Johnson RJ, Floege J, Yoshimura A, Iida H, Couser WG, Alpers CE. The activated mesangial cell: a glomerular “myofibroblast”? J Am Soc Nephrol. 1992;2:S190–7.
CAS
PubMed
Google Scholar
Schlöndorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol. 2009;20:1179–87. https://doi.org/10.1681/ASN.2008050549.
Article
CAS
PubMed
Google Scholar
Schlöndorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987;1:272–81.
Article
PubMed
Google Scholar
Schlöndorff D. Roles of the mesangium in glomerular function. Kidney Int. 1996;49:1583–5. https://doi.org/10.1038/ki.1996.229.
Article
PubMed
Google Scholar
Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest. 1992;90:1932–43. https://doi.org/10.1172/JCI116071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Floege J, Radeke HR, Johnson RJ. Glomerular cells in vitro versus the glomerulus in vivo. Kidney Int. 1994;45:360–8. https://doi.org/10.1038/ki.1994.46.
Article
CAS
PubMed
Google Scholar
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684–96. https://doi.org/10.1038/nrneph.2011.149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Lisanti MP, Burk RD, Albanese C, Van K, Weiss LM, Nagajyothi F, Nosanchuk JD, Mary E. Caveolins and Caveolae. 2012;729:65–82. https://doi.org/10.1007/978-1-4614-1222-9.
Article
CAS
Google Scholar
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J. 2014;28:3823–31. https://doi.org/10.1096/fj.14-252320.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Krieken R, Krepinsky JC. Caveolin-1 in the pathogenesis of diabetic nephropathy: potential therapeutic target? Curr Diab Rep. 2017;17. https://doi.org/10.1007/s11892-017-0844-9.
Guan TH, Chen G, Gao B, Janssen MR, Uttarwar L, Ingram AJ, Krepinsky JC. Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy. Diabetologia. 2013;56:2068–77. https://doi.org/10.1007/s00125-013-2968-z.
Article
CAS
PubMed
Google Scholar
Zhang B, Peng F, Wu D, Ingram AJ, Gao B, Krepinsky JC. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal. 2007;19:1690–700. https://doi.org/10.1016/j.cellsig.2007.03.005.
Article
CAS
PubMed
Google Scholar
Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC. TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol. 2008;295:F153–64. https://doi.org/10.1152/ajprenal.00419.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sindhu RK, Ehdaie A, Vaziri ND, Roberts CK. Effects of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Biochim Biophys Acta. 2004;1690:231–7. https://doi.org/10.1016/j.bbadis.2004.06.013.
Article
CAS
PubMed
Google Scholar
Hedger MP, De Kretser DM. The activins and their binding protein, follistatin-diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev. 2013;24:285–95. https://doi.org/10.1016/j.cytogfr.2013.03.003.
Article
CAS
PubMed
Google Scholar
de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP. The roles of activin a and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol. 2012;359:101–6. https://doi.org/10.1016/j.mce.2011.10.009.
Article
CAS
PubMed
Google Scholar
Aoki F, Kurabayashi M, Hasegawa Y, Kojima I. Attenuation of bleomycin-induced pulmonary fibrosis by follistatin. Am J Respir Crit Care Med. 2005;172:713–20. https://doi.org/10.1164/rccm.200412-1620OC.
Article
PubMed
Google Scholar
Patella S, Phillips DJ, Tchongue J, de Kretser DM, Sievert W. Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol. 2006;290:G137–44. https://doi.org/10.1152/ajpgi.00080.2005.
Article
CAS
PubMed
Google Scholar
Maeshima A, Mishima K, Yamashita S, Nakasatomi M, Miya M, Sakurai N, Sakairi T, Ikeuchi H, Hiromura K, Hasegawa Y, Kojima I, Nojima Y. Follistatin, an activin antagonist, ameliorates renal interstitial fibrosis in a rat model of unilateral ureteral obstruction. Biomed Res Int. 2014;2014. https://doi.org/10.1155/2014/376191.
Li R, Wang T, Walia K, Gao B, Krepinsky JC. Regulation of profibrotic responses by ADAM17 activation in high glucose requires its C-terminus and FAK. J Cell Sci. 2018;131:jcs208629. https://doi.org/10.1242/jcs.208629.
Article
CAS
PubMed
Google Scholar
Neill PRO, Kalyanaraman V, Gautam N, Louis S. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration. 2016:1442–50. https://doi.org/10.1091/mbc.E15-12-0832.
Evans LW, Muttukrishna S, Groome NP. Development, validation and application of an ultra-sensitive two-site enzyme immunoassay for human follistatin. J Endocrinol. 1998;156:275–82. https://doi.org/10.1677/joe.0.1560275.
Article
CAS
PubMed
Google Scholar
Saito S, Sidis Y, Mukherjee A, Xia Y, Schneyer A. Differential biosynthesis and intracellular transport of follistatin isoforms and follistatin-like-3. Endocrinology. 2005;146:5052–62. https://doi.org/10.1210/en.2005-0833.
Article
CAS
PubMed
Google Scholar
Suginos K, Kurosawas N, Nakamuras T, Takios K, Lingll N, Titanill K. Molecular heterogeneity of Follistatin, an Activin-binding protein. J Biol Chem. 1993;268:15579–87.
Google Scholar
de Kretser DM, Hedger MP, Loveland KL, Phillips DJ. Inhibins, activins and follistatin in reproduction. Hum Reprod Update. 2002;8:529–41. https://doi.org/10.1093/humupd/8.6.529.
Article
PubMed
Google Scholar
De Groot E, Veltmaat J, Caricasole A, Defize L, Van Den Eijnden-van Raaij A. Cloning and analysis of the mouse follistatin promoter. Mol Biol Rep. 2000;27:129–39. https://doi.org/10.1023/A:1007159031000.
Article
PubMed
Google Scholar
Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4 http://www.ncbi.nlm.nih.gov/pubmed/11847087 (Accessed 11 Apr 2016).
Article
CAS
PubMed
Google Scholar
Necela BM, Su W, Thompson EA. Peroxisome proliferator-activated receptor gamma down-regulates follistatin in intestinal epithelial cells through SP1. J Biol Chem. 2008;283:29784–94. https://doi.org/10.1074/jbc.M804481200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan NY, Khachigian LM. Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol. 2009;29:2483–8. https://doi.org/10.1128/MCB.01828-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liao M, Dufau ML. Phosphatidylinositol 3-kinase/protein kinase Czeta-induced phosphorylation of Sp1 and p107 repressor release have a critical role in histone deacetylase inhibitor-mediated derepression of transcription of the luteinizing hormone receptor gene. Mol Cell Biol. 2006;26:6748–61. https://doi.org/10.1128/MCB.00560-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000;6:909–19 http://www.ncbi.nlm.nih.gov/pubmed/11090628 (Accessed 26 Mar 2019).
Article
CAS
PubMed
Google Scholar
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60. https://doi.org/10.1242/dev.137075.
Article
CAS
PubMed
Google Scholar
Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen C-S, Newton AC, Schaffhausen BS, Toker A. Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol. 1998;8:1069–78. https://doi.org/10.1016/S0960-9822(98)70444-0.
Article
CAS
PubMed
Google Scholar
Moriyama T, Tsuruta Y, Shimizu A, Itabashi M, Takei T, Horita S, Uchida K, Nitta K. The significance of caveolae in the glomeruli in glomerular disease. J Clin Pathol. 2011;64:504–9. https://doi.org/10.1136/jcp.2010.087023.
Article
PubMed
Google Scholar
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S. Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int. 2001;59:471–80. https://doi.org/10.1046/J.1523-1755.2001.059002471.X.
Article
CAS
PubMed
Google Scholar
Komers R, Schutzer WE, Reed JF, Lindsley JN, Oyama TT, Buck DC, Mader SL, Anderson S. Altered endothelial nitric oxide synthase targeting and conformation and Caveolin-1 expression in the diabetic kidney. Diabetes. 2006;55:1651–9. https://doi.org/10.2337/db05-1595.
Article
CAS
PubMed
Google Scholar
Kim S, Lee Y, Seo JE, Cho KH, Chung JH. Caveolin-1 increases basal and TGF-β1-induced expression of type I procollagen through PI-3 kinase/Akt/mTOR pathway in human dermal fibroblasts. Cell Signal. 2008;20:1313–9. https://doi.org/10.1016/j.cellsig.2008.02.020.
Article
CAS
PubMed
Google Scholar
Wang X, Shi L, Han Z, Liu B. Follistatin-like 3 suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose. Int J Clin Exp Med. 2015;8:15214–21.
CAS
PubMed
PubMed Central
Google Scholar
Sidis Y, Tortoriello DV, Holmes WE, Pan Y, Keutmann HT, Schneyer AL. Follistatin-related protein and Follistatin differentially neutralize endogenous vs. exogenous Activin. Endocrinology. 2002;143:1613–24. https://doi.org/10.1210/endo.143.5.8805.
Article
CAS
PubMed
Google Scholar
Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. Identification and characterization of a novel Follistatin-like protein as a binding protein for the TGF-β family. J Biol Chem. 2000;275:40788–96. https://doi.org/10.1074/jbc.M006114200.
Article
CAS
PubMed
Google Scholar
Willert J, Epping M, Pollack JR, Brown PO, Nusse R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol. 2002;2:8 http://www.ncbi.nlm.nih.gov/pubmed/12095419 (Accessed 29 Nov 2018.
Article
PubMed
PubMed Central
Google Scholar
Bartholin L, Maguer-Satta V, Hayette S, Martel S, Gadoux M, Corbo L, Magaud JP. Transcription activation of FLRG and follistatin by activin a, through Smad proteins, participates in a negative feedback loop to modulate activin a function. Oncogene. 2002;21:2227–35. https://doi.org/10.1038/sj.onc.1205294.
Article
CAS
PubMed
Google Scholar
Miyanaga K, Shimasaki S. Structural and functional characterization of the rat follistatin (activin-binding protein) gene promoter. Mol Cell Endocrinol. 1993;92:99–109 http://www.ncbi.nlm.nih.gov/pubmed/8472873 (Accessed 29 Nov 2018).
Article
CAS
PubMed
Google Scholar
Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204. https://doi.org/10.1016/j.ctrv.2003.07.007.
Article
CAS
Google Scholar
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170:605–35. https://doi.org/10.1016/j.cell.2017.07.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shack S, Wang X-T, Kokkonen GC, Gorospe M, Longo DL, Holbrook NJ. Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Mol Cell Biol. 2003;23:2407–14 http://www.ncbi.nlm.nih.gov/pubmed/12640124 (Accessed 21 Dec 2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zundel W, Swiersz LM, Giaccia A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol. 2000;20:1507–14 http://www.ncbi.nlm.nih.gov/pubmed/10669728 (Accessed 21 Dec 2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan Y, Wang L, Liu J, Ma K, Liu C, Zhang Y, Zou W. Choline Plasmalogens isolated from swine liver inhibit hepatoma cell proliferation associated with Caveolin-1/Akt signaling. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0077387.
Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–50. https://doi.org/10.1146/annurev.pathol.4.110807.092311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J, Henke CA. Pathologic Caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol. 2010;176:2626–37. https://doi.org/10.2353/ajpath.2010.091117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan NY, Midgley VC, Kavurma MM, Santiago FS, Luo X, Peden R, Fahmy RG, Berndt MC, Molloy MP, Khachigian LM. Angiotensin II–inducible platelet-derived growth factor-D transcription requires specific Ser/Thr residues in the second zinc finger region of Sp1. Circ Res. 2008;102:e38–51. https://doi.org/10.1161/CIRCRESAHA.107.167395.
Article
CAS
PubMed
Google Scholar
Pal S, Claffey KP, Cohen HT, Mukhopadhyay D. Activation of Sp1-mediated vascular permeability factor/vascular endothelial growth factor transcription requires specific interaction with protein kinase C zeta. J Biol Chem. 1998;273:26277–80. https://doi.org/10.1074/JBC.273.41.26277.
Article
CAS
PubMed
Google Scholar
Hirai T, Chida K. Protein kinase Cζ (PKCζ): activation mechanisms and cellular functions. J Biochem. 2003;133:1–7. https://doi.org/10.1093/jb/mvg017.
Article
CAS
PubMed
Google Scholar
Standaert ML, Bandyopadhyay G, Kanoh Y, Sajan MP, Farese RV. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry. 2001;40:249–55 http://www.ncbi.nlm.nih.gov/pubmed/11141077 (Accessed 31 July 2018).
Article
CAS
PubMed
Google Scholar
Oka N, Yamamoto M, Schwencke C, Kawabe JI, Ebina T, Ohno S, Couet J, Lisanti MP, Ishikawa Y. Caveolin interaction with protein kinase C. isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J Biol Chem. 1997;272:33416–21. https://doi.org/10.1074/jbc.272.52.33416.
Article
CAS
PubMed
Google Scholar
Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997;272:6525–33. https://doi.org/10.1074/JBC.272.10.6525.
Article
CAS
PubMed
Google Scholar
Chun J, Kwon T, Lee EJ, Hyun S, Hong S-K, Kang SS. The subcellular localization of 3-phosphoinositide-dependent protein kinase is controlled by caveolin-1 binding. Biochem Biophys Res Commun. 2004;326:136–46. https://doi.org/10.1016/j.bbrc.2004.10.208.
Article
CAS
Google Scholar
Fox TE, Houck KL, O'Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M. Ceramide recruits and activates protein kinase C ζ (PKCζ) within structured membrane microdomains. J Biol Chem. 2007;282:12450–7. https://doi.org/10.1074/jbc.M700082200.
Article
CAS
PubMed
Google Scholar
Huang W-C, Lin Y-S, Wang C-Y, Tsai C-C, Tseng H-C, Chen C-L, Lu P-J, Chen P-S, Qian L, Hong J-S, Lin C-F. Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology. 2009;128:e275–86. https://doi.org/10.1111/j.1365-2567.2008.02959.x.
Article
PubMed
PubMed Central
Google Scholar
Kim J-S, Park Z-Y, Yoo Y-J, Yu S-S, Chun J-S. p38 kinase mediates nitric oxide-induced apoptosis of chondrocytes through the inhibition of protein kinase C ζ by blocking autophosphorylation. Cell Death Differ. 2005;12:201–12. https://doi.org/10.1038/sj.cdd.4401511.
Article
CAS
PubMed
Google Scholar
Wu J, Zhao S, Tang Q, Zheng F, Chen Y, Yang L, Yang X, Li L, Wu W, Hann SS. Activation of SAPK/JNK mediated the inhibition and reciprocal interaction of DNA methyltransferase 1 and EZH2 by ursolic acid in human lung cancer cells. J Exp Clin Cancer Res. 2015;34:99. https://doi.org/10.1186/s13046-015-0215-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu S, Ferro TJ. Identification of a hydrogen peroxide-induced PP1-JNK1-Sp1 signaling pathway for gene regulation. Am J Physiol Cell Mol Physiol. 2006;291:L983–92. https://doi.org/10.1152/ajplung.00454.2005.
Article
CAS
Google Scholar
Xiao H, Bai X-H, Wang Y, Kim H, Mak AS, Liu M. MEK/ERK pathway mediates PKC activation-induced recruitment of PKCζ and MMP-9 to podosomes. J Cell Physiol. 2013;228:416–27. https://doi.org/10.1002/jcp.24146.
Article
CAS
PubMed
Google Scholar
Motojima M, Ando T, Yoshioka T. Sp1-like activity mediates angiotensin-II-induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells. Biochem J. 2000;349:435–41 http://www.ncbi.nlm.nih.gov/pubmed/10880342 (Accessed 21 Dec 2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kikkawa R, Haneda M, Uzu T, Koya D, Sugimoto T, Shigeta Y. Translocation of protein kinase C alpha and zeta in rat glomerular mesangial cells cultured under high glucose conditions. Diabetologia. 1994;37:838–41 http://www.ncbi.nlm.nih.gov/pubmed/7988787 (Accessed 21 Dec 2018).
Article
CAS
PubMed
Google Scholar
Xia L, Wang H, Munk S, Kwan J, Goldberg HJ, Fantus IG, Whiteside CI. High glucose activates PKC-ζ and NADPH oxidase through autocrine TGF-β 1 signaling in mesangial cells. Am J Physiol Physiol. 2008;295:F1705–14. https://doi.org/10.1152/ajprenal.00043.2008.
Article
CAS
Google Scholar
Chen H, Zhou Y, Chen KQ, An G, Ji SY, Chen QK. Anti-fibrotic effects via regulation of transcription factor Sp1 on hepatic stellate cells. Cell Physiol Biochem. 2012;29:51–60. https://doi.org/10.1159/000337586.
Article
CAS
PubMed
Google Scholar
Kum Y-S, Kim K-H, Park T-I, Suh I-S, Oh H-K, Cho C-H, Park J-B, Chang Y-C, Park J-H, Lee K-G, Park K-K. Antifibrotic effect via the regulation of transcription factor Sp1 in lung fibrosis. Biochem Biophys Res Commun. 2007;363:368–74. https://doi.org/10.1016/J.BBRC.2007.08.176.
Article
CAS
PubMed
Google Scholar
Kang JH, Chae Y-M, Park K-K, Kim C-H, Lee I-S, Chang Y-C. Suppression of mesangial cell proliferation and extracellular matrix production in streptozotocin-induced diabetic rats by Sp1 decoy oligodeoxynucleotide in vitro and in vivo. J Cell Biochem. 2008;103:663–74. https://doi.org/10.1002/jcb.21440.
Article
CAS
PubMed
Google Scholar
Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001;276:6983–92. https://doi.org/10.1074/jbc.M006442200.
Article
CAS
PubMed
Google Scholar
Chae Y-M, Park K-K, Lee I-K, Kim J-K, Kim C-H, Chang Y-C. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther. 2006;13:430–9. https://doi.org/10.1038/sj.gt.3302696.
Article
CAS
PubMed
Google Scholar
Brodin G, Åhgren A, ten Dijke P, Heldin C-H, Heuchel R. Efficient TGF-β induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J Biol Chem. 2000;275:29023–30. https://doi.org/10.1074/jbc.M002815200.
Article
CAS
PubMed
Google Scholar