Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol [Internet]. 2006;66:606–30 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/neu.20242.
Maden M. Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci [Internet]. 2002;3:843–53 Available from: http://www.nature.com/doifinder/10.1038/nrn963.
Article
CAS
Google Scholar
Pavlovic D, Markisic M, Pavlovic A, Lackovic M, Bozic M. Vitamin a and the nervous system. Arch Biol Sci [Internet]. 2014;66:1585–90 Available from: http://www.doiserbia.nb.rs/Article.aspx?ID=0354-46641404585P.
Article
Google Scholar
Chambon P. A decade receptors biology of retinoic acid. Faseb. 1996;10:940–54.
Article
CAS
Google Scholar
Mey J, Mccaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neurosci [Internet] 2004;10:409–421. Available from: http://journals.sagepub.com/doi/10.1177/1073858404263520
Simoncini T, Genazzani AR. Non-genomic actions of sex steroid hormones. Eur J Endocrinol. 2003;148:281–92.
Article
CAS
Google Scholar
Valverde MA, Parker MG. Classical and novel steroid actions: a unified but complex view. Trends Biochem Sci. 2002;27:172–3.
Article
CAS
Google Scholar
Aggarwal S, Kim S-W, Cheon K, Tabassam FH, Yoon J-H, Koo JS. Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol Biol Cell [Internet]. 2006;17:566–75 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16280361.
Article
CAS
Google Scholar
Waetzig V, Haeusgen W, Andres C, Frehse S, Reinecke K, Bruckmueller H, et al. Retinoic acid-induced survival effects in SH-SY5Y neuroblastoma cells. J Cell Biochem [Internet]. 2019;120:5974–5986. Available from: http://doi.wiley.com/10.1002/jcb.27885
Giannì M, Bauer A, Garattini E, Chambon P, Rochette-Egly C. Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RARγ degradation and transactivation. EMBO J. 2002;21:3760–9.
Article
Google Scholar
Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de Thé H, et al. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters. EMBO J [Internet]. 2009;28:34–47 Available from: http://emboj.embopress.org/cgi/doi/10.1038/emboj.2008.256.
Article
CAS
Google Scholar
Ochoa WF, Torrecillas A, Fita I, Verdaguer N, Corbalán-García S, Gomez-Fernandez JC. Retinoic acid binds to the C2-domain of protein kinase Cα. Biochemistry. 2003;42:8774–9.
Article
CAS
Google Scholar
Cañón E, Cosgaya JM, Scsucova S, Aranda A. Rapid effects of retinoic acid on CREB and ERK phosphorylation in neuronal cells. Mol Biol Cell [Internet]. 2004;15:5583–92 Available from: http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E04-05-0439.
Article
Google Scholar
Pan J, Kao Y-L, Joshi S, Jeetendran S, Dipette D, Singh US. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem [Internet]. 2005;93:571–83 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15836616.
Article
CAS
Google Scholar
Quinn SD, De Boni U. Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell Dev Biol [Internet]. 1991;27:55–62 Available from: http://www.ncbi.nlm.nih.gov/pubmed/2013554.
Article
CAS
Google Scholar
Plum LA, Parada LF, Tsoulfas P, Clagett-Dame M. Retinoic acid combined with neurotrophin-3 enhances the survival and neurite outgrowth of embryonic sympathetic neurons. Exp Biol Med [Internet]. 2001;226:766–75 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11520943.
Article
CAS
Google Scholar
Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron [Internet]. 1993;11:321–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8394722
Maden M, Keen G, Jones GE. Retinoic acid as a chemotactic molecule in neuronal development. Int J Dev Neurosci [Internet]. 1998;16:317–22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9829167.
Article
CAS
Google Scholar
Hunter K, Maden M, Summerbell D, Eriksson U, Holder N. Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc Natl Acad Sci U S A [Internet]. 1991;88:3666–70 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1850835.
Article
CAS
Google Scholar
Sidell N, Altman A, Haussler MR, Seeger RC. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res [Internet]. 1983;148:21–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6313408.
Article
CAS
Google Scholar
Prince DJ, Carlone RL. Retinoic acid involvement in the reciprocal neurotrophic interactions between newt spinal cord and limb blastemas in vitro. Dev Brain Res. 2003;140:67–73.
Article
CAS
Google Scholar
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. Med Chem Comm [Internet]. Royal Society of Chemistry; 2017;8:578–92. Available from: http://xlink.rsc.org/?DOI=C6MD00680A
Clemens G, Flower KR, Gardner P, Henderson AP, Knowles JP, Marder TB, et al. Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity. Mol Biosyst [Internet]. 2013;9:3124 Available from: http://xlink.rsc.org/?DOI=c3mb70273a.
Article
CAS
Google Scholar
Christie VB, Barnard JH, Batsanov AS, Bridgens CE, Cartmell EB, Collings JC, et al. Synthesis and evaluation of synthetic retinoid derivatives as inducers of stem cell differentiation. Org Biomol Chem [Internet]. 2008;6:3497 Available from: http://xlink.rsc.org/?DOI=b808574a.
Article
CAS
Google Scholar
Zhou G-L, Tams DM, Marder TB, Valentine R, Whiting A, Przyborski SA. Synthesis and applications of 2,4-disubstituted thiazole derivatives as small molecule modulators of cellular development. Org Biomol Chem [Internet]. 2013;11:2323 Available from: http://xlink.rsc.org/?DOI=c3ob00005b.
Article
CAS
Google Scholar
Haffez H, Chisholm DR, Tatum NJ, Valentine R, Redfern C, Pohl E, et al. Probing biological activity through structural modelling of ligand-receptor interactions of 2,4-disubstituted thiazole retinoids. Bioorg Med Chem [Internet]. Elsevier Science; 2018;26:1560–72. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933457/
Gluyas JBG, Burschka C, Dörrich S, Vallet J, Gronemeyer H, Tacke R. Disila-analogues of the synthetic retinoids EC23 and TTNN: synthesis, structure and biological evaluation. Org Biomol Chem [Internet]. 2012;10:6914 Available from: http://xlink.rsc.org/?DOI=c2ob25989c.
Article
CAS
Google Scholar
Chisholm DR, Tomlinson CWE, Zhou G-L, Holden C, Affleck V, Lamb R, et al. Fluorescent retinoic acid analogues as probes for biochemical and intracellular characterization of retinoid signaling pathways. ACS Chem Biol [Internet] 2019;acschembio.8b00916. Available from: http://pubs.acs.org/doi/10.1021/acschembio.8b00916.
Wagner M, Han B, Jessell TM. Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development [Internet]. 1992;116:55–66 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1483395.
CAS
Google Scholar
de The H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H, Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature [Internet]. 1990;343:177–80. Available from: https://www.ncbi.nlm.nih.gov/pubmed/2153268.
McCaffery P, Dräger UC. A sensitive bioassay for enzymes that synthesize retinoic acid. Brain Res Protocol. 1997;1:232–6.
Article
CAS
Google Scholar
Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res [Internet]. 1973;33:2643–52 Available from: http://www.ncbi.nlm.nih.gov/pubmed/4748425.
CAS
PubMed
Google Scholar
Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res [Internet]. 1978;38:3751–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29704.
CAS
PubMed
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Article
CAS
Google Scholar
Team RDC. R: a language and environment for statistical computing [internet]. Vienna, Austria : the R Foundation for statistical computing; 2016. Available from: http://www.r-project.org/.
Google Scholar
Ray WJ, Bain G, Yao M, Gottlieb DI. CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem [Internet]. 1997;272:18702–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9228041.
Article
CAS
Google Scholar
de The H, Marchio A, Tiollais P, Dejean A. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J [Internet]. 1989;8:429–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2542014
Loudig O, Babichuk C, White J, Abu-Abed S, Mueller C, Petkovich M. Cytochrome P450RAI(CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol Endocrinol [Internet]. 2000;14:1483–97 Available from: https://academic.oup.com/mend/article-lookup/doi/10.1210/mend.14.9.0518.
Article
CAS
Google Scholar
Alique M, Herrero JF, Lucio-Cazana FJ. All-trans retinoic acid induces COX-2 and prostaglandin E2 synthesis in SH-SY5Y human neuroblastoma cells: involvement of retinoic acid receptors and extracellular-regulated kinase 1/2. J Neuroinflammation. 2007;4:1–9.
Article
Google Scholar
Cheung Y-T, Lau WK-W, Yu M-S, Lai CS-W, Yeung S-C, So K-F, et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology [Internet]. 2009;30:127–35 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161813X08002003.
Article
CAS
Google Scholar
Qiao J, Paul P, Lee S, Qiao L, Josifi E, Tiao JR, et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochem Biophys Res Commun [Internet]. 2012;424:421–6 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X12012272.
Article
CAS
Google Scholar
Li Z, Theus MH, Wei L. Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ [Internet]. 2006;48:513–23 Available from: http://doi.wiley.com/10.1111/j.1440-169X.2006.00889.x.
Article
CAS
Google Scholar
Singh US, Pan J, Kao Y-L, Joshi S, Young KL, Baker KM. Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Biol Chem [Internet]. 2003;278:391–9 Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M206361200.
Article
CAS
Google Scholar
Nicolini G, Miloso M, Zoia C, Di Silvestro A, Cavaletti G, Tredici G. Retinoic acid differentiated SH-SY5Y human neuroblastoma cells: an in vitro model to assess drug neurotoxicity. Anticancer Res [Internet]. 1998;18:2477–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9703895.
CAS
Google Scholar
Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem [Internet]. 2002;75:991–1003 Available from: http://doi.wiley.com/10.1046/j.1471-4159.2000.0750991.x.
Article
Google Scholar
Lovat PE, Oliverio S, Ranalli M, Corazzari M, Rodolfo C, Bernassola F, et al. GADD153 and 12-lipoxygenase mediate fenretinide-induced apoptosis of neuroblastoma. Cancer Res [Internet]. 2002;62:5158–67 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12234979.
CAS
Google Scholar
Hewson QDC, Lovat PE, Corazzari M, Catterall JB, Redfern CPF. The NF-κB pathway mediates fenretinide-induced apoptosis in SH-SY5Y neuroblastoma cells. Apoptosis [Internet]. 2005;10:493–8 Available from: http://link.springer.com/10.1007/s10495-005-1878-z.
Article
CAS
Google Scholar
Lovat PE, Ranalli M, Annichiarrico-Petruzzelli M, Bernassola F, Piacentini M, Malcolm AJ, et al. Effector mechanisms of Fenretinide-induced apoptosis in neuroblastoma. Exp Cell Res [Internet]. 2000;260:50–60 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0014482700949887.
Article
CAS
Google Scholar
Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature [Internet]. 1987;330:444–50 Available from: http://www.nature.com/doifinder/10.1038/330444a0.
Article
CAS
Google Scholar
Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov [Internet]. 2007;6:793–810 Available from: http://www.nature.com/doifinder/10.1038/nrd2397.
Article
CAS
Google Scholar
Ordóñez-Morán P, Muñoz A. Nuclear receptors: genomic and non-genomic effects converge. Cell Cycle. 2009;8:1675–80.
Article
Google Scholar
Masiá S, Alvarez S, de Lera AR, Barettino D. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol. 2007;21:2391–402.
Article
Google Scholar
Poon MM, Chen L. Retinoic acid-gated sequence-specific translational control by RAR. Proc Natl Acad Sci [Internet]. 2008;105:20303–20308. Available from: https://www.pnas.org/content/105/51/20303
Loudig O, Maclean GA, Dore NL, Luu L, Petkovich M. Transcriptional co-operativity between distant retinoic acid response elements in regulation of Cyp26A1 inducibility. Biochem J [Internet]. 2005;392:241–8 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317683/.
Davies AM. Neurotrophins: neurotrophic modulation of neurite growth. Curr Biol. 2000;10:198–200.
Article
Google Scholar
Markus A, Patel TD, Snider WD. Neurotrophic factors and axonal growth. Curr Opin Neurobiol. 2002;12:523–31.
Article
CAS
Google Scholar
Sparatore B, Patrone M, Passalacqua M, Pedrazzi M, Pontremoli S, Melloni E. Human neuroblastoma cell differentiation requires protein kinase C-theta. Biochem Biophys Res Commun [Internet]. 2000;279:589–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11118330.
Article
CAS
Google Scholar
Tucholski J, Lesort M, Johnson GV. Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells. Neuroscience. 2001;102:481–91.
Article
CAS
Google Scholar
Nakamura Y, Ozaki T, Ichimiya S, Nakagawara A, Sakiyama S. Ectopic expression of DAN enhances the retinoic acid-induced neuronal differentiation in human neuroblastoma cell lines. Biochem Biophys Res Commun [Internet]. 1998;243:722–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9500977.
Article
CAS
Google Scholar
Merrill RA, See AWM, Wertheim ML, Clagett-Dame M. Crk-associated substrate (Cas) family member, NEDD9, is regulated in human neuroblastoma cells and in the embryonic hindbrain by all-trans retinoic acid. Dev Dyn. 2004;231:564–75.
Article
CAS
Google Scholar
Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M. A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci U S A [Internet]. 2002;99:3422–7 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=122539&tool=pmcentrez&rendertype=abstract.
Miloso M, Villa D, Crimi M, Galbiati S, Donzelli E, Nicolini G, et al. Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res [Internet]. 2004;75:241–52 Available from: http://doi.wiley.com/10.1002/jnr.10848.
Article
CAS
Google Scholar
Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem. 1999;73:1409–21.
Article
CAS
Google Scholar
Lee JH, Kim KT. Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase a pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells. J Neurochem. 2004;91:634–47.
Article
CAS
Google Scholar
Eom D-S, Choi W-S, Ji S, Cho JW, Oh YJ. Activation of c-Jun N-terminal kinase is required for neurite outgrowth of dopaminergic neuronal cells. Neuroreport [Internet]. 2005;16:823–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15891578.
Article
CAS
Google Scholar
Yu Y-M, Han P-L, Lee J-K. JNK pathway is required for retinoic acid-induced neurite outgrowth of human neuroblastoma, SH-SY5Y. Neuroreport [Internet]. 2003;14:941–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12802179.
Article
CAS
Google Scholar
López-Carballo G, Moreno L, Masiá S, Pérez P, Barettino D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem. 2002;277:25297–304.
Article
Google Scholar
Song H, Poo M. The cell biology of neuronal navigation. Nat Cell Biol. 2001;3:81–8.
Article
Google Scholar
Piskunov A. Rochette-Egly C. a retinoic acid receptor RARα pool present in membrane lipid rafts forms complexes with G protein αQ to activate p38MAPK. Oncogene [internet]. Nat Publ Group. 2012;31:3333–45 Available from: https://doi.org/10.1038/onc.2011.499.
CAS
Google Scholar
Masiá S, Alvarez S, de Lera AR, Barettino D. Nongenomic actions of retinoic acid on Phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol [Internet]. 2007;21:2391–402 Available from: https://academic.oup.com/mend/article-lookup/doi/10.1210/me.2007-0062.
Dey N, De PK, Wang M, Zhang H, Dobrota EA, Robertson KA, et al. CSK Controls Retinoic Acid Receptor (RAR) Signaling: a RAR-c-SRC Signaling Axis Is Required for Neuritogenic Differentiation. Mol Cell Biol [Internet]. 2007;27:4179–97. Available from: http://mcb.asm.org/cgi/doi/10.1128/MCB.01352-06
Persaud SD, Lin Y-W, Wu C-Y, Kagechika H, Wei L-N. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal [Internet]. 2013;25:19–25 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508141/.
Radominska-Pandya A, Chen G, Czernik PJ, Little JM, Samokyszyn VM, Carter CA, et al. Direct interaction of all-trans-retinoic acid with protein kinase C (PKC): implications for PKC signaling and cancer therapy. J Biol Chem. 2000;275:22324–30.
Article
CAS
Google Scholar
Liu J, Zhou R, He Q, Li W-I, Zhang T, Niu B, et al. Calmodulin kinase II activation of mitogen-activated protein kinase in PC12 cell following all-trans retinoic acid treatment. Neurotoxicology [Internet]. 2009;30:599–604 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161813X09000771.
Article
CAS
Google Scholar