Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342(6165):1432–3.
Article
CAS
PubMed
Google Scholar
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.
Article
CAS
PubMed
Google Scholar
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: a new era for cancer treatment (review). Oncol Rep. 2019;42(6):2183–95.
CAS
PubMed
Google Scholar
Zhang Q, Ping J, Huang Z, Zhang X, Zhou J, Wang G, Liu S, Ma J. CAR-T cell therapy in cancer: tribulations and road ahead. J Immunol Res. 2020;2020:1924379.
Article
PubMed
PubMed Central
Google Scholar
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86.
Article
PubMed
Google Scholar
Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.
Article
CAS
PubMed
Google Scholar
Remon J, Passiglia F, Ahn MJ, Barlesi F, Forde PM, Garon EB, Gettinger S, Goldberg SB, Herbst RS, Horn L, et al. Immune checkpoint inhibitors in thoracic malignancies: review of the existing evidence by an IASLC expert panel and recommendations. J Thorac Oncol. 2020;15(6):914–47.
Article
CAS
PubMed
Google Scholar
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.
Article
CAS
PubMed
Google Scholar
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Can Res. 2019;79(18):4557–66.
Article
CAS
Google Scholar
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discovery. 2019;18(3):197–218.
Article
CAS
PubMed
Google Scholar
Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6(7):605–18.
Article
CAS
PubMed
Google Scholar
Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondoh N, Mizuno-Kamiya M, Takayama E, Kawati H, Umemura N, Yamazaki Y, Mitsudo K, Tohnai I. Perspectives of immune suppression in the tumor microenvironment promoting oral malignancy. Open Dent J. 2018;12:455–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, Chen L, Zhong N, Chen X. Antitumor effect of malaria parasite infection in a murine lewis lung cancer model through induction of innate and adaptive immunity. PLOS ONE. 2011;6(9):e24407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan J, Ma M, Qin L, Kang Z, Adah D, Tao Z, Li X, Dai L, Zhao S, Chen X, et al. Plasmodium infection inhibits triple negative 4T1 breast cancer potentially through induction of CD8(+) T cell-mediated antitumor responses in mice. Biomed Pharmacother. 2021;138:111406.
Article
CAS
PubMed
Google Scholar
Adah D, Yang Y, Liu Q, Gadidasu K, Tao Z, Yu S, Dai L, Li X, Zhao S, Qin L, et al. Plasmodium infection inhibits the expansion and activation of MDSCs and Tregs in the tumor microenvironment in a murine Lewis lung cancer model. Cell Commun Signal. 2019;17(1):32.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, Chen X. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 2020;18(1):157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Liu Q, Lu J, Adah D, Yu S, Zhao S, Yao Y, Qin L, Qin L, Chen X. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model. Oncogenesis. 2017;6(6):e351–e351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin L, Zhong M, Adah D, Qin L, Chen X, Ma C, Fu Q, Zhu X, Li Z, Wang N, et al. A novel tumour suppressor lncRNA F630028O10Rik inhibits lung cancer angiogenesis by regulating miR-223-3p. J Cell Mol Med. 2020;24(6):3549–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Yang Y, Tan X, Tao Z, Adah D, Yu S, Lu J, Zhao S, Qin L, Qin L, et al. Plasmodium parasite as an effective hepatocellular carcinoma antigen glypican-3 delivery vector. Oncotarget. 2017;8(15):24785–96.
Article
PubMed
PubMed Central
Google Scholar
Qin L, Chen C, Chen L, Xue R, Ou-Yang M, Zhou C, Zhao S, He Z, Xia Y, He J, et al. Worldwide malaria incidence and cancer mortality are inversely associated. Infect Agents Cancer. 2017;12(1):14.
Article
Google Scholar
Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(10):982–91.
Article
PubMed
PubMed Central
Google Scholar
Khan A, Godil FJ, Naseem R. Chloroquine-resistant Plasmodium vivax in Pakistan: an emerging threat. Lancet Glob Health. 2016;4(11):790.
Article
Google Scholar
Musset L, Heugas C, Naldjinan R, Blanchet D, Houze P, Abboud P, Volney B, Walter G, Lazrek Y, Epelboin L, et al. Emergence of Plasmodium vivax resistance to chloroquine in French Guiana. Antimicrob Agents Chemother. 2019;63(11):e02116–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Liu Q-Y, Luan R-S, Liu X-B, Zhou G-C, Jiang J-Y, Li H-S, Li Z-F. Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health. 2012;12(1):544.
Article
PubMed
PubMed Central
Google Scholar
Yang C, Feng X, Liu N, Li M, Qiu X. Target-site mutations (AChE-G119S and kdr) in Guangxi Anopheles sinensis populations along the China-Vietnam border. Parasit Vectors. 2019;12(1):77.
Article
PubMed
PubMed Central
Google Scholar
Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, Manguin S. Anopheles vectors in mainland china while approaching malaria elimination. Trends Parasitol. 2017;33(11):889–900.
Article
PubMed
Google Scholar
Chernin E. The malariatherapy of neurosyphilis. J Parasitol. 1984;70(5):611–7.
Article
CAS
PubMed
Google Scholar
Tsay CJ. Julius Wagner–Jauregg and the legacy of malarial therapy for the treatment of general paresis of the insane. Yale J Biol Med. 2013;86(2):245–54.
PubMed
PubMed Central
Google Scholar
Daey Ouwens IM, Lens CE, Fiolet ATL, Ott A, Koehler PJ, Kager PA, Verhoeven WMA. Malaria fever therapy for general paralysis of the insane: a historical cohort study. Eur Neurol. 2017;78(1–2):56–62.
Article
PubMed
Google Scholar
Nacher M, Silachamroon U, Singhasivanon P, Wilairatana P, Phumratanaprapin W, Fontanet A, Looareesuwan S. Comparison of artesunate and chloroquine activities against Plasmodium vivax gametocytes. Antimicrob Agents Chemother. 2004;48(7):2751–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chotivanich K, Sattabongkot J, Udomsangpetch R, Looareesuwan S, Day NPJ, Coleman RE, White NJ. Transmission-blocking activities of quinine, primaquine, and artesunate. Antimicrob Agents Chemother. 2006;50(6):1927–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res. 2016;22(10):2329–34.
Article
CAS
PubMed
Google Scholar
Bai J, Gao Z, Li X, Dong L, Han W, Nie J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PDL1 blockade. Oncotarget. 2017;8(66):110693–707.
Article
PubMed
PubMed Central
Google Scholar
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS, et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell. 2020;38(4):500-515.e503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.
Article
CAS
PubMed
Google Scholar
Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–60.
Article
CAS
PubMed
Google Scholar
O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–67.
Article
PubMed
CAS
Google Scholar
Holmström MO, Cordua S, Skov V, Kjær L, Pallisgaard N, Ellervik C, Hasselbalch HC, Andersen MH. Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunol Immunother. 2020;69(2):315–24.
Article
PubMed
CAS
Google Scholar
Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 2004;4(3):169–80.
Article
CAS
PubMed
Google Scholar
Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725–32.
Article
CAS
PubMed
Google Scholar
Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. Innate sensing of malaria parasites. Nat Rev Immunol. 2014;14(11):744–57.
Article
CAS
PubMed
Google Scholar
Paules C, Subbarao K. Influenza. The Lancet. 2017;390(10095):697–708.
Article
Google Scholar
Gu J, Su Q-Q, Zuo T-T, Chen Y-B. Adenovirus diseases: a systematic review and meta-analysis of 228 case reports. Infection. 2020;49:1–13.
Article
PubMed
CAS
Google Scholar
Breman JG, Henderson DA. Diagnosis and management of smallpox. N Engl J Med. 2002;346(17):1300–8.
Article
PubMed
Google Scholar
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the natural history of plague. Clin Microbiol Rev. 2020;34(1):e00044-19.
Article
PubMed
PubMed Central
Google Scholar
Bandyopadhyay AS, Orenstein WA. Evolution of inactivated poliovirus vaccine use for the endgame and beyond. J Infect Dis. 2020;221(6):861–3.
PubMed
Google Scholar
Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Molecular Therapy - Oncolytics. 2019;15:234–47.
Article
PubMed
PubMed Central
Google Scholar
Martikainen M, Essand M. Virus-based immunotherapy of glioblastoma. Cancers. 2019;11(2):186. https://doi.org/10.3390/cancers11020186.
Article
CAS
PubMed Central
Google Scholar
Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 2020;16(10):2389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duong MT-Q, Qin Y, You S-H, Min J-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1–15.
Article
CAS
PubMed
Google Scholar
Flick K, Chen Q. var genes, PfEMP1 and the human host. Mol Biochem Parasitol. 2004;134(1):3–9.
Article
CAS
PubMed
Google Scholar
Kyes SA, Kraemer SM, Smith JD. Antigenic variation in Plasmodium falciparum: Gene organization and regulation of the var multigene family. Eukaryot Cell. 2007;6(9):1511–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chookajorn T, Ponsuwanna P, Cui L. Mutually exclusive var gene expression in the malaria parasite: multiple layers of regulation. Trends Parasitol. 2008;24(10):455–61.
Article
CAS
PubMed
Google Scholar
Horne-Debets Joshua M, Faleiro R, Karunarathne Deshapriya S, Liu Xue Q, Lineburg Katie E, Poh Chek M, Grotenbreg Gijsbert M, Hill Geoffrey R, MacDonald Kelli PA, Good Michael F, et al. PD-1 Dependent exhaustion of CD8<sup>+</sup> T cells drives chronic malaria. Cell Rep. 2013;5(5):1204–13.
Article
CAS
PubMed
Google Scholar
Ashley EA, White NJ. The duration of Plasmodium falciparum infections. Malar J. 2014;13(1):500.
Article
PubMed
PubMed Central
Google Scholar
Monteiro W, Brito-Sousa JD, Elizalde-Torrent A, Bôtto-Menezes C, Melo GC, Fernandez-Becerra C, Lacerda M, del Portillo HA. Cryptic Plasmodium chronic infections: was Maurizio Ascoli right? Malar J. 2020;19(1):440.
Article
PubMed
PubMed Central
Google Scholar
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg Robert A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Article
CAS
PubMed
Google Scholar
Prendergast GC. Immunological thought in the mainstream of cancer research: past divorce, recent remarriage and elective affinities of the future. OncoImmunology. 2012;1(6):793–7.
Article
PubMed
PubMed Central
Google Scholar
Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008;9(8):808.
Article
PubMed
Google Scholar
Langley RR, Fidler IJ. The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhtar M, Haider A, Rashid S, Al-Nabet ADMH. Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol. 2019;26(1):69–74.
Article
CAS
PubMed
Google Scholar
Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15(1):80–8.
Article
CAS
PubMed
Google Scholar
Fanini F, Fabbri M. Cancer-derived exosomic microRNAs shape the immune system within the tumor microenvironment: State of the art. Semin Cell Dev Biol. 2017;67:23–8.
Article
CAS
PubMed
Google Scholar
Othman N, Jamal R, Abu N. Cancer-derived exosomes as effectors of key inflammation-related players. Front Immunol. 2019;10:2103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knox MC, Ni J, Bece A, Bucci J, Chin Y, Graham PH, Li Y. A Clinician’s guide to cancer-derived exosomes: immune interactions and therapeutic implications. Front Immunol. 2020;11:1612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Y, Chen X, Tao Z, Ma M, Adah D, Li X, Dai L, Ding W, Fanuel S, Zhao S, et al. Plasmodium infection prevents recurrence and metastasis of hepatocellular carcinoma possibly via inhibition of the epithelial-mesenchymal transition. Mol Med Rep. 2021;23(6):1–10.
Article
CAS
Google Scholar