Ciechanover A: Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005, 6: 79-87.
CAS
PubMed
Google Scholar
Zaaroor-Regev D, de Bie P, Scheffner M, Noy T, Shemer R, Heled M, Stein I, Pikarsky E, Ciechanover A: Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome. Proc Natl Acad Sci USA. 2010, 107: 6788-6793. 10.1073/pnas.1003108107.
CAS
PubMed Central
PubMed
Google Scholar
Nguyen LK, Munoz-Garcia J, Maccario H, Ciechanover A, Kolch W, Kholodenko BN: Switches, excitable responses and oscillations in the Ring1B/Bmi1 ubiquitination system. PLoS Comput Biol. 2011, 7: e1002317-10.1371/journal.pcbi.1002317.
CAS
PubMed Central
PubMed
Google Scholar
Sorkin A, Goh LK: Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 2009, 315: 683-696. 10.1016/j.yexcr.2008.07.029.
CAS
PubMed
Google Scholar
Weake VM, Workman JL: Histone ubiquitination: triggering gene activity. Mol Cell. 2008, 29: 653-663. 10.1016/j.molcel.2008.02.014.
CAS
PubMed
Google Scholar
Zhou W, Wang X, Rosenfeld MG: Histone H2A ubiquitination in transcriptional regulation and DNA damage repair. Int J Biochem Cell Biol. 2009, 41: 12-15. 10.1016/j.biocel.2008.09.016.
CAS
PubMed
Google Scholar
Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A: The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell. 2006, 24: 701-711. 10.1016/j.molcel.2006.10.022.
CAS
PubMed
Google Scholar
Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007, 28: 730-738. 10.1016/j.molcel.2007.11.019.
CAS
PubMed
Google Scholar
Magnani M, Crinelli R, Bianchi M, Antonelli A: The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB). Curr Drug Targets. 2000, 1: 387-399. 10.2174/1389450003349056.
CAS
PubMed
Google Scholar
Treier M, Staszewski LM, Bohmann D: Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell. 1994, 78: 787-798. 10.1016/S0092-8674(94)90502-9.
CAS
PubMed
Google Scholar
Fuchs SY, Dolan L, Davis RJ, Ronai Z: Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene. 1996, 13: 1531-1535.
CAS
PubMed
Google Scholar
Witowsky JA, Johnson GL: Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J Biol Chem. 2003, 278: 1403-1406. 10.1074/jbc.C200616200.
CAS
PubMed
Google Scholar
Kaimachnikov NP, Kholodenko BN: Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBS J. 2009, 276: 4102-4118. 10.1111/j.1742-4658.2009.07117.x.
CAS
PubMed Central
PubMed
Google Scholar
Kholodenko BN: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000, 267: 1583-1588. 10.1046/j.1432-1327.2000.01197.x.
CAS
PubMed
Google Scholar
Shankaran H, Ippolito DL, Chrisler WB, Resat H, Bollinger N, Opresko LK, Wiley HS: Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol Syst Biol. 2009, 5: 332-
PubMed Central
PubMed
Google Scholar
Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E: FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol. 2008, 18: R332-R334. 10.1016/j.cub.2008.03.013.
CAS
PubMed
Google Scholar
Tsyganov MA, Kolch W, Kholodenko BN: The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Mol Biosyst. 2012, 8: 730-743. 10.1039/c2mb05375f.
CAS
PubMed
Google Scholar
Tkachenko E, Sabouri-Ghomi M, Pertz O, Kim C, Gutierrez E, Machacek M, Groisman A, Danuser G, Ginsberg MH: Protein kinase A governs a RhoA-RhoGDI protrusion-retraction pacemaker in migrating cells. Nat Cell Biol. 2011, 13: 660-667.
PubMed Central
PubMed
Google Scholar
Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G: Coordination of Rho GTPase activities during cell protrusion. Nature. 2009, 461: 99-103. 10.1038/nature08242.
CAS
PubMed Central
PubMed
Google Scholar
Kholodenko BN: Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol. 2006, 7: 165-176. 10.1038/nrm1838.
CAS
PubMed Central
PubMed
Google Scholar
Acconcia F, Sigismund S, Polo S: Ubiquitin in trafficking: the network at work. Exp Cell Res. 2009, 315: 1610-1618. 10.1016/j.yexcr.2008.10.014.
CAS
PubMed
Google Scholar
Chen ZJ, Sun LJ: Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009, 33: 275-286. 10.1016/j.molcel.2009.01.014.
CAS
PubMed
Google Scholar
Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, et al: Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999, 4: 1029-1040. 10.1016/S1097-2765(00)80231-2.
CAS
PubMed
Google Scholar
Schmidt MH, Dikic I: The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005, 6: 907-918. 10.1038/nrm1762.
CAS
PubMed
Google Scholar
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC: The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science. 1999, 286: 309-312. 10.1126/science.286.5438.309.
CAS
PubMed
Google Scholar
Huang F, Sorkin A: Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Mol Biol Cell. 2005, 16: 1268-1281. 10.1091/mbc.E04-09-0832.
CAS
PubMed Central
PubMed
Google Scholar
Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, Jovin T, Yarden Y: A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J. 2002, 21: 303-313. 10.1093/emboj/21.3.303.
CAS
PubMed Central
PubMed
Google Scholar
Jiang X, Huang F, Marusyk A, Sorkin A: Grb2 regulates internalisation of EGF receptors through clathrin-coated pits. Mol Biol Cell. 2003, 14: 858-870. 10.1091/mbc.E02-08-0532.
CAS
PubMed Central
PubMed
Google Scholar
Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT: Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol. 2012, 19: 184-192. 10.1038/nsmb.2231.
CAS
PubMed
Google Scholar
Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F: Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci USA. 2011, 108: 20579-20584. 10.1073/pnas.1110712108.
CAS
PubMed Central
PubMed
Google Scholar
Katzmann DJ, Odorizzi G, Emr SD: Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002, 3: 893-905. 10.1038/nrm973.
CAS
PubMed
Google Scholar
Woelk T, Oldrini B, Maspero E, Confalonieri S, Cavallaro E, Di Fiore PP, Polo S: Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol. 2006, 8: 1246-1254. 10.1038/ncb1484.
CAS
PubMed
Google Scholar
Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H: Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol. 2002, 4: 394-398. 10.1038/ncb791.
CAS
PubMed
Google Scholar
Clague MJ, Urbe S: Endocytosis: the DUB version. Trends Cell Biol. 2006, 16: 551-559. 10.1016/j.tcb.2006.09.002.
CAS
PubMed
Google Scholar
Nakamura M, Tanaka N, Kitamura N, Komada M: Clathrin anchors deubiquitinating enzymes, AMSH and AMSH-like protein, on early endosomes. Genes Cells. 2006, 11: 593-606. 10.1111/j.1365-2443.2006.00963.x.
CAS
PubMed
Google Scholar
McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, Clague MJ, Urbe S: Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol. 2006, 16: 160-165.
CAS
PubMed
Google Scholar
Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H, Feller S, Lewitzky M, Horak I, Knobeloch KP: Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol. 2007, 27: 5029-5039. 10.1128/MCB.01566-06.
CAS
PubMed Central
PubMed
Google Scholar
Meijer IM, van Leeuwen JE: ERBB2 is a target for USP8-mediated deubiquitination. Cell Signal. 2011, 23: 458-467. 10.1016/j.cellsig.2010.10.023.
CAS
PubMed
Google Scholar
Meijer IM, Kerperien J, Sotoca AM, van Zoelen EJ, van Leeuwen JE: The Usp8 deubiquitination enzyme is post-translationally modified by tyrosine and serine phosphorylation. Cell Signal. 2013, 25: 919-930. 10.1016/j.cellsig.2013.01.003.
CAS
PubMed
Google Scholar
Yan J, Roy S, Apolloni A, Lane A, Hancock JF: Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem. 1998, 273: 24052-24056. 10.1074/jbc.273.37.24052.
CAS
PubMed
Google Scholar
Voice JK, Klemke RL, Le A, Jackson JH: Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J Biol Chem. 1999, 274: 17164-17170. 10.1074/jbc.274.24.17164.
CAS
PubMed
Google Scholar
Karnoub AE, Weinberg RA: Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008, 9: 517-531. 10.1038/nrm2438.
CAS
PubMed Central
PubMed
Google Scholar
Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D: Differential modification of Ras proteins by ubiquitination. Mol Cell. 2006, 21: 679-687. 10.1016/j.molcel.2006.02.011.
CAS
PubMed
Google Scholar
Hancock JF: Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 2003, 4: 373-384. 10.1038/nrm1105.
CAS
PubMed
Google Scholar
Yan H, Chin ML, Horvath EA, Kane EA, Pfleger CM: Impairment of ubiquitylation by mutation in Drosophila E1 promotes both cell-autonomous and non-cell-autonomous Ras-ERK activation in vivo. J Cell Sci. 2009, 122: 1461-1470. 10.1242/jcs.042267.
CAS
PubMed Central
PubMed
Google Scholar
Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M: A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell. 1997, 90: 1149-1159. 10.1016/S0092-8674(00)80380-3.
CAS
PubMed
Google Scholar
Delprato A, Merithew E, Lambright DG: Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell. 2004, 118: 607-617. 10.1016/j.cell.2004.08.009.
CAS
PubMed
Google Scholar
Xu L, Lubkov V, Taylor LJ, Bar-Sagi D: Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol. 2010, 20: 1372-1377. 10.1016/j.cub.2010.06.051.
CAS
PubMed Central
PubMed
Google Scholar
Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR: Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell. 2006, 124: 1183-1195. 10.1016/j.cell.2006.02.020.
CAS
PubMed
Google Scholar
Mattera R, Tsai YC, Weissman AM, Bonifacino JS: The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J Biol Chem. 2006, 281: 6874-6883. 10.1074/jbc.M509939200.
CAS
PubMed
Google Scholar
Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH: Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol. 2006, 13: 264-271. 10.1038/nsmb1064.
CAS
PubMed Central
PubMed
Google Scholar
Tam SY, Tsai M, Snouwaert JN, Kalesnikoff J, Scherrer D, Nakae S, Chatterjea D, Bouley DM, Galli SJ: RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nat Immunol. 2004, 5: 844-852. 10.1038/ni1093.
CAS
PubMed
Google Scholar
Tam SY, Kalesnikoff J, Nakae S, Tsai M, Galli SJ: RabGEF1, a negative regulator of Ras signalling, mast cell activation and skin inflammation. Novartis Found Symp. 2005, 271: 115-124. discussion 124–130, 145–151
CAS
PubMed
Google Scholar
Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E, Colicelli J: The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol Cell Biol. 2002, 22: 916-926. 10.1128/MCB.22.3.916-926.2001.
CAS
PubMed Central
PubMed
Google Scholar
Han L, Colicelli J: A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol Cell Biol. 1995, 15: 1318-1323.
CAS
PubMed Central
PubMed
Google Scholar
Hicke L, Schubert HL, Hill CP: Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 2005, 6: 610-621. 10.1038/nrm1701.
CAS
PubMed
Google Scholar
Jura N, Bar-Sagi D: Mapping cellular routes of Ras: a ubiquitin trail. Cell Cycle. 2006, 5: 2744-2747. 10.4161/cc.5.23.3532.
CAS
PubMed
Google Scholar
Ahearn IM, Haigis K, Bar-Sagi D, Philips MR: Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol. 2012, 13: 39-51.
CAS
Google Scholar
Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC: Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal. 2011, 4: ra13-10.1126/scisignal.2001518.
PubMed Central
PubMed
Google Scholar
Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL: Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat Struct Mol Biol. 2013, 20: 46-52.
CAS
PubMed Central
PubMed
Google Scholar
Kim SE, Yoon JY, Jeong WJ, Jeon SH, Park Y, Yoon JB, Park YN, Kim H, Choi KY: H-Ras is degraded by Wnt/beta-catenin signaling via beta-TrCP-mediated polyubiquitylation. J Cell Sci. 2009, 122: 842-848. 10.1242/jcs.040493.
CAS
PubMed
Google Scholar
Laine A, Ronai Z: Ubiquitin chains in the ladder of MAPK signaling. Sci STKE. 2005, 2005: re5-
PubMed
Google Scholar
Warne PH, Viciana PR, Downward J: Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature. 1993, 364: 352-355. 10.1038/364352a0.
CAS
PubMed
Google Scholar
Vojtek AB, Hollenberg SM, Cooper JA: Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993, 74: 205-214. 10.1016/0092-8674(93)90307-C.
CAS
PubMed
Google Scholar
Dent P, Haser W, Haystead TA, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992, 257: 1404-1407. 10.1126/science.1326789.
CAS
PubMed
Google Scholar
Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature. 1992, 358: 417-421. 10.1038/358417a0.
CAS
PubMed
Google Scholar
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W: Raf family kinases: old dogs have learned new tricks. Genes Cancer. 2011, 2: 232-260. 10.1177/1947601911407323.
CAS
PubMed Central
PubMed
Google Scholar
Schulte TW, Blagosklonny MV, Ingui C, Neckers L: Disruption of the Raf-1-Hsp90 molecular complex results in destabilisation of Raf-1 and loss of Raf-1-Ras association. J Biol Chem. 1995, 270: 24585-24588. 10.1074/jbc.270.41.24585.
CAS
PubMed
Google Scholar
Schulte TW, An WG, Neckers LM: Geldanamycin-induced destabilisation of Raf-1 involves the proteasome. Biochem Biophys Res Commun. 1997, 239: 655-659. 10.1006/bbrc.1997.7527.
CAS
PubMed
Google Scholar
Noble C, Mercer K, Hussain J, Carragher L, Giblett S, Hayward R, Patterson C, Marais R, Pritchard CA: CRAF autophosphorylation of serine 621 is required to prevent its proteasome-mediated degradation. Mol Cell. 2008, 31: 862-872. 10.1016/j.molcel.2008.08.026.
CAS
PubMed Central
PubMed
Google Scholar
Hurst JH, Dohlman HG: Dynamic Ubiquitination of the Mitogen-activated Protein Kinase Kinase (MAPKK) Ste7 Determines Mitogen-activated Protein Kinase (MAPK) Specificity. J Biol Chem. 2013, 288: 18660-18671. 10.1074/jbc.M113.475707.
CAS
PubMed Central
PubMed
Google Scholar
Wang Y, Ge Q, Houston D, Thorner J, Errede B, Dohlman HG: Regulation of Ste7 ubiquitination by Ste11 phosphorylation and the Skp1-Cullin-F-box complex. J Biol Chem. 2003, 278: 22284-22289. 10.1074/jbc.M301272200.
CAS
PubMed
Google Scholar
Wang Y, Dohlman HG: Pheromone-dependent ubiquitination of the mitogen-activated protein kinase kinase Ste7. J Biol Chem. 2002, 277: 15766-15772. 10.1074/jbc.M111733200.
CAS
PubMed
Google Scholar
Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T: The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell. 2002, 9: 945-956. 10.1016/S1097-2765(02)00519-1.
CAS
PubMed
Google Scholar
Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ: Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature. 1994, 372: 798-800.
CAS
PubMed
Google Scholar
Johnson GL, Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002, 298: 1911-1912. 10.1126/science.1072682.
CAS
PubMed
Google Scholar
Karandikar M, Xu S, Cobb MH: MEKK1 binds raf-1 and the ERK2 cascade components. J Biol Chem. 2000, 275: 40120-40127. 10.1074/jbc.M005926200.
CAS
PubMed
Google Scholar
Maruyama T, Kadowaki H, Okamoto N, Nagai A, Naguro I, Matsuzawa A, Shibuya H, Tanaka K, Murata S, Takeda K, et al: CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO J. 2010, 29: 2501-2514. 10.1038/emboj.2010.141.
CAS
PubMed Central
PubMed
Google Scholar
Rotin D, Staub O, Haguenauer-Tsapis R: Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol. 2000, 176: 1-17.
CAS
PubMed
Google Scholar
Fang D, Elly C, Gao B, Fang N, Altman Y, Joazeiro C, Hunter T, Copeland N, Jenkins N, Liu YC: Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol. 2002, 3: 281-287. 10.1038/ni763.
CAS
PubMed
Google Scholar
Parravicini V, Field AC, Tomlinson PD, Basson MA, Zamoyska R: Itch−/− alphabeta and gammadelta T cells independently contribute to autoimmunity in Itchy mice. Blood. 2008, 111: 4273-7282. 10.1182/blood-2007-10-115667.
CAS
PubMed Central
PubMed
Google Scholar
Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, Rider NL, Chikwava KR, Cummings OW, Morton DH, Puffenberger EG: Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet. 2010, 86: 447-453. 10.1016/j.ajhg.2010.01.028.
CAS
PubMed Central
PubMed
Google Scholar
Scialpi F, Malatesta M, Peschiaroli A, Rossi M, Melino G, Bernassola F: Itch self-polyubiquitylation occurs through lysine-63 linkages. Biochem Pharmacol. 2008, 76: 1515-1521. 10.1016/j.bcp.2008.07.028.
CAS
PubMed
Google Scholar
Gallagher E, Gao M, Liu YC, Karin M: Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci USA. 2006, 103: 1717-1722. 10.1073/pnas.0510664103.
CAS
PubMed Central
PubMed
Google Scholar
Azakir BA, Angers A: Reciprocal regulation of the ubiquitin ligase Itch and the epidermal growth factor receptor signaling. Cell Signal. 2009, 21: 1326-1336. 10.1016/j.cellsig.2009.03.020.
CAS
PubMed
Google Scholar
Azakir BA, Desrochers G, Angers A: The ubiquitin ligase Itch mediates the antiapoptotic activity of epidermal growth factor by promoting the ubiquitylation and degradation of the truncated C-terminal portion of Bid. FEBS J. 2010, 277: 1319-1330. 10.1111/j.1742-4658.2010.07562.x.
CAS
PubMed
Google Scholar
Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ: tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000, 14: 2060-2071.
CAS
PubMed Central
PubMed
Google Scholar
Breitschopf K, Zeiher AM, Dimmeler S: Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem. 2000, 275: 21648-21652. 10.1074/jbc.M001083200.
CAS
PubMed
Google Scholar
O’Neill E, Kolch W: Taming the Hippo: Raf-1 controls apoptosis by suppressing MST2/Hippo. Cell Cycle. 2005, 4: 365-367. 10.4161/cc.4.3.1531.
PubMed
Google Scholar
O'Neill E, Rushworth L, Baccarini M, Kolch W: Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science. 2004, 306: 2267-2270. 10.1126/science.1103233.
PubMed
Google Scholar
Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D, Baccarini M, Vass JK, Kolch W, O'Neill E: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007, 27: 962-975. 10.1016/j.molcel.2007.08.008.
CAS
PubMed Central
PubMed
Google Scholar
Ho KC, Zhou Z, She YM, Chun A, Cyr TD, Yang X: Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability [corrected]. Proc Natl Acad Sci USA. 2011, 108: 4870-4875. 10.1073/pnas.1101273108.
CAS
PubMed Central
PubMed
Google Scholar
Levy D, Adamovich Y, Reuven N, Shaul Y: The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 2007, 14: 743-751. 10.1038/sj.cdd.4402063.
CAS
PubMed
Google Scholar
Yang C, Zhou W, Jeon MS, Demydenko D, Harada Y, Zhou H, Liu YC: Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. Mol Cell. 2006, 21: 135-141. 10.1016/j.molcel.2005.11.014.
PubMed
Google Scholar
Kofahl B, Klipp E: Modelling the dynamics of the yeast pheromone pathway. Yeast. 2004, 21: 831-850. 10.1002/yea.1122.
CAS
PubMed
Google Scholar
Thomson TM, Benjamin KR, Bush A, Love T, Pincus D, Resnekov O, Yu RC, Gordon A, Colman-Lerner A, Endy D, Brent R: Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proc Natl Acad Sci USA. 2011, 108: 20265-20270. 10.1073/pnas.1004042108.
CAS
PubMed Central
PubMed
Google Scholar
Schaber J, Kofahl B, Kowald A, Klipp E: A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker’s yeast. FEBS J. 2006, 273: 3520-3533. 10.1111/j.1742-4658.2006.05359.x.
CAS
PubMed
Google Scholar
Paliwal S, Iglesias PA, Campbell K, Hilioti Z, Groisman A, Levchenko A: MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature. 2007, 446: 46-51. 10.1038/nature05561.
CAS
PubMed
Google Scholar
Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004, 101: 9085-9090. 10.1073/pnas.0402770101.
CAS
PubMed Central
PubMed
Google Scholar
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004, 23: 2116-2125. 10.1038/sj.emboj.7600217.
CAS
PubMed Central
PubMed
Google Scholar
Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C: Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 2002, 21: 4037-4048. 10.1093/emboj/cdf406.
CAS
PubMed Central
PubMed
Google Scholar
Ju D, Xu H, Wang X, Xie Y: Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. Biochim Biophys Acta. 2007, 1773: 1672-1680. 10.1016/j.bbamcr.2007.04.012.
CAS
PubMed
Google Scholar
Hu H, Goltsov A, Bown JL, Sims AH, Langdon SP, Harrison DJ, Faratian D: Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer. Cell Signal. 2013, 25: 26-32. 10.1016/j.cellsig.2012.09.014.
CAS
PubMed
Google Scholar
Kholodenko BN, Hoek JB, Westerhoff HV: Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 2000, 10: 173-178. 10.1016/S0962-8924(00)01741-4.
CAS
PubMed
Google Scholar
Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH, Meyer T, Do Heo W: Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell. 2012, 47: 281-290. 10.1016/j.molcel.2012.05.007.
CAS
PubMed Central
PubMed
Google Scholar
Choudhary C, Mann M: Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010, 11: 427-439. 10.1038/nrm2900.
CAS
PubMed
Google Scholar
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011, 44: 325-340. 10.1016/j.molcel.2011.08.025.
CAS
PubMed Central
PubMed
Google Scholar
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, et al: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010, 3: ra3-10.1126/scisignal.2000475.
PubMed
Google Scholar
Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009, 8: 1751-1764. 10.1074/mcp.M800588-MCP200.
CAS
PubMed Central
PubMed
Google Scholar
Mirzaei H, Rogers RS, Grimes B, Eng J, Aderem A, Aebersold R: Characterizing the connectivity of poly-ubiquitin chains by selected reaction monitoring mass spectrometry. Mol Biosyst. 2010, 6: 2004-2014. 10.1039/c005242f.
CAS
PubMed Central
PubMed
Google Scholar
Mann M: Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006, 7: 952-958. 10.1038/nrm2067.
CAS
PubMed
Google Scholar
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C: A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics. 2011, 10: M111-M013284.
Google Scholar
Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villen J: Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods. 2013, 10: 676-682. 10.1038/nmeth.2519.
CAS
PubMed
Google Scholar