-394447-4.20084-9.
King JS, Kay RR. The origins and evolution of macropinocytosis. Philos Trans R Soc B. 2019;374:20180158.
Article
CAS
Google Scholar
West MA, Bretscher MS, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol. 1989;109:2731–9.
Article
CAS
PubMed
Google Scholar
Moreau HD, et al. Macropinocytosis overcomes directional bias in dendritic cells due to hydraulic resistance and facilitates space exploration. Dev Cell. 2019;49:171-188.e5.
Article
CAS
PubMed
Google Scholar
Li Y, et al. Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proc Natl Acad Sci. 2020;117:27400–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Recouvreux MV, Commisso C. Macropinocytosis: a metabolic adaptation to nutrient stress in cancer. Front Endocrinol. 2017;8:261.
Article
Google Scholar
Commisso C, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Commisso C, Debnath J. Macropinocytosis fuels prostate cancer. Cancer Discov. 2018;8:800–2.
Article
PubMed
Google Scholar
Charpentier JC, et al. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun. 2020;11:180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milosevic I, et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 2011;72:587–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kessels MM, Qualmann B. Syndapins integrate N-WASP in receptor-mediated endocytosis. Embo J. 2002;21:6083–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J Neurosci. 2019;39:8209–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe S, et al. Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. Neuron. 2018;98:1184-1197.e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bacia K, Schwille P, Kurzchalia T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci USA. 2005;102:3272–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qureshi OS, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332:600–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qureshi OS, et al. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem. 2012;287:9429–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monjas A, Alcover A, Alarcón B. Engaged and bystander T cell receptors are down-modulated by different endocytotic pathways. J Biol Chem. 2004;279:55376–84.
Article
CAS
PubMed
Google Scholar
Crotzer VL, Mabardy AS, Weiss A, Brodsky FM. T Cell receptor engagement leads to phosphorylation of clathrin heavy chain during receptor internalization. J Exp Med. 2004;199:981–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Łyszkiewicz M, et al. Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun. 2020;11:1031.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rossatti P, et al. Cdc42 couples T cell receptor endocytosis to GRAF1-mediated tubular invaginations of the plasma membrane. Cells. 2019;8:1388.
Article
CAS
PubMed Central
Google Scholar
Compeer EB, et al. A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation. Nat Commun. 2018;9:1597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamaze C, et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell. 2001;7:661–71.
Article
CAS
PubMed
Google Scholar
Johnson DL, Wayt J, Wilson JM, Donaldson JG. Arf6 and Rab22 mediate T cell conjugate formation by regulating clathrin-independent endosomal membrane trafficking. J Cell Sci. 2017;130:jcs.200477.
Article
CAS
Google Scholar
Wu Y, et al. Human γδ T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol. 2009;183:5622–9.
Article
CAS
PubMed
Google Scholar
Zhu Y, et al. Human γδ T cells augment antigen presentation in listeria monocytogenes infection. Mol Med. 2016;22:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Martín N, et al. T Cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity. 2011;35:208–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yellin MJ, et al. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J Immunol Baltim Md. 1994;1950(152):598–608.
Google Scholar
Yu A, Olosz F, Choi CY, Malek TR. Efficient internalization of IL-2 depends on the distal portion of the cytoplasmic tail of the IL-2R common γ-chain and a lymphoid cell environment. J Immunol. 2000;165:2556–62.
Article
CAS
PubMed
Google Scholar
Basquin C, et al. The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors. J Cell Sci. 2013;126:1099–108.
CAS
PubMed
Google Scholar
Rocca A, Lamaze C, Subtil A, Dautry-Varsat A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol Biol Cell. 2001;12:1293–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu A, Malek TR. The proteasome regulates receptor-mediated endocytosis of interleukin-2. J Biol Chem. 2001;276:381–5.
Article
CAS
PubMed
Google Scholar
Hsu H, et al. WC1 Is a hybrid γδ TCR coreceptor and pattern recognition receptor for pathogenic bacteria. J Immunol. 2015;194:2280–8.
Article
CAS
PubMed
Google Scholar
Hsu H, Baldwin CL, Telfer JC. The endocytosis and signaling of the γδ T cell coreceptor WC1 are regulated by a dileucine motif. J Immunol. 2015;194:2399–406.
Article
CAS
PubMed
Google Scholar
D’Oro U, Vacchio MS, Weissman AM, Ashwell JD. Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation. Immunity. 1997;7:619–28.
Article
PubMed
Google Scholar
Lauritsen JP, et al. Two distinct pathways exist for down-regulation of the TCR. J Immunol Baltim Md. 1998;1950(161):260–7.
Google Scholar
Calzoni E, et al. F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in humans. J Allergy Clin Immun. 2019;143:2317-2321.e12.
Article
CAS
PubMed
Google Scholar
McGavin MKH, et al. The intersectin 2 adaptor links wiskott aldrich syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J Exp Med. 2001;194:1777–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onnis A, Baldari CT. Orchestration of Immunological synapse assembly by vesicular trafficking. Front Cell Dev Biol. 2019;7:110.
Article
PubMed
PubMed Central
Google Scholar
Evnouchidou I, et al. IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun. 2020;11:2779.
Article
CAS
PubMed
PubMed Central
Google Scholar
José ES, Borroto A, Niedergang F, Alcover A, Alarcón B. Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism. Immunity. 2000;12:161–70.
Article
Google Scholar
Willinger T, Staron M, Ferguson SM, Camilli PD, Flavell RA. Dynamin 2-dependent endocytosis sustains T-cell receptor signaling and drives metabolic reprogramming in T lymphocytes. Proc Natl Acad Sci. 2015;112:4423–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prieto-Sánchez RM, Berenjeno IM, Bustelo XR. Involvement of the Rho/Rac family member RhoG in caveolar endocytosis. Oncogene. 2006;25:2961–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bras SL, et al. Recruitment of the actin-binding protein HIP-55 to the immunological synapse regulates T cell receptor signaling and endocytosis. J Biol Chem. 2004;279:15550–60.
Article
PubMed
CAS
Google Scholar
Iseka FM, et al. Role of the EHD family of endocytic recycling regulators for TCR recycling and T cell function. J Immunol. 2018;200:483–99.
Article
CAS
PubMed
Google Scholar
Rajendran L, et al. Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci. 2003;100:8241–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redpath GMI, et al. Flotillins promote T cell receptor sorting through a fast Rab5–Rab11 endocytic recycling axis. Nat Commun. 2019;10:4392.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmed KA, Munegowda MA, Xie Y, Xiang J. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol. 2008;5:261–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenits K, Keppler SJ, Vucikuja S, Aichele P. T cells acquire cell surface determinants of APC via in vivo trogocytosis during viral infections. Eur J Immunol. 2010;40:3450–7.
Article
CAS
PubMed
Google Scholar
Reed J, Wetzel SA. Trogocytosis-mediated intracellular signaling in CD4 + T cells drives T H 2-associated effector cytokine production and differentiation. J Immunol. 2019;202:2873–87.
Article
CAS
PubMed
Google Scholar
Dhainaut M, Moser M. Regulation of immune reactivity by intercellular transfer. Front Immunol. 2014;5:112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyake K, et al. Trogocytosis of peptide–MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils. Proc Natl Acad Sci. 2017;114:1111–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao Y, Finnemann SC. Regulation of phagocytosis by Rho GTPases. Small Gtpases. 2015;6:89–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhri G, et al. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proc Natl Acad Sci. 2009;106:14984–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamieh M, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568:112–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren W, et al. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis. 2017;8:e2655–e2655.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milkereit R, et al. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250.
Article
PubMed
Google Scholar
Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T Cells. J Immunol. 2013;191:4080–5.
Article
CAS
PubMed
Google Scholar