Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449–58.
Article
CAS
PubMed
Google Scholar
Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res. 2015;17:63.
Article
PubMed
PubMed Central
Google Scholar
Djulbegovic, M., Neuberger, M. M. & Dahm, P. Prostate-cancer mortality after PSA screening. N. Engl. J. Med. 366, 2228-2229-2231 (2012).
Heijnsdijk EAM, et al. Quality-of-life effects of prostate-specific antigen screening. N Engl J Med. 2012;367:595–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.
Article
PubMed
Google Scholar
Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14:623–31.
Article
PubMed
Google Scholar
Pantel, K. & Speicher, M. R. The biology of circulating tumor cells. Oncogene (2015). doi:10.1038/onc.2015.192
Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.
Article
CAS
PubMed
Google Scholar
Gold, B., Cankovic, M., Furtado, L. V., Meier, F. & Gocke, C. D. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility?: A Report of the Association for Molecular Pathology. J Mol Diagn (2015). doi:10.1016/j.jmoldx.2015.02.001
Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 8, 346ra92 (2016).
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.
Article
CAS
PubMed
Google Scholar
van der Pol E, Böing AN, Gool EL, Nieuwland R. Recent developments on the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016;14:48–56. doi:10.1111/jth.13190
Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2.
Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.
Article
PubMed
Google Scholar
Minciacchi VR, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6:11327–41.
Article
PubMed
PubMed Central
Google Scholar
Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L. & Mathivanan, S. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. (2015). doi:10.1016/j.jmb.2015.09.019
Kim D-K, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31:933–9.
Article
PubMed
Google Scholar
Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.
Article
CAS
PubMed
Google Scholar
Greening, D. W., Xu, R., Ji, H., Tauro, B. J. & Simpson, R. J. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol. 1295, 179–209 (2015).
Valencia, K. & Lecanda, F. Microvesicles: Isolation, Characterization for In Vitro and In Vivo Procedures. Methods Mol. Biol. 1372, 181–192 (2016).
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balaj L, Lessard R, Dai L, Cho Y-J, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.
Article
PubMed
PubMed Central
Google Scholar
Thakur BK, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.
Article
CAS
PubMed
Google Scholar
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009;69:5601–9.
Article
PubMed
PubMed Central
Google Scholar
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.
Article
CAS
PubMed
Google Scholar
McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol. 2015;12:711–7.
Article
CAS
PubMed
Google Scholar
Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23–33.
Article
CAS
PubMed
Google Scholar
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33.
Article
CAS
PubMed
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.
Article
CAS
PubMed
Google Scholar
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.
CAS
PubMed
Google Scholar
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009;32:199–206.
Article
PubMed
Google Scholar
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312.
Article
PubMed
Google Scholar
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.
Article
PubMed
Google Scholar
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Chen J, Sen T. MicroRNAs as Biomarkers and Diagnostics. J Cell Physiol. 2016;231:25–30.
Article
CAS
PubMed
Google Scholar
Pasquinelli AE. MicroRNAs: deviants no longer. Trends Genet. 2002;18:171–3.
Article
CAS
PubMed
Google Scholar
Panse VG, Johnson AW. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci. 2010;35:260–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol. 2015;36:41–53.
Article
CAS
PubMed
Google Scholar
Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.
Article
PubMed
PubMed Central
Google Scholar
Mei Y-P, Liao J-P, Shen J, Yu L, Liu B-L, Liu L, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31:2794–804.
Article
CAS
PubMed
Google Scholar
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.
Article
CAS
PubMed
Google Scholar
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.
Article
CAS
PubMed
Google Scholar
Shen X, Qi P, Du X. Long non-coding RNAs in cancer invasion and metastasis. Mod Pathol. 2015;28:4–13.
Article
CAS
PubMed
Google Scholar
Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33:3185–93.
CAS
PubMed
Google Scholar
Crea F, Watahiki A, Quagliata L, Xue H, Pikor L, Parolia A, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74.
Article
PubMed
PubMed Central
Google Scholar
Lim, R. S. M. & Kai, T. A piece of the pi (e): The diverse roles of animal piRNAs and their PIWI partners. Semin. Cell Dev. Biol. (2015). doi:10.1016/j.semcdb.2015.10.025
Yadav RP, Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol. 2014;382:498–508.
Article
CAS
PubMed
Google Scholar
Moyano M, Stefani G. piRNA involvement in genome stability and human cancer. J Hematol Oncol. 2015;8:38.
Article
PubMed
PubMed Central
Google Scholar
Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci U S A. 2015;112:E3816–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol. 2014;11:129–44.
Article
CAS
PubMed
Google Scholar
Maheswaran S, Haber DA. Ex Vivo Culture of CTCs: An Emerging Resource to Guide Cancer Therapy. Cancer Res. 2015;75:2411–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto DT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349:1351–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Wit S, van Dalum G, Lenferink ATM, Tibbe AGJ, Hiltermann TJN, Groen HJM, et al. The detection of EpCAM (+) and EpCAM (−) circulating tumor cells. Sci Rep. 2015;5:12270.
Article
PubMed
PubMed Central
Google Scholar
Dago AE, Stepansky A, Carlsson A, Luttgen M, Kendall J, Baslan T, et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One. 2014;9:e101777.
Article
PubMed
PubMed Central
Google Scholar
Lohr JG, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32:479–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu Rev Genomics Hum Genet. 2015;16:79–102.
Article
CAS
PubMed
Google Scholar
Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.
Article
CAS
PubMed
Google Scholar
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.
Article
CAS
PubMed
Google Scholar
Tiberio, P., Callari, M., Angeloni, V., Daidone, M. G. & Appierto, V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int 2015, 731479 (2015).
Calverley DC, Phang TL, Choudhury QG, Gao B, Oton AB, Weyant MJ, et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin Transl Sci. 2010;3:227–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson RJA, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118:3680–3.
Article
PubMed
Google Scholar
Best MG, et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell. 2015;28:666–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.
Article
CAS
PubMed
Google Scholar
McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol. 2014;16:717–27.
Article
CAS
PubMed
Google Scholar
Kitamura T, Qian B-Z, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan, M. & Jurasz, P. The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochim. Biophys. Acta (2015). doi:10.1016/j.bbamcr.2015.07.008
Li, N. Platelets in cancer metastasis: To help the ‘villain’ to do evil. Int. J. Cancer (2015). doi:10.1002/ijc.29847
Tesfamariam, B. Involvement of platelets in tumor cell metastasis. Pharmacol. Ther. (2015). doi:10.1016/j.pharmthera.2015.11.005
Joosse SA, Pantel K. Tumor-Educated Platelets as Liquid Biopsy in Cancer Patients. Cancer Cell. 2015;28:552–4.
Article
CAS
PubMed
Google Scholar