Jahanban-Esfahlan R, Seidi K, Monhemi H, Adli ADF, Minofar B, Zare P, Farajzadeh D, Farajnia S, Behzadi R, Abbasi MM, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep. 2017;7:8126.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol. 2017;233:2982–92.
Article
PubMed
CAS
Google Scholar
Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int J Hematol. 2017;105:244–56.
Article
PubMed
Google Scholar
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.
Article
CAS
PubMed
Google Scholar
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis AJC: STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment 2019, 11:457.
Denisenko TV, Budkevich IN, Zhivotovsky BJCd, disease: Cell death-based treatment of lung adenocarcinoma. 2018, 9:117.
Balkwill FR, Capasso M, Hagemann T: The tumor microenvironment at a glance. The Company of Biologists Ltd; 2012.
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2017;233:2019–31.
Article
PubMed
CAS
Google Scholar
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor cell dormancy: threat or opportunity in the fight against Cancer. Cancers. 2019;11:1207.
Article
CAS
PubMed Central
Google Scholar
Seidi K, Neubauer HA, Moriggl R, Jahanban-Esfahlan R, Javaheri T. Tumor target amplification: implications for nano drug delivery systems. J Control Release. 2018;275:142–61.
Article
CAS
PubMed
Google Scholar
Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell CommunSignaling. 2011;9:18.
CAS
Google Scholar
Li W, Ng JM-K, Wong CC, Ng EKW, Yu JJO: Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer 2018:1.
Tsao AS, Scagliotti GV, Bunn Jr PA, Carbone DP, Warren GW, Bai C, De Koning HJ, Yousaf-Khan AU, McWilliams A, Tsao MSJJoTO: Scientific advances in lung cancer 2015. 2016, 11:613–638.
Cova TF, Bento DJ, Nunes SC. Computational approaches in Theranostics: mining and predicting Cancer data. Pharmaceutics. 2019;11:119.
Article
CAS
PubMed Central
Google Scholar
Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59:85–93.
Article
CAS
PubMed
Google Scholar
Oliver AJ, Lau PK, Unsworth AS, Loi S, Darcy PK, Kershaw MH, Slaney CYJFii: Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. 2018;9:70.
Ayubi Joshagani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahlan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: the transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng. 2019;117:1204–29.
Sleeboom JJF, Eslami Amirabadi H, Nair P, Sahlgren CM, den Toonder JMJ. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches. Disease Models Mechanisms. 2018;11:dmm033100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, Singh S, Tavana H, Mosadegh B, Nikkhah M. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials. 2017;133:176–207.
Article
CAS
PubMed
Google Scholar
Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 2009;28:113–27.
Article
PubMed
PubMed Central
Google Scholar
Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.
Article
CAS
PubMed
Google Scholar
Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. Front Biosci. 2007;12:3468–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbasi MM, Helli S, Monfaredan A, Jahanban-Esfahlan R. Hesa-a improves clinical outcome of Oral carcinoma by affecting p53 gene expression in vivo. Asian Pac J Cancer Prev. 2015;16:4169–72.
Article
PubMed
Google Scholar
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Pericytes, microvasular dysfunction and chronic rejection. Transplantation. 2015;99:658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003;163:1801–15.
Article
PubMed
PubMed Central
Google Scholar
Birbrair A: Pericyte biology: development, homeostasis, and disease. In Pericyte Biology-Novel Concepts Springer; 2018: 1–3.
Keskin D, Kim J, Cooke VG, Wu C-C, Sugimoto H, Gu C, De Palma M, Kalluri R, LeBleu VS. Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep. 2015;10:1066–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hainsworth JD, Spigel DR, Sosman JA, Burris HA III, Farley C, Cucullu H, Yost K, Hart LL, Sylvester L, Waterhouse DM. Treatment of advanced renal cell carcinoma with the combination bevacizumab/erlotinib/imatinib: a phase I/II trial. Clinical Genitourinary Cancer. 2007;5:427–32.
Article
CAS
PubMed
Google Scholar
Nisancioglu MH, Betsholtz C, Genové G. The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-a blockade. Cancer Res. 2010;70:5109–15.
Article
CAS
PubMed
Google Scholar
Mezheyeuski A, Lindh MB, Guren TK, Dragomir A, Pfeiffer P, Kure EH, Ikdahl T, Skovlund E, Corvigno S, Strell C. Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer. Oncotarget. 2016;7:41948.
Article
PubMed
PubMed Central
Google Scholar
Xian X, Håkansson J, Ståhlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116:642–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M. Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology. 2005;69:159–66.
Article
PubMed
Google Scholar
Hong J, Tobin NP, Rundqvist H, Li T, Lavergne M, García-Ibáñez Y, Qin H, Paulsson J, Zeitelhofer M, Adzemovic MZ. Role of tumor pericytes in the recruitment of myeloid-derived suppressor cells. J National Cancer Institute. 2015;107:djv209.
Article
CAS
Google Scholar
Cooke VG, LeBleu VS, Keskin D, Khan Z, O'Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21:66–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murgai M, Ju W, Eason M, Kline J, Beury DW, Kaczanowska S, Miettinen MM, Kruhlak M, Lei H, Shern JF. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med. 2017;23:1176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Sun Q, Pei J. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized Microtumor models. Micromachines. 2018;9:493.
Article
PubMed Central
Google Scholar
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng. 2019;13:26.
Article
PubMed
PubMed Central
Google Scholar
Salazar N, Zabel BA. Support of tumor endothelial cells by chemokine receptors. Front Immunol. 2019;10.
Dudley AC. Tumor endothelial cells. Cold Spring Harbor perspectives in medicine. 2012;2:a006536.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aird WC. Molecular heterogeneity of tumor endothelium. Cell Tissue Res. 2009;335:271–81.
Article
CAS
PubMed
Google Scholar
Akiyama K, Ohga N, Hida Y, Kawamoto T, Sadamoto Y, Ishikawa S, Maishi N, Akino T, Kondoh M, Matsuda A, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am J Pathol. 2012;180:1283–93.
Article
CAS
PubMed
Google Scholar
Hida K, Maishi N, Akiyama K, Ohmura-Kakutani H, Torii C, Ohga N, Osawa T, Kikuchi H, Morimoto H, Morimoto M, et al. Tumor endothelial cells with high aldehyde dehydrogenase activity show drug resistance. Cancer Sci. 2017;108:2195–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dianat-Moghadam H, Heydarifard M, Jahanban-Esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release. 2018;288:62–83.
Article
CAS
PubMed
Google Scholar
Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current challenges of Cancer anti-angiogenic therapy and the promise of Nanotherapeutics. Theranostics. 2018;8:533–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbasi MM, Mehdipour M, Monfaredan A, Jahanban-Esfahlan R. Hesa-a Down-regulates erb/b2 oncogene expression and improves outcome of Oral carcinoma in a rat model. Asian Pac J Cancer Prev. 2015;16:6947–51.
Article
PubMed
Google Scholar
Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, Holland EC. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6:141–52.
Article
CAS
PubMed
Google Scholar
Jeon HM, Kim SH, Jin X, Park JB, Kim SH, Joshi K, Nakano I, Kim H. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on vadimezan (dmxaa), the vascular disrupting agent. Chem Biol Drug Des. 2017;91(5):996–1006.
Seidi K, Jahanban-Esfahlan R, Zarghami N. Tumor rim cells: from resistance to vascular targeting agents to complete tumor ablation. Tumour Biol. 2017;39:1010428317691001.
Article
PubMed
CAS
Google Scholar
Zhang Y, Xiong X, Huai Y, Dey A, Hossen MN, Roy RV, Elechalawar CK, Rao G, Bhattacharya R, Mukherjee P. Gold nanoparticles disrupt tumor microenvironment - endothelial cell cross talk to inhibit Angiogenic phenotypes in vitro. Bioconjug Chem. 2019;30:1724–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Missiaen R, Morales-Rodriguez F, Eelen G, Carmeliet P. Targeting endothelial metabolism for anti-angiogenesis therapy: a pharmacological perspective. Vasc Pharmacol. 2017;90:8–18.
Article
CAS
Google Scholar
Nomura T, Yamakawa M, Shimaoka T, Hirai T, Koizumi N, Maruyama K, Utoguchi N. Development of dendritic cell-based immunotherapy targeting tumor blood vessels in a mouse model of lung metastasis. Biol Pharm Bull. 2019;42:645–8.
Article
CAS
PubMed
Google Scholar
Shoval H, Karsch-Bluman A, Brill-Karniely Y, Stern T, Zamir G, Hubert A, Benny O. Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Sci Rep. 2017;7:10428.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci. 2012;109:13515–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A. 2015;112:214–9.
Article
CAS
PubMed
Google Scholar
Lee SW, Kwak HS, Kang M-H, Park Y-Y, Jeong GSJSr. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep. 2018;8:2365.
Kalluri RJNRC. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.
Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-associated fibroblasts build and secure the tumor microenvironment. Front Cell Dev Biol. 2019;7:60.
Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–905.
Article
CAS
PubMed
Google Scholar
Nishishita R, Morohashi S, Seino H, Wu Y, Yoshizawa T, Haga T, Saito K, Hakamada K, Fukuda S, Kijima H. Expression of cancer-associated fibroblast markers in advanced colorectal cancer. Oncol Lett. 2018;15:6195–202.
PubMed
PubMed Central
Google Scholar
Brunel A, Samain R, Neuzillet C. Bousquet CJTCR: identification of two cancer-associated fibroblast markers revealing stromal heterogeneity in sustaining cancer progression and chemoresistance. Trans Cancer Res. 2018:S718–21.
Monteran L, Erez N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, Yin R. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12:86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, Guc D. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 2019;9:3172.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang F-T, Sun W, Zhang J-T, Fan Y-Z. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 2019;17:3055–65.
CAS
PubMed
PubMed Central
Google Scholar
Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889–99.
Article
CAS
PubMed
Google Scholar
Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X, Ren G, Tian K. Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells. Cell Cycle. 2017;16:73–81.
Article
CAS
PubMed
Google Scholar
Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, Pavlides S, Whitaker-Menezes D, Tsirigos A, Witkiewicz AK, Lin Z, Balliet RM, Howell A. Understanding the" lethal" drivers of tumor-stroma co-evolution: emerging role (s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Cancer Biol Therapy. 2010;10:537–42.
Article
CAS
Google Scholar
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res. 2019;38:171.
Article
PubMed
PubMed Central
Google Scholar
Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, Helou Y, Batlle R, Liu X, Gutierrez N: Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metabolism 2019, 29:141–155. e149.
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J, Tuveson DA. IL-1-induced JAK/STAT signaling is antagonized by TGF-beta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2018:9:282–301.
Young M, Rodenhizer D, Dean T, D'Arcangelo E, Xu B, Ailles L, McGuigan AP. A TRACER 3D co-culture tumour model for head and neck cancer. Biomaterials. 2018;164:54–69.
Article
CAS
PubMed
Google Scholar
Truong DD, Kratz A, Park JG, Barrientos ES, Saini H, Nguyen T, Pockaj B, Mouneimne G, LaBaer J, Nikkhah M. A human Organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast Cancer cells. Cancer Res. 2019;79:3139–51.
Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA, Fearon DT. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein–α. Science. 2010;330:827–30.
Article
CAS
PubMed
Google Scholar
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercier I, Camacho J, Titchen K, Gonzales DM, Quann K, Bryant KG, Molchansky A, Milliman JN, Whitaker-Menezes D, Sotgia F. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol. 2012;181:278–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ernsting MJ, Hoang B, Lohse I, Undzys E, Cao P, Do T, Gill B, Pintilie M, Hedley D, Li S-D. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release. 2015;206:122–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherman MH, Ruth TY, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Miao L, Guo S, Zhang Y, Zhang L, Satterlee A, Kim WY, Huang L. Synergistic anti-tumor effects of combined gemcitabine and cisplatin nanoparticles in a stroma-rich bladder carcinoma model. J Control Release. 2014;182:90–6.
Article
CAS
PubMed
Google Scholar
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJJB. Bioengineering: 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019;116:206–26.
Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L, Yin W, Hu S, Kim WY, Huang L. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res. 2017;77:719–31.
Article
CAS
PubMed
Google Scholar
Takai K, Le A, Weaver VM, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889.
PubMed
PubMed Central
Google Scholar
Li X, Huang F, Xu X, Hu S. Polyclonal rabbit anti-Cancer-associated fibroblasts globulins induce Cancer cells apoptosis and inhibit tumor growth. Int J Biol Sci. 2018;14:1621–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Schönrogge M, Eichberg J, Wendt EHU, Kumstel S, Stenzel J, Lindner T, Jaster R, Krause BJ, Vollmar BJFio. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front Oncol. 2018;8:590.
Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X, Yuan L, Feng Y. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis. 2019;10:273.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. OncoImmunol. 2019;8:e1596004.
Article
Google Scholar
Laviron M, Boissonnas A. Ontogeny of tumor-associated macrophages. Front Immunol. 2019;10:1799.
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.
Article
CAS
PubMed
Google Scholar
Cassetta L, Kitamura T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front Cell Developmental Biol. 2018;6:38.
Article
Google Scholar
Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.
Article
CAS
PubMed
Google Scholar
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R, Xiong B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019;18:64.
Article
PubMed
PubMed Central
Google Scholar
Kim Y-B, Ahn Y-H, Jung J-H, Lee Y-J, Lee J-H, Kang JL. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol. 2019;16:851–67.
Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76.
Article
PubMed
PubMed Central
Google Scholar
Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009;4:e6562.
Article
PubMed
PubMed Central
CAS
Google Scholar
Udeabor SE, Adisa AO, Orlowska A, Sader RA, Ghanaati S. Tumor-associated macrophages, angiogenesis, and tumor cell migration in oral squamous cell carcinoma. Ann Afr Med. 2017;16:181–5.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther. 2018;11:3817–26.
Article
PubMed
PubMed Central
Google Scholar
Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy. 2019;11:677–89.
Article
CAS
PubMed
Google Scholar
Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, Zhang J, Wang Y, Dong L, Wang C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials. 2014;35:10046–57.
Article
CAS
PubMed
Google Scholar
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kudo M. Combination Cancer immunotherapy with molecular targeted agents/anti-CTLA-4 antibody for hepatocellular carcinoma. Liver Cancer. 2019;8:1–11.
Article
PubMed
PubMed Central
Google Scholar
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery. 2011;1:54–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25:846–59.
Article
CAS
PubMed
Google Scholar
Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RMJStm. In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Sci Transl Med. 2017;9:eaal3604.
de Taeye SW, Rispens T, Vidarsson G. The ligands for human IgG and their effector functions. Antibodies. 2019;8:30.
Article
PubMed Central
CAS
Google Scholar
Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, Lauffenburger DA, Kamm RD. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Cancer Res. 2017;77:279–20.
Han J, Zhen J, Go G, Choi Y, Ko SY, Park J-O. Park SJSr: hybrid-actuating macrophage-based microrobots for active cancer therapy. Sci Rep. 2016;6:28717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Zare P, Javaheri T, Jahanban-Esfahlan R. Dynamic DNA nanostructures in biomedicine: beauty, utility and limits. J Control Release. 2019;315:166–85.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058.
Article
PubMed
PubMed Central
Google Scholar
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.
Article
CAS
PubMed
Google Scholar
Walker C, Mojares E, del Río HA. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19:3028.
Article
PubMed Central
CAS
Google Scholar
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.
Article
CAS
PubMed
Google Scholar
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exper Metastasis. 2019;36:171–98.
Article
CAS
Google Scholar
Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The role of the extracellular matrix and its molecular and cellular regulators in Cancer cell plasticity. Front Oncol. 2018;8:431.
Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhibition Med Chem. 2016;31:177–83.
Article
CAS
Google Scholar
Zhang R, Ma M, Lin X-H, Liu H-H, Chen J, Chen J, Gao D-M, Cui J-F, Ren Z-G, Chen R-X. Extracellular matrix collagen I promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer. 2018;18:901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17:309.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naito Y, Sakamoto N, Oue N, Yashiro M, Sentani K, Yanagihara K, Hirakawa K, Yasui W. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014;105:228–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mu W, Rana S, Zoller M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia. 2013;15:875–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Natarajan S, Foreman KM, Soriano MI, Rossen NS, Shehade H, Fregoso DR, Eggold JT, Krishnan V, Dorigo O, Krieg AJ. Collagen remodeling in the hypoxic tumor-mesothelial niche promotes ovarian cancer metastasis. Cancer Res. 2019. https://doi.org/10.1158/0008-5472.CAN-18-2616.
Saini H, Eliato K, Silva C, Allam M, Mouneimne G, Ros R, Nikkhah M. The role of Desmoplasia and stromal fibroblasts on anti-cancer drug resistance in a microengineered tumor model. Cell Mol Bioeng. 2018;11:419–33.
Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hajdú I, Kardos J, Major B, Fabó G, Lőrincz Z, Cseh S, Dormán G. Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorg Med Chem Lett. 2018;28:3113–8.
Article
PubMed
CAS
Google Scholar
Puente A, Fortea JI, Cabezas J, Arias Loste MT, Iruzubieta P, Llerena S, Huelin P, Fábrega E, Crespo J. LOXL2—a new target in Antifibrogenic therapy? Int J Mol Sci. 2019;20:1634.
Article
CAS
PubMed Central
Google Scholar
Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J Control Release. 2018;274:1–8.
Article
PubMed
CAS
Google Scholar
Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett. 2006;244:143–63.
Article
CAS
PubMed
Google Scholar
Lowy CM, Oskarsson T. Tenascin C in metastasis: a view from the invasive front. Cell Adhes Migr. 2015;9:112–24.
Article
CAS
Google Scholar
Dal Corso A, Gébleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release. 2017;264:211–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen B, Dai W, Mei D, Liu T, Li S, He B, He B, Yuan L, Zhang H, Wang X. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80.
Article
CAS
PubMed
Google Scholar
Ishihara J, Ishihara A, Sasaki K, Lee SS-Y, Williford J-M, Yasui M, Abe H, Potin L, Hosseinchi P, Fukunaga K, et al. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med. 2019;11:eaau3259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park J, Kim S, Saw PE, Lee IH, Yu MK, Kim M, Lee K, Kim YC, Jeong YY, Jon S. Fibronectin extra domain B-specific aptide conjugated nanoparticles for targeted cancer imaging. J Control Release. 2012;163:111–8.
Article
CAS
PubMed
Google Scholar
Okur AC, Erkoc P, Kizilel S. Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B Biointerfaces. 2016;147:191–200.
Article
CAS
PubMed
Google Scholar
Upreti M, Jyoti A, Johnson SE, Swindell EP, Napier D, Sethi P, Chan R, Feddock JM, Weiss HL, O'Halloran TV, Evers BM. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget. 2016;7:41559–74.
Article
PubMed
PubMed Central
Google Scholar
Miot-Noirault E, Vidal A, Morlieras J, Bonazza P, Auzeloux P, Besse S, Dauplat MM, Peyrode C, Degoul F, Billotey C, et al. Small rigid platforms functionalization with quaternary ammonium: targeting extracellular matrix of chondrosarcoma. Nanomedicine. 2014;10:1887–95.
Article
CAS
PubMed
Google Scholar
Jayatilaka H, Tyle P, Chen JJ, Kwak M, Ju J, Kim HJ, Lee JS, Wu P-H, Gilkes DM, Fan R. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat Commun. 2017;8:15584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krol I, Castro-Giner F, Maurer M, Gkountela S, Szczerba BM, Scherrer R, Coleman N, Carreira S, Bachmann F, Anderson SJBjoc. Detection of circulating tumour cell clusters in human glioblastoma.Br J Cancer. 2018;119:487–91.
Shishido SN, Carlsson A, Nieva J, Bethel K, Hicks JB, Bazhenova L, Kuhn P. Circulating tumor cells as a response monitor in stage IV non-small cell lung cancer. J Transl Med. 2019;17:294.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yap Y-S, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, Dent R, Ng RCH, Lim JH-C, Singh G, et al. Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS One. 2019;14:e0221305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams DL, Adams DK, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Tang C-M, Alpaugh RK. Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas. Breast Cancer Res. 2016;18:44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim M-Y, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH-F, Norton L, Massagué J. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.
Article
PubMed
PubMed Central
Google Scholar
Jayatilaka H, Phillip JM. Targeting metastasis through the inhibition of interleukin 6 and 8. Future Medicine. 2019. https://doi.org/10.2217/bmt-2019-0002.
Martín M, Custodio S, de las Casas M-LM, García-Sáenz J-Á, de la Torre J-C, Bellón-Cano J-M, López-Tarruella S, Vidaurreta-Lazaro M, de la Orden V, Jerez YJTo. Circulating tumor cells following first chemotherapy cycle: an early and strong predictor of outcome in patients with metastatic breast cancer. Oncologist. 2013;18:917–23.
Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst. 2014;106:dju066.
Yan W-T, Cui X, Chen Q, Li Y-F, Cui Y-H, Wang Y, Jiang JJSr. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis . Sci Rep. 2017;7:43464.
Kim YR, Yoo JK, Jeong CW, Choi JW. Selective killing of circulating tumor cells prevents metastasis and extends survival. J Hematol Oncol. 2018;11:114.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lian S, Xie R, Ye Y, Lu Y, Cheng Y, Xie X, Li S, Jia LJSr. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci Rep. 2019;9:4532.
Dong H, Han L, Wu Z-S, Zhang T, Xie J, Ma J, Wang J, Li T, Gao Y, Shao J. Biostable aptamer rings conjugated for targeting two biomarkers on circulating tumor cells in vivo with great precision. Chem Mater. 2017;29:10312–25.
Article
CAS
Google Scholar
Jahanban-Esfahlan R, Seidi K, Jahanban-Esfahlan A, Jaymand M, Alizadeh E, Majdi H, Najjar R, Javaheri T, Zare P. Static DNA nanostructures for cancer theranostics: Recent progress in design and applications. Nannotechnol Sci Appl. 2019;12:25–46.
Song P, Ye D, Zuo X, Li J, Wang J, Liu H, Hwang MT, Chao J, Su S, Wang L, et al. DNA hydrogel with Aptamer-toehold-based recognition, cloaking, and Decloaking of circulating tumor cells for live cell analysis. Nano Lett. 2017;17:5193–8.
Article
CAS
PubMed
Google Scholar
Straume O, Akslen L. Strong expression of ID1 protein is associated with decreased survival, increased expression of ephrin-A1/EPHA2, and reduced thrombospondin-1 in malignant melanoma. Br J Cancer. 2005;93:933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, Kinch MS, Kiener PA, Sood AK. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 2004;10:5145–50.
Article
CAS
PubMed
Google Scholar
Han L, Dong Z, Qiao Y, Kristensen GB, Holm R, Nesland JM, Suo Z. The clinical significance of EphA2 and Ephrin A-1 in epithelial ovarian carcinomas. Gynecol Oncol. 2005;99:278–86.
Article
CAS
PubMed
Google Scholar
Walker-Daniels J, Coffman K, Azimi M, Rhim J, Bostwick D, Snyder P, Kerns B, Waters D, Kinch M. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate. 1999;41:275–80.
Article
CAS
PubMed
Google Scholar
Chen P, Huang Y, Zhang B, Wang Q, Bai P. EphA2 enhances the proliferation and invasion ability of LNCaP prostate cancer cells. Oncol Lett. 2014;8:41–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kinch MS, Moore M-B, Harpole DH. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res. 2003;9:613–8.
CAS
PubMed
Google Scholar
Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J. JNK Signaling mediates EPHA2-dependent tumor cell proliferation, motility, and Cancer stem cell–like properties in non–small cell lung Cancer. Cancer Res. 2014;74:2444–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, Chen J. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One. 2011;6:e24426.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD, Bandyopadhyay S, Bismar TA. Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res. 2014;320:233–46.
Article
CAS
PubMed
Google Scholar
Wang S, Placzek WJ, Stebbins JL, Mitra S, Noberini R, Koolpe M, Zhang Z, Dahl R, Pasquale EB, Pellecchia M. Novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells. J Med Chem. 2012;55:2427–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinn BA, Wang S, Barile E, Das SK, Emdad L, Sarkar D, De SK, Kharagh SM, Stebbins JL, Pandol SJ. Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine. Oncotarget. 2016;7:17103.
Article
PubMed
PubMed Central
Google Scholar
Salem AF, Wang S, Billet S, Chen J-F, Udompholkul P, Gambini L, Baggio C, Tseng H-R, Posadas EM, Bhowmick NA, Pellecchia M. Reduction of circulating Cancer cells and metastases in breast-Cancer models by a potent EphA2-agonistic peptide–drug conjugate. J Med Chem. 2018;61:2052–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valcz G, Galamb O, Krenács T, Spisák S, Kalmár A, Patai ÁV, Wichmann B, Dede K, Tulassay Z, Molnár BJMP. Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Modern Pathology. 2016;29:928.
Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse CJNc. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells.Nat Commun. 2017;8:15287.
Németh A, Orgovan N, Sódar BW, Osteikoetxea X, Pálóczi K, Szabó-Taylor KÉ, Vukman KV, Kittel Á, Turiák L, Wiener ZJSr. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep. 2017;7:8202.
Valcz G, Buzás EI, Szállási Z, Kalmár A, Krenács T, Tulassay Z, Igaz P. Molnár BJNbc. Perspective: bidirectional exosomal transport between cancer stem cells and their fibroblast-rich microenvironment during metastasis formation. 2018;4:18.
Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, Li L. The emerging roles of extracellular vesicles as communication vehicles within the tumor microenvironment and beyond. Front Endocrinol (Lausanne). 2017;8:194.
Article
Google Scholar
Wendler F, Stamp GW, Giamas G. Tumor–stromal cell communication: small vesicles signal big changes. Trends Cancer. 2016;2:326–9.
Article
PubMed
Google Scholar
Yu Y, Abudula M, Li C, Chen Z, Zhang Y, Chen Y. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir Res. 2019;20:217.
Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder SJN: Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O’Connor STF, Li S, Chin ARJNcb: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.
Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677.
Article
CAS
PubMed
Google Scholar
Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci. 2018;109:2364–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bastos N, Ruivo CF, da Silva S, Melo SA. Exosomes in cancer: Use them or target them? Semin Cell Dev Biol. 2018;78:13–21.
Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JLS, Sanderson RD. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J. 2013;280:2294–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M, Wang G, Hu W, Yao Y, Yu X-F. Emerging roles and therapeutic value of exosomes in cancer metastasis. Mol Cancer. 2019;18:53.
Article
PubMed
PubMed Central
Google Scholar
Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD. Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem. 2013;288:10093–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sento S, Sasabe E, Yamamoto T. Application of a persistent heparin treatment inhibits the malignant potential of oral squamous carcinoma cells induced by tumor cell-derived exosomes. PLoS One. 2016;11:e0148454.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y, Ochiya T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther. 2017;25:181–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Fuente A, Alonso-Alconada L, Costa C, Cueva J, Garcia-Caballero T, Lopez-Lopez R, Abal M. M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J Natl Cancer Institute. 2015;107:djv184.
Xie X, Nie H, Zhou Y, Lian S, Mei H, Lu Y, Dong H, Li F, Li T, Li B, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat Commun. 2019;10:5476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khodashenas Limoni S, Salimi F, Forouzandeh Moghaddam M. Designing pLEX-LAMP-DARPin lentiviral vector for exression of HER2 targeted DARPin on exosome surface. J Mazandaran Univ Med Sci. 2017;27:12–23.
Google Scholar
Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl Biochem Biotechnol. 2019;187:352–64.
Article
CAS
PubMed
Google Scholar
Gomari H, Moghadam MF, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. OncoTargets Therapy. 2018;11:5753.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhagwat N, Dulmage K, Pletcher CH, Wang L, DeMuth W, Sen M, Balli D, Yee SS, Sa S, Tong F. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep. 2018;8:5035.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gorgannezhad L, Umer M, Islam MN, Nguyen N-T, Shiddiky MJJLoaC. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip. 2018;18:1174–96.
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775:181–232.
Article
CAS
Google Scholar
Thierry A, El Messaoudi S, Gahan P, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fűri I, Kalmár A, Wichmann B, Spisák S, Schöller A, Barták B, Tulassay Z, Molnár B. Cell free DNA of tumor origin induces a 'Metastatic' expression profile in HT-29 Cancer cell line. PLoS One. 2015;10:e0131699.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee K-H, Shin T-J, Kim W-H, Cho J-Y. Methylation of LINE-1 in cell-free DNA serves as a liquid biopsy biomarker for human breast cancers and dog mammary tumors. Sci Rep. 2019;9:175.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, Morey R, Liu J, Roszik J, Clise-Dwyer K, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849.
Kostyuk SV, Ermakov AV, Alekseeva AY, Smirnova TD, Glebova KV, Efremova LV, Baranova A, Veiko NN. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res. 2012;729:52–60.
Article
CAS
PubMed
Google Scholar
Dvořáková M, Karafiát V, Pajer P, Kluzáková E, Jarkovská K, Pekova S, Krutílkova L, Dvořák M. DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment. Oncogene. 2013;32:5201–9.
Garcia-Olmo DC, Picazo MG, Garcia-Olmo D. Transformation of non-tumor host cells during tumor progression: theories and evidence. Expert Opin Biol Ther. 2012;12(Suppl 1):S199–207.
Article
CAS
PubMed
Google Scholar
Garcia-Olmo DC, Dominguez C, Garcia-Arranz M, Anker P, Stroun M, Garcia-Verdugo JM, Garcia-Olmo D. Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res. 2010;70:560–7.
Article
CAS
PubMed
Google Scholar
Mittra I, Samant U, Sharma S, Raghuram GV, Saha T, Tidke P, Pancholi N, Gupta D, Prasannan P, Gaikwad A, et al. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation. Cell Death Disc. 2017;3:17015.
Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223.
Article
CAS
PubMed
Google Scholar
Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8:927–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebs S, Keilholz U, Kehler I, Schweiger C, Haybäck J, Nonnenmacher A. Detection of mutations in circulating cell-free DNA in relation to disease stage in colorectal cancer. Cancer Med. 2019;8:3761–9.
CAS
PubMed
PubMed Central
Google Scholar
Sanchez C, Snyder MW, Tanos R, Shendure J, Thierry AR. New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. NPJ Genomic Med. 2018;3:31.
Article
CAS
Google Scholar
Chang Y, Tolani B, Nie X, Zhi X, Hu M, He B. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring. Ther Clin Risk Manag. 2017;13:1363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oellerich M, Schütz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, Walson PD. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017;54:205–18.
Article
CAS
PubMed
Google Scholar
Barbosa A, Peixoto A, Pinto P, Pinheiro M, Teixeira MR. Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev Mol Med. 2018;20:E6.
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Therapy. 2019;20:1057–1067.
Wang R, Li X, Zhang H, Wang K, He J. Cell-free circulating tumor DNA analysis for breast cancer and its clinical utilization as a biomarker. Oncotarget. 2017;8:75742.
PubMed
PubMed Central
Google Scholar
Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SO, Medina JE, Hruban C, White JR, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570:385–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caruso S, Poon IK. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wickman G, Julian L, Olson M. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ. 2012;19:735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogden CA, de Cathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194:781–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Julian L, Olson MF. Apoptotic membrane dynamics in health and disease. Cell Health Cytoskeleton. 2015;2015:133–42.
Google Scholar
Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39:BSR20180992.
Gordon S, Plüddemann A. Macrophage clearance of apoptotic cells: a critical assessment. Front Immunol. 2018;9:127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz A-L, Holmgren L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci. 2001;98:6407–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samos J, García-Olmo DC, Picazo MG, Rubio-Vitaller A, García-Olmo D. Circulating nucleic acids in plasma/serum and tumor progression. Ann N Y Acad Sci. 2006;1075:165–73.
Article
CAS
PubMed
Google Scholar
Hulea L, Gravel S-P, Morita M, Cargnello M, Uchenunu O, Im YK, Lehuédé C, Ma EH, Leibovitch M, McLaughlan S. Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metabolism. 2018;28:817–32 e818.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell SL, Wellen KE. Metabolic signaling to the nucleus in cancer. Mol Cell. 2018;71:398–408.
Article
CAS
PubMed
Google Scholar
Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169:570–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanford-Crane H, Abrego J, Sherman MH. Fibroblasts as modulators of local and systemic Cancer metabolism. Cancers. 2019;11:619.
Article
CAS
PubMed Central
Google Scholar