Gibney E, Nolan C. Epigenetics and gene expression. Heredity. 2010;105:4–13.
Article
CAS
PubMed
Google Scholar
Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem. 2013;61:289–317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Ren B, Yang J, Wang H, Yang G, Xu R, You L, Zhao Y. The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther. 2020;5:143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol. 2016;9:49–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiles ET, Selker EU. H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev. 2017;43:31–7.
Article
CAS
PubMed
Google Scholar
Akter A, Takahashi S, Deng W, Shea DJ, Itabashi E, Shimizu M, Miyaji N, Osabe K, Nishida N, Suzuki Y, Helliwell CA, Seki M, Peacock WJ, Dennis ES, Fujimoto R. The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L. DNA Res. 2019;26:433–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22:1865–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petruk S, Cai J, Sussman R, Sun G, Kovermann SK, Mariani SA, Calabretta B, McMahon SB, Brock HW, Iacovitti L, Mazo A. Delayed accumulation of H3K27me3 on nascent DNA is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol Cell. 2017;66:247-257.e245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canovas S, Cibelli JB, Ross PJ. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci. 2012;109:2400–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother. 2019;118:109384.
Article
CAS
PubMed
Google Scholar
Srinageshwar B, Maiti P, Dunbar GL, Rossignol J. Role of epigenetics in stem cell proliferation and differentiation: implications for treating neurodegenerative diseases. Int J Mol Sci. 2016;17:199.
Article
PubMed Central
CAS
Google Scholar
Burchfield JS, Li Q, Wang HY, Wang R-F. JMJD3 as an epigenetic regulator in development and disease. Int J Biochem Cell Biol. 2015;67:148–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgold T, Voituron N, Caganova M, Tripathi Prem P, Menuet C, Tusi Betsabeh K, Spreafico F, Bévengut M, Gestreau C, Buontempo S, Simeone A, Kruidenier L, Natoli G, Casola S, Hilaire G, Testa G. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2012;2:1244–58.
Article
CAS
PubMed
Google Scholar
Yu X-X, Qiu W-L, Yang L, Li L-C, Zhang Y-W, Xu C-R. Dynamics of chromatin marks and the role of JMJD3 during pancreatic endocrine cell fate commitment. Development. 2018;145:dev163162.
Article
PubMed
CAS
Google Scholar
Iida A, Iwagawa T, Kuribayashi H, Satoh S, Mochizuki Y, Baba Y, Nakauchi H, Furukawa T, Koseki H, Murakami A, Watanabe S. Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. Proc Natl Acad Sci U S A. 2014;111:3751–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergmann C, Brandt A, Merlevede B, Hallenberger L, Dees C, Wohlfahrt T, Pötter S, Zhang Y, Chen C-W, Mallano T, Liang R, Kagwiria R, Kreuter A, Pantelaki I, Bozec A, Abraham D, Rieker R, Ramming A, Distler O, Schett G, Distler JHW. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis. 2018;77:150–8.
Article
CAS
PubMed
Google Scholar
Shan Y, Zhang Y, Zhao Y, Wang T, Zhang J, Yao J, Ma N, Liang Z, Huang W, Huang K, Zhang T, Su Z, Chen Q, Zhu Y, Wu C, Zhou T, Sun W, Wei Y, Zhang C, Li C, Su S, Liao B, Zhong M, Zhong X, Nie J, Pei D, Pan G. JMJD3 and UTX determine fidelity and lineage specification of human neural progenitor cells. Nat Commun. 2020;11:382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han JW, Yoon Y-S. Epigenetic landscape of pluripotent stem cells. Antioxid Redox Signal. 2012;17:205–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK signaling pathways as a new strategy to provide rodent and non-rodent pluripotent stem cells. Curr Stem Cell Res Ther. 2019;14:466–73.
Article
CAS
PubMed
Google Scholar
Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr Stem Cell Res Ther. 2020;15:102–10.
Article
CAS
PubMed
Google Scholar
Pan B, Fan G. Stem cell-based treatment of kidney diseases. Exp Biol Med. 2020;1535370220915901.
Paredes‐Redondo A, Lin YY. Human induced pluripotent stem cells: challenges and opportunities in developing new therapies for muscular dystrophies. eLS 2019;1–10.
Bai X. Stem cell-based disease modeling and cell therapy. Multidisciplinary Digital Publishing Institute; 2020.
Book
Google Scholar
Boroviak T, Loos R, Bertone P, Smith A, Nichols J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol. 2014;16:516–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao N, Sheng M, Wang X, Li Y, Farzaneh M. Differentiation of human induced pluripotent stem cells into male germ cells. Curr Stem Cell Res Ther. 2020;17:1–8.
Google Scholar
Farzaneh M, Khoshnam S, Mozdziak P. Concise review: avian multipotent stem cells as a novel tool for investigating cell-based therapies. J Dairy Vet Anim Res. 2017;5:00125.
Article
Google Scholar
Javan MR, Khosrojerdi A, Moazzeni SM. New insights into implementation of mesenchymal stem cells in cancer therapy: prospects for anti-angiogenesis treatment. Front Oncol. 2019;9:840.
Article
PubMed
PubMed Central
Google Scholar
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35:e00191.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M, Khoshnam SE. Mesenchymal stem cell-mediated mitochondrial transfer: a therapeutic approach for ischemic stroke. Transl Stroke Res. 2020;12(2):212–29.
Article
PubMed
Google Scholar
Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013;23:49–69.
Article
CAS
PubMed
Google Scholar
Rodas-Junco BA, Canul-Chan M, Rojas-Herrera RA, De-la-Peña C, Nic-Can GI. Stem cells from dental pulp: what epigenetics can do with your tooth. Front Physiol. 2017;8:999–999.
Article
PubMed
PubMed Central
Google Scholar
Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM, Dimmeler S. Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res. 2013;113:856–62.
Article
CAS
PubMed
Google Scholar
Zhao W, Li Q, Ayers S, Gu Y, Shi Z, Zhu Q, Chen Y, Wang HY, Wang R-F. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell. 2013;152:1037–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Zhang H, Wang L, Tang C, Qin X, Wu X, Pan M, Tang Y, Yang Z, Babarinde IA, Lin R, Ji G, Lai Y, Xu X, Su J, Wen X, Satoh T, Ahmed T, Malik V, Ward C, Volpe G, Guo L, Chen J, Sun L, Li Y, Huang X, Bao X, Gao F, Liu B, Zheng H, Jauch R, Lai L, Pan G, Chen J, Testa G, Akira S, Hu J, Pei D, Hutchins AP, Esteban MA, Qin B. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nat Commun. 2020;11:5061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson C, Krieg AJ. KDM4B: a nail for every hammer? Genes (Basel). 2019;10:134.
Article
CAS
Google Scholar
D’Oto A, Tian Q-W, Davidoff AM, Yang J. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1:34.
PubMed
PubMed Central
Google Scholar
Labbé RM, Holowatyj A, Yang Z-Q. Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res. 2014;6:1.
Google Scholar
Stolerman ES, Francisco E, Stallworth JL, Jones JR, Monaghan KG, Keller-Ramey J, Person R, Wentzensen IM, McWalter K, Keren B. Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features. Am J Med Genet A. 2019;179:1276–86.
CAS
PubMed
Google Scholar
Cuyàs E, Verdura S, Llorach-Pares L, Fernández-Arroyo S, Luciano-Mateo F, Cabré N, Stursa J, Werner L, Martin-Castillo B, Viollet B. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX. Aging Cell. 2018;17:e12772.
Article
PubMed
PubMed Central
CAS
Google Scholar
Copur Ö, Müller J. Histone demethylase activity of Utx is essential for viability and regulation of HOX gene expression in drosophila. Genetics. 2018;208:633–7.
Article
CAS
PubMed
Google Scholar
Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet. 2006;7:715–27.
Article
CAS
PubMed
Google Scholar
Gang Xiao Z, Shen J, Zhang L, Li LF, Xing Li M, Hu W, Jie Li Z, Hin Cho C. The roles of histone demethylase UTX and JMJD3 (KDM6B) in cancers: current progress and future perspectives. Curr Med Chem. 2016;23:3687–96.
Article
CAS
Google Scholar
Tran N, Broun A, Ge K. Lysine Demethylase KDM6A in Differentiation, Development, and Cancer. Mol Cell Biol. 2020;40:e00341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Yu B, Sun H, Qiu L. The roles of histone demethylase Jmjd3 in osteoblast differentiation and apoptosis. J Clin Med. 2017;6:24.
Article
PubMed Central
CAS
Google Scholar
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell. 2019;10(12):864–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kasinath V, Poepsel S, Nogales E. Recent structural insights into Polycomb repressive complex 2 regulation and substrate binding. Biochemistry. 2018;58:346–54.
Article
PubMed
CAS
Google Scholar
Jiao H, Xie Y, Li Z. Current understanding of plant Polycomb group proteins and the repressive histone H3 Lysine 27 trimethylation. Biochem Soc Trans. 2020;48:1697–706.
Article
CAS
PubMed
Google Scholar
Iwagawa T, Honda H, Watanabe S. Jmjd3 plays pivotal roles in the proper development of early-born retinal lineages: amacrine, horizontal, and retinal ganglion cells. Invest Ophthalmol Vis Sci. 2020;61:43–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Argaud D, Boulanger M-C, Chignon A, Mkannez G, Mathieu P. Enhancer-mediated enrichment of interacting JMJD3–DDX21 to ENPP2 locus prevents R-loop formation and promotes transcription. Nucleic Acids Res. 2019;47:8424–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Ma J, Wu F, Xiong L-J, Ma H, Xu W, Lv R, Li X, Villen J, Gygi SP. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev. 2012;26:1364–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xun J, Wang D, Shen L, Gong J, Gao R, Du L, Chang A, Song X, Xiang R, Tan X. JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity. Oncotarget. 2017;8:21918.
Article
PubMed
PubMed Central
Google Scholar
Sherry-Lynes MM, Sengupta S, Kulkarni S, Cochran BH. Regulation of the JMJD3 (KDM6B) histone demethylase in glioblastoma stem cells by STAT3. PLoS ONE. 2017;12:e0174775.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qin M, Han F, Wu J, Gao F-x, Li Y, Yan D-x, He X-m, Long Y, Tang X-p. Ren D-l, KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. 2020.
Li Q, Zou J, Wang M, Ding X, Chepelev I, Zhou X, Zhao W, Wei G, Cui J, Zhao K. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat Commun. 2014;5:1–15.
Article
Google Scholar
Wang P, Lan R, Guo Z, Cai S, Wang J, Wang Q, Li Z, Li Z, Wang Q, Li J. Histone demethylase JMJD3 mediated doxorubicin-induced cardiomyopathy by suppressing SESN2 expression. Front Cell Dev Biol. 2020;8:1037.
Google Scholar
Park CS, Lee JY, Choi HY, Lee K, Heo Y, Ju BG, Choo H-YP, Yune TY. Gallic acid attenuates blood-spinal cord barrier disruption by inhibiting Jmjd3 expression and activation after spinal cord injury. Neurobiol Dis. 2020;145:105077.
Article
CAS
PubMed
Google Scholar
Li S, Jiang L, He Q, Wei W, Wang Y, Zhang X, Liu J, Chen K, Chen J, Xie D. The prognostic significance of JMJD3 in primary sarcomatoid carcinoma of the lung, a rare subtype of lung cancer. Onco Targets Ther. 2019;12:9385–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu S-H, Zhu K-Y, Chen J, Liu X-Z, Xu P-F, Zhang W, Yan L, Guo H-Z, Zhu J. JMJD3 facilitates C/EBPβ-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun. 2018;9:1–15.
Article
CAS
Google Scholar
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell. 2019;10:864–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Müller AM, Becker M. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J Cell Sci. 2016;129:788–803.
CAS
PubMed
Google Scholar
Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS ONE. 2008;3:e3034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee Chong T, Ahearn EL, Cimmino L. Reprogramming the epigenome with vitamin C. Front Cell Dev Biol. 2019;7:128–128.
Article
PubMed
PubMed Central
Google Scholar
Gao Y, Han Z, Li Q, Wu Y, Shi X, Ai Z, Du J, Li W, Guo Z, Zhang Y. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating micro RNA expression. FEBS J. 2015;282:685–99.
Article
CAS
PubMed
Google Scholar
He XB, Kim M, Kim SY, Yi SH, Rhee YH, Kim T, Lee EH, Park CH, Dixit S, Harrison FE. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET 1-and JMJD 3-dependent epigenetic control manner. Stem Cells. 2015;33:1320–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li Y, Guo C, Lu Q, Wang W, Jia Z, Chen P, Ma K, Reinberg D, Zhou C. ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells. Nucleic Acids Res. 2016;44:6741–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014;21:233–41.
Article
PubMed
PubMed Central
Google Scholar
Ziegler N, Bader E, Epanchintsev A, Margerie D, Kannt A, Schmoll D. AMPKβ1 and AMPKβ2 define an isoform-specific gene signature in human pluripotent stem cells, differentially mediating cardiac lineage specification. J Biol Chem. 2020;295:17659–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res. 2013;23:122–30.
Article
CAS
PubMed
Google Scholar
Akiyama T, Wakabayashi S, Soma A, Sato S, Nakatake Y, Oda M, Murakami M, Sakota M, Chikazawa-Nohtomi N, Ko SB. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development. 2016;143:3674–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahle Ø, Kumar A, Kuehn MR. Nodal signaling recruits the histone demethylase Jmjd3 to counteract polycomb-mediated repression at target genes. Science signaling. 2010;3:ra48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim SW, Yoon S-J, Chuong E, Oyolu C, Wills AE, Gupta R, Baker J. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev Biol. 2011;357:492–504.
Article
CAS
PubMed
Google Scholar
Akiyama T, Wakabayashi S, Soma A, Sato S, Nakatake Y, Oda M, Murakami M, Sakota M, Chikazawa-Nohtomi N, Ko SBH, Ko MSH. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development. 2016;143:3674–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long W, Zhao W, Ning B, Huang J, Chu J, Li L, Ma Q, Xing C, Wang HY, Liu Q, Wang R-F. PHF20 collaborates with PARP1 to promote stemness and aggressiveness of neuroblastoma cells through activation of SOX2 and OCT4. J Mol Cell Biol. 2018;10:147–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niemitz E. Jmjd3, PHF20 and reprogramming. Nat Genet. 2013;45:477–477.
Article
CAS
Google Scholar
Kochat V, Equbal Z, Baligar P, Kumar V, Srivastava M, Mukhopadhyay A. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors. PLoS ONE. 2017;12:e00173977.
Article
CAS
Google Scholar
Estarás C, Akizu N, García A, Beltrán S, de la Cruz X, Martínez-Balbás MA. Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development. 2012;139:2681–91.
Article
PubMed
CAS
Google Scholar
Park DH, Hong SJ, Salinas RD, Liu SJ, Sun SW, Sgualdino J, Testa G, Matzuk MM, Iwamori N, Lim DA. Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep. 2014;8:1290–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim H-J, Glass CK, Hermanson O, Rosenfeld MG. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature. 2007;450:415–9.
Article
CAS
PubMed
Google Scholar
Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, Ban Q, Lv F, Huang S, Liu D. Wnt/β-catenin and LIF–Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269–76.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang D, Xu J, Wang Y, Ma F, Li Z, Liu N. Stat3 activation is critical for pluripotency maintenance. J Cell Physiol. 2019;234:1044–51.
Article
CAS
PubMed
Google Scholar
Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, Ronowicz A, Hu F, Piotrowski A, Kettenmann H. The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med. 2014;92:239–54.
Article
CAS
PubMed
Google Scholar
Yoon S, Wu X, Armstrong B, Habib N, Rossi JJ. An RNA aptamer targeting the receptor tyrosine kinase PDGFRα induces anti-tumor effects through STAT3 and p53 in Glioblastoma. Mol Therapy-Nucleic Acids. 2019;14:131–41.
Article
CAS
Google Scholar
Qi H, Yang Z, Dai C, Wang R, Ke X, Zhang S, Xiang X, Chen K, Li C, Luo J, Shao J, Shen J. STAT3 activates MSK1-mediated histone H3 phosphorylation to promote NFAT signaling in gastric carcinogenesis. Oncogenesis. 2020;9:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendrysa SM, Ghassemifar S, Malek R. p53 in the CNS: perspectives on development, stem cells, and cancer. Genes Cancer. 2011;2:431–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niklison-Chirou MV, Agostini M, Amelio I, Melino G. Regulation of adult neurogenesis in mammalian brain. Int J Mol Sci. 2020;21:4869.
Article
CAS
PubMed Central
Google Scholar
Williams K, Christensen J, Rappsilber J, Nielsen AL, Johansen JV, Helin K. The histone lysine demethylase JMJD3/KDM6B is recruited to p53 bound promoters and enhancer elements in a p53 dependent manner. PLoS ONE. 2014;9:e96545.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sola S, Xavier JM, Santos DM, Aranha MM, Morgado AL, Jepsen K, Rodrigues CM. p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. PLoS ONE. 2011;6:e18421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park N-H, Wang C-Y. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012;11:50–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Okamura H, Nakashima Y, Haneji T. Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem. 2013;288:33530–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park J, Kang SI, Lee S-Y, Zhang XF, Kim MS, Beers LF, Lim D-S, Avruch J, Kim H-S, Lee SB. Tumor suppressor ras association domain family 5 (RASSF5/NORE1) mediates death receptor ligand-induced apoptosis. J Biol Chem. 2010;285:35029–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007;1776:58–85.
PubMed
PubMed Central
Google Scholar
Sun H-Y, Yang D, Mi J, Yu Y-Q, Qiu L-H. Histone demethylase Jmjd3 modulates osteoblast apoptosis induced by tumor necrosis factor-alpha through directly targeting RASSF5. Connect Tissue Res. 2020;61:517–25.
Article
PubMed
Google Scholar
Tang Y, Zhang L, Tu T, Li Y, Murray D, Tu Q, Chen JJ. MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med. 2018;22:2162–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moura SR, Bras JP, Freitas J, Osório H, Barbosa MA, Santos SG, Almeida MI. miR-99a in bone homeostasis: regulating osteogenic lineage commitment and osteoclast differentiation. Bone. 2020;134:115303.
Article
CAS
PubMed
Google Scholar
Huszar JM, Payne CJ. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588:1850–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh SA, Lerdrup M, Gomes A-LR, van de Werken HJ, Johansen JV, Andersson R, Sandelin A, Helin K, Hansen K. PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. Elife. 2019;8:40364.
Article
CAS
Google Scholar
Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Miner Res. 2011;26:2665–71.
Article
CAS
PubMed
Google Scholar
Pribadi C, Camp E, Cakouros D, Anderson P, Glackin C, Gronthos S. Pharmacological targeting of KDM6A and KDM6B, as a novel therapeutic strategy for treating craniosynostosis in Saethre–Chotzen syndrome. Stem Cell Res Ther. 2020;11:529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Yu B, Hong C, Wang C-Y. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci. 2013;5:200–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang M, Kim JJ, Kim Y, Tong E, Trammell B, Liu Y, Shi S, Lee C-R, Hong C, Wang C-Y. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem cell research. 2016;17:111–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Wang Y, Jia Z, Wang L, Wang J, Yang D, Song J, Wang S, Fan Z. Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells. 2015;33:2523–36.
Article
CAS
PubMed
Google Scholar
Wang Y, Jia Z, Diao S, Lin X, Lian X, Wang L, Dong R, Liu D, Fan Z. IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton’s jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif. 2016;49:618–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sui B-D, Zheng C-X, Li M, Jin Y, Hu C-H. Epigenetic regulation of mesenchymal stem cell homeostasis. Trends Cell Biol. 2020;30:97–116.
Article
CAS
PubMed
Google Scholar
Mallaney C. Kdm6b is required for self-renewal of normal and leukemic mouse stem cells under proliferative stress. 2018.
Wei Y, Zheng H, Jia Y, Bao N, Jiang S, Colla S, Bueso-Ramos CE, Khoury JD, Bohannan ZS, Garcia-Manero G. Overexpression of KDM6B, an epigenetic and innate immune regulator, results in hematopoietic alterations of mice including changes in hematopoietic stem cells. American Society of Hematology Washington; 2016.
Book
Google Scholar
Yamazaki S, Tanaka Y, Araki H, Kohda A, Sanematsu F, Arasaki T, Duan X, Miura F, Katagiri T, Shindo R, Nakano H, Ito T, Fukui Y, Endo S, Sumimoto H. The AP-1 transcription factor JunB is required for Th17 cell differentiation. Sci Rep. 2017;7:17402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohguchi H, Harada T, Sagawa M, Kikuchi S, Tai YT, Richardson PG, Hideshima T, Anderson KC. KDM6B modulates MAPK pathway mediating multiple myeloma cell growth and survival. Leukemia. 2017;31:2661–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Z, Shi X, Tian F, Fang Y, Wu JB, Mrdenovic S, Nian X, Ji J, Xu H, Kong C, Xu Y, Chen X, Huang Y, Wei X, Yu Y, Yang B, Chung LWK, Wang F. KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer. Cell Death Dis. 2021;12:2.
Article
CAS
PubMed
PubMed Central
Google Scholar