Medler KF. Calcium signaling in taste cells: regulation required. Chem Senses. 2010;35:753–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui J, Kaandorp JA, Sloot PM, Lloyd CM, Filatov MV. Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res. 2009;9:1137–47.
Article
PubMed
CAS
Google Scholar
Cunningham KW. Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium. 2011;50:129–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cyert MS. (2003) Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun. 2003;311:1143–50.
Article
PubMed
CAS
Google Scholar
Martin DC, Kim H, Mackin NA, Maldonado-Báez L, Evangelista CC Jr, Beaudry VG, Dudgeon DD, Naiman DQ, Erdman SE, Cunningham KW. New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J Biol Chem. 2011;286:10744–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Demaegd D, Foulquier F, Colinet AS, Gremillon L, Legr D, Mariot P, Peiter E, van Schaftingen E, Matthijs G, Morsomme P. Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc Natl Acad Sci U S A. 2013;110:6859–64.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Du J, Xiong B, Xu H, Jiang L. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast. J Mol Cell Biol. 2013;5:336–44.
Article
PubMed
CAS
Google Scholar
Ding X, Yu Q, Xu N, Wang Y, Cheng X, Qian K, Zhao Q, Zhang B, Xing L, Li M. Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans. Fungal Genet Biol. 2013;57:23–32.
Article
PubMed
CAS
Google Scholar
Brand A, Lee K, Veses V, Gow NA. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol. 2009;71:1155–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJ, Odds FC, Gow NA. Candida albicans pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem. 2005;280:23408–15.
Article
PubMed
CAS
Google Scholar
Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. Calcineurin a of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol. 2003;48:959–76.
Article
PubMed
CAS
Google Scholar
Zhao Y, Yan H, Happeck R, Peiter-Volk T, Xu H, Zhang Y, Peiter E, van Oostende Triplet C, Whiteway M, Jiang L. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast. Eur J Cell Biol. 2016;95:164–74.
Article
PubMed
CAS
Google Scholar
Jiang L, Alber J, Wang J, Du W, Li X, Geyer J. The Candida albicans plasma membrane protein Rch1p a member of the vertebrate SLC10 carrier family, is a novel regulator of cytosolic Ca2+ homoeostasis. Biochem J. 2012;444:497–502.
Article
PubMed
CAS
Google Scholar
Alber J, Jiang L, Geyer J. CaRch1p does not functionally interact with the high-affinity Ca2+ influx system (HACS) of Candida albicans. Yeast. 2013;30:449–57.
Article
PubMed
CAS
Google Scholar
Xu D, Cheng J, Cao C, Wang L, Jiang L. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans. FEMS Yeast Res. 2015;15(7). https://doi.org/10.1093/femsyr/fov079.
Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 2011;10:112–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chauhan N, Latge JP, Calderone R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol. 2006;4:435–44.
Article
PubMed
CAS
Google Scholar
Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology. 2006;152:905–12.
Article
PubMed
CAS
Google Scholar
Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio. 2015;6:e00986.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herrero-de-Dios C, Alonso-Monge R, Pla J. The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans. Fungal Genet Biol. 2014;69:31–42.
Article
PubMed
CAS
Google Scholar
Navarro-García F, Sanchez M, Pla J, Nombela C. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol. 1995;15:2197–206.
Article
PubMed
PubMed Central
Google Scholar
Hall RA, Gow NA. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol. 2013;90:1147–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diez-Orejas R, Molero G, Navarro-Garcı’a F, Pla J, Nombela C, Sanchez-Perez M. Reduced virulence of Candida albicans MKC1 mutants: a role for a mitogen-activated protein kinase in pathogenesis. Infect Immun. 1997;65:833–7.
PubMed
PubMed Central
CAS
Google Scholar
Csank C, Schröppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun. 1998;66:2713–21.
PubMed
PubMed Central
CAS
Google Scholar
Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand D, Demaegd D, Buist N, Cheillan D, Guffon N, Morsomme P, Annaert W, Freeze HH, Van Schaftingen E, Vikkula M, Matthijs G. TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet. 2012;91:15–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Colinet AS, Thines L, Deschamps A, Flémal G, Demaegd D, Morsomme P. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+ transporter Gdt1p are required for calcium transport. Cell Microbiol. 2017;19(7) https://doi.org/10.1111/cmi.12729.
Colinet AS, Sengottaiyan P, Deschamps A, Colsoul ML, Thines L, Demaegd D, Duchêne MC, Foulquier F, Hols P, Morsomme P. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation. Sci Rep. 2016;6:24282.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reuss O, Vik A, Kolter R, Morschhäuser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004;341:119–27.
Article
PubMed
CAS
Google Scholar
Li X, Huang X, Zhao J, Zhao J, Wei Y, Jiang L. The MAP kinase-activated protein kinase Rck2p plays a role in rapamycin sensitivity in Saccharomyces cerevisiae and Candida albicans. FEMS Yeast Res. 2008;8:715–24.
Article
PubMed
CAS
Google Scholar
Wang Y, Wang J, Cheng J, Xu D, Jiang L. Genetic interactions between the Golgi Ca2+/H+ exchanger Gdt1 and the plasma membrane calcium channel Cch1/Mid1 in the regulation of calcium homeostasis, stress response and virulence in Candida albicans. FEMS Yeast Res. 2015;15(7). https://doi.org/10.1093/femsyr/fov069.
Jiang L, Niu S, Clines KL, Burke DJ, Sturgill TW. Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity in Saccharomyces cervisiae identify a MAP kinase docking motif, and unexpected functional inactivation due to acidic substitution of T379. Mol Genet Genomics. 2004;271:208–19.
Article
PubMed
CAS
Google Scholar
Stefan CP, Cunningham KW. Kch1 family proteins mediate essential responses to endoplasmic reticulum stresses in the Yeasts Saccharomyces cerevisiae and Candida albicans. J B Chem. 2013;288:34861–70.
Article
CAS
Google Scholar
Zhao J, Sun X, Fang J, Liu W, Feng C, Jiang L. Identification and characterization of the type 2C protein phosphatase Ptc4p in the human fungal pathogen Candida albicans. Yeast. 2010;27:149–57.
PubMed
CAS
Google Scholar
Lavoie H, Sellam A, Askew C, Nantel A, Whiteway M. A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics. 2008;9:578.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng J, Duan Y, Qin Y, Sun W, Zhuang Z, Zhu D, Jiang L. The N-terminal pY33XL motif of CaPsy2 is critical for the function of protein phosphatase 4 in CaRad53 deactivation, DNA damage-induced filamentation and virulence in Candida albicans. Intl J Med Microbiol. 2017;307:471–80.
Article
CAS
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
PubMed
CAS
Google Scholar
Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics. 2003;12:159–62.
Article
PubMed
CAS
Google Scholar
Rosnoblet C, Legrand D, Demaegd D, Hacine-Gherbi H, de Bettignies G, Bammens R, Borrego C, Duvet S, Morsomme P, Matthijs G, Foulquier F. Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Hum Mol Genet. 2013;22:2914–28.
Article
PubMed
CAS
Google Scholar
Madeo F, Fröhlich E, Fröhlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997;139:729–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich KU, Sigrist S, Madeo F. Endonuclease G regulates budding yeast life and death. Mol Cell. 2007;25:233–46.
Article
PubMed
CAS
Google Scholar
Halachmi D, Eilam Y. Elevated cytosolic free Ca2+ concentrations and massive Ca2+ accumulation within vacuoles, in yeast mutant lacking PMR1, a homolog of Ca2+ -ATPase. FEBS Lett. 1996;392:194–200.
Article
PubMed
CAS
Google Scholar
Strayle J, Pozzan T, Rudolph HK. Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J. 1999;18:4733–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pardini G, de Groot PW, Coste AT, Karababa M, Klis FM, de Koster CG, Sanglard D. The CRH family coding for cell wall lycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem. 2006;281:40399–411.
Article
PubMed
CAS
Google Scholar
Dias PJ, Sá-Correia I. The drug:H+ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H+ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. BMC Genomics. 2013;14:901.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loewen SK, Ng AM, Mohabir NN, Baldwin SA, Cass CE, Young JD. Functional characterization of a H+/nucleoside co-transporter (CaCNT) from Candida albicans, a fungal member of the concentrative nucleoside transporter (CNT) family of membrane proteins. Yeast. 2003;20:661–75.
Article
PubMed
CAS
Google Scholar
Xiong B, Zhang L, Xu H, Yang Y, Jiang L. Cadmium induces the activation of cell wall integrity pathway in budding yeast. Chem Biol Interact. 2015;240:316–23.
Article
PubMed
CAS
Google Scholar
Potelle S, Dulary E, Climer L, Duvet S, Morelle W, Vicogne D, Lebredonchel E, Houdou M, Spriet C, Krzewinski-Recchi MA, Peanne R, Klein A, de Bettignies G, Morsomme P, Matthijs G, Marquardt T, Lupashin V, Foulquier F. Manganese-induced turnover of TMEM165. Biochem J. 2017;474:1481–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dulary E, Potelle S, Legrand D, Foulquier F. TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue Cell. 2017;49:150–6.
Article
PubMed
CAS
Google Scholar
Shah SZ, Hussain T, Zhao D, Yang L. A central role for calcineurin in protein misfolding neurodegenerative diseases. Cell Mol Life Sci. 2017;74:1061–74.
Article
PubMed
CAS
Google Scholar
Kim H, Kim A, Cunningham KW. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem. 2012;287:19029–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang L, Xu D, Hameed A, Fang T, Bakr Ahmad Fazili A, Asghar F. The plasma membrane protein Rch1 and the Golgi/ER calcium pump Pmr1 have an additive effect on filamentation in Candida albicans. Fungal Genet Biol. 2018;115:1–8.
Article
PubMed
CAS
Google Scholar
Burda P, Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta. 1999;1426:239–57.
Article
PubMed
CAS
Google Scholar
Welti M. Regulation of dolichol-linked glycosylation. Glycoconj J. 2013;30:51–6.
Article
PubMed
CAS
Google Scholar
Chavan M, Suzuki T, Rekowicz M, Lennarz W. Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall beta1,6-glucan of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2003;100:15381–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Halim A, Larsen IS, Neubert P, Joshi HJ, Petersen BL, Vakhrushev SY, Strahl S, Clausen H. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proc Natl Acad Sci U S A. 2015;112:15648–53.
PubMed
PubMed Central
CAS
Google Scholar
Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S. Functional and genomic analyses of blocked protein O-mannosylation in baker's yeast. Mol Microbiol. 2011 Mar;79(6):1529–46.
Article
PubMed
CAS
Google Scholar
Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA. The PKC, HOG and Ca2+ signalling pathways coordinately regulate chitin synthesis in Candida albicans. Mol Microbiol. 2007;63:1399–413.
Article
PubMed
PubMed Central
CAS
Google Scholar
LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 2010;6:e1001069.
Article
PubMed
PubMed Central
CAS
Google Scholar