Il-Hoan O: Microenvironmental targeting of Wnt/β-catenin signals for hematopoietic stem cell regulation. Exp Opin Biol Thera. 2010, 10: 1315-1329. 10.1517/14712598.2010.504705.
Google Scholar
Coskun S, Hirschi KK: Establishment and regulation of the HSC niche: roles of osteoblastic and vascular compartments. Birth Defects Res. 2010, 90: 229-242. 10.1002/bdrc.20194.
CAS
Google Scholar
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ: SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005, 121: 1109-1121. 10.1016/j.cell.2005.05.026.
CAS
PubMed
Google Scholar
Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, Rout R, Chaudhury S, Gilkes A, Knapper S, Beldjord K, Begum S, Rose S, Geddes N, Griffiths M, Standen G, Sternberg A, Cavenagh J, Hunter H, Bowen D, Killick S, Robinson L, Price A, Macintyre E, Virgo P, Burnett A, Craddock C: Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011, 19: 138-152. 10.1016/j.ccr.2010.12.012.
CAS
PubMed
Google Scholar
Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL: Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003, 17: 3029-3305. 10.1101/gad.1143403.
CAS
PubMed Central
PubMed
Google Scholar
Messinger Y, Chelstrom L, Gunther R, Ukmi FM: Selective homing of human leukemic B-cell precursors to specific lymphohematopoietic microenvironments in SCID mice: A role for the beta 1 integrin family surface adhesion molecules VLA-4 and VLA-5. Leuk Lymphoma. 1996, 23: 61-69. 10.3109/10428199609054803.
CAS
PubMed
Google Scholar
Lapidot T, Kollet O: The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002, 16: 1992-2003. 10.1038/sj.leu.2402684.
CAS
PubMed
Google Scholar
Tefferi A: Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med. 2009, 2: 215-237.
Google Scholar
Yin CC, Medeiros LJ, Bueso-Ramos CE: Recent advances in the diagnosis and classification of myeloid neoplasms--comments on the 2008 WHO. Classif. 2010, 5: 461-476.
Google Scholar
Vardiman J, Hyjek E: World Health Organization Classification, Evaluation, and Genetics of the Myeloproliferative Neoplasm Variants. Hematol. 2011, 2011: 250-256. 10.1182/asheducation-2011.1.250.
Google Scholar
Klion AD: Eosinophilic myeloproliferative disorders. Hematol Am Soc Hematol Educ Program. 2011, 2011: 257-263. 10.1182/asheducation-2011.1.257.
Google Scholar
Heuser M, Sly LM, Argiropoulos B, Kuchenbauer F, Lai C, Weng A, Leung M, Lin G, Brookes C, Fung S, Valk PJ, Delwel R, Löwenberg B, Krystal G, Humphries RK: Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. Blood. 2009, 114: 3983-3993. 10.1182/blood-2009-06-227603.
CAS
PubMed
Google Scholar
Radomska HS, Alberich-Jordà M, Will B, Gonzalez D, Delwel R, Tenen DG: Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα. J Clin Invest. 2012, 122: 2955-2966. 10.1172/JCI43354.
CAS
PubMed Central
PubMed
Google Scholar
Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H, Brugger W, Kranz L: Functional response of leukemic blasts to stromal cell-derived factor-1 correlates to the preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukemia. Br J Haematol. 2000, 110: 563-572. 10.1046/j.1365-2141.2000.02157.x.
CAS
PubMed
Google Scholar
Tavor S, Petit I: Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia?. Seminars in Cancer Biol. 2010, 20: 178-185. 10.1016/j.semcancer.2010.07.001.
CAS
Google Scholar
Walkley C, Olsen G, Dworkin S, Fabb SA, Swann J, McArthur GA, Westmoreland SV, Chambon P, Scadden DT, Purton LE: A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell. 2007, 129: 1097-1110. 10.1016/j.cell.2007.05.014.
CAS
PubMed Central
PubMed
Google Scholar
Raaijmakers M, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, David T: Bone progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature. 2010, 464: 852-857. 10.1038/nature08851.
CAS
PubMed Central
PubMed
Google Scholar
Buss AC, Ho AD: Leukemia stem cells. Int J Cancer. 2011, 129: 2328-2336. 10.1002/ijc.26318.
CAS
PubMed
Google Scholar
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caliqiuri MA, Dick JE: A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature. 1994, 367: 645-658. 10.1038/367645a0.
CAS
PubMed
Google Scholar
Riobo NA, Lu K, Ai X, Haines GM, Emerson CP: Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci USA. 2006, 103: 4505-4510. 10.1073/pnas.0504337103.
CAS
PubMed Central
PubMed
Google Scholar
Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears S, Armstrong SA, Passegué E, DePinho RA, Gilliland DG: FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007, 128: 325-339. 10.1016/j.cell.2007.01.003.
CAS
PubMed
Google Scholar
Tothova Z, Gilliland DG: FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell. 2007, 1: 140-152. 10.1016/j.stem.2007.07.017.
CAS
PubMed
Google Scholar
Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L: PTEN maintains haematopoietic stem cells and acts in lineage choice and leukemic prevention. Nature. 2006, 441: 518-522. 10.1038/nature04747.
CAS
PubMed
Google Scholar
Kalaitzidis D, Sykes SM, Wang Z, Punt N, Tang Y, Ragu C, Sinha AU, Lane SW, Souza AL, Clish CB, Anastasiou D, Gilliland DG, Scadden DT, Guertin DA, Armstrong SA: mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell. 2012, 11: 429-439. 10.1016/j.stem.2012.06.009.
CAS
PubMed Central
PubMed
Google Scholar
Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M, Druker BJ, Puri KD, Ulrich RG, Giese NA: CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011, 117: 591-594. 10.1182/blood-2010-03-275305.
CAS
PubMed Central
PubMed
Google Scholar
Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW, Armstrong SA: Genetic and Pharmacologic Inhibition of β-Catenin Targets Imatinib-Resistant Leukemia Stem Cells in CML. Cell Stem Cell. 2012, 10: 412-424. 10.1016/j.stem.2012.02.017.
CAS
PubMed Central
PubMed
Google Scholar
Barker N, Clevers H: Mining the Wnt pathway for cancer therapeutics. Nature Rev Drug Discov. 2006, 5: 997-1014. 10.1038/nrd2154.
CAS
Google Scholar
Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA: Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004, 5: 91-102. 10.1016/S1535-6108(03)00334-9.
CAS
PubMed
Google Scholar
Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML: Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. Nature. 2008, 455: 1205-1209. 10.1038/nature07284.
CAS
PubMed Central
PubMed
Google Scholar
Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH, Benati D, Pinna LA, Gambacorti-Passerini C: Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J. 2007, 26: 1456-1466. 10.1038/sj.emboj.7601485.
CAS
PubMed Central
PubMed
Google Scholar
Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T: Tankyrase inhibition stabilizes axin and antagonizes Wnt signaling. Nature. 2009, 46: 614-620.
Google Scholar
Nefedova Y, Gabrilovich D: Mechanism and clinical prospects of Notch inhibitors in the therapy of haematological malignancies. Drug Resist Update. 2008, 11: 210-218. 10.1016/j.drup.2008.09.002.
CAS
Google Scholar
Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BB: Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008, 283: 8046-8054. 10.1074/jbc.M800170200.
CAS
PubMed
Google Scholar
Irvine D, Copland M: Targeting Hedgehog in Hematological Malignancies. Blood. 2012, 119: 2196-2204. 10.1182/blood-2011-10-383752.
CAS
PubMed
Google Scholar
Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et Nakao S, Motoyama N, Hirao A: TGF-beta-FOXO signaling maintains leukemia-initiating cells in chronic myeloid leukemia. Nature. 2010, 463: 676-680. 10.1038/nature08734.
CAS
PubMed
Google Scholar
Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A, Martinelli G, Zhang Y, Martinez R, Hyslop T, Bender TP, Calabretta B: c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia. 2012, 26: 644-653. 10.1038/leu.2011.264.
CAS
PubMed Central
PubMed
Google Scholar
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL: A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature. 2003, 423: 409-414. 10.1038/nature01593.
CAS
PubMed
Google Scholar
Kim Y, Thanendrarajan S, Schmidt-Wolf IGH: Wnt/ß-Catenin: A New Therapeutic Approach to Acute Myeloid Leukemia. Leukemia Research and Treatment. 2011, 4-10.4061/2011/428960. 2011 Article ID 428960
Google Scholar
Mikesch J, Steffen B, Berdel WE, Serve H, Müller-Tidow C: The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia. 2007, 21: 1638-1647. 10.1038/sj.leu.2404732.
CAS
PubMed
Google Scholar
Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL: Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004, 351: 657-667. 10.1056/NEJMoa040258.
CAS
PubMed
Google Scholar
Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, Clevers H: Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012, 149: 1245-1256. 10.1016/j.cell.2012.05.002.
CAS
PubMed
Google Scholar
Staal FJT, Clevers HC: Wnt signaling and haematopoiesis:A Wnt-Wnt situation. Nat Rev Immunol. 2005, 5: 21-30. 10.1038/nri1529.
CAS
PubMed
Google Scholar
Nemeth MJ, Bodine DM: Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res. 2007, 17: 746-758. 10.1038/cr.2007.69.
CAS
PubMed
Google Scholar
Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y: Wnt5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 2003, 162: 899-808. 10.1083/jcb.200303158.
CAS
PubMed Central
PubMed
Google Scholar
Bryja V, Anderson ER, Schamhony A, Esner M, Bryjová L, Biris KK: The extracellular domain of Lrp5/6 inhibits non-canonical Wnt signaling in vivo. Mol Cell Biol. 2009, 20: 924-936.
CAS
Google Scholar
Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, Sawyers C, Shah N, Stock W, Willman CL, Friend S, Linsley PS: Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006, 103: 2794-2799. 10.1073/pnas.0510423103.
CAS
PubMed Central
PubMed
Google Scholar
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010, 327: 1650-1653. 10.1126/science.1186624.
CAS
PubMed Central
PubMed
Google Scholar
Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, So CW: β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010, 18: 606-618. 10.1016/j.ccr.2010.10.032.
CAS
PubMed
Google Scholar
Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T: Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007, 12: 528-541. 10.1016/j.ccr.2007.11.003.
CAS
PubMed Central
PubMed
Google Scholar
Hu Y, Chen Y, Douglas L, Li S: Beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 2009, 23: 109-116. 10.1038/leu.2008.262.
CAS
PubMed
Google Scholar
Garber K: Drugging The Wnt pathway: problems and progress. JNCI J Natl Cancer Inst. 2009, 101: 548-550. 10.1093/jnci/djp084.
Google Scholar
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J: TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991, 66: 649-661. 10.1016/0092-8674(91)90111-B.
CAS
PubMed
Google Scholar
Felli MP, Maroder M, Mitsiadis TA, Campese AF, Bellavia D, Vacca A: Expression pattern of Notch 1,2 and 3 and jagged 1 and 2 in lymphoid and stromal thymus components:distinct ligand-receptor interactions in intrathymic T cell development. Int Immunol. 1999, 11: 1017-1025. 10.1093/intimm/11.7.1017.
CAS
PubMed
Google Scholar
Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S, Moore KA, Le Roux I, Mann R, Gray G, Artavanis-Tsakonas S, Bernstein ID: The Notch ligand Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood. 1998, 91: 4084-4091.
CAS
PubMed
Google Scholar
Milner LA, Kopan R, Martin DI, Bernstein ID: A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood. 1994, 83: 2057-2062.
CAS
PubMed
Google Scholar
Hasserjian RP, Aster JC, Davi F, Weinberg DS, Sklar J: Modulated expression of Notch1 during thymocyte development. Blood. 1996, 88: 970-976.
CAS
PubMed
Google Scholar
Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signaling downstream of activated mammalian Notch. Nature. 1995, 377: 355-358. 10.1038/377355a0.
CAS
PubMed
Google Scholar
Duncan AW, Rattis FM, DiMascio LN, Kongdon KL, Pazianos G, Zhao C, Mann RS, Frati L, Lendahl U, Gulino A, Screpanti I: Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005, 6: 314-322. 10.1038/ni1164.
CAS
PubMed
Google Scholar
Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM, Melnick AM, Figueroa ME, Zweidler-McKay PA: Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med. 2013, 210: 321-337. 10.1084/jem.20121527.
CAS
PubMed Central
PubMed
Google Scholar
Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N, Araldi E, Hu W, Freund J, Abdel-Wahab O, Ibrahim S, Skokos D, Armstrong SA, Levine RL, Park CY, Aifantis I: Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med. 2013, 210: 301-319. 10.1084/jem.20121484.
CAS
PubMed Central
PubMed
Google Scholar
Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, van De Walle I, Cathelin S, Trimarchi T, Araldi E, Liu C, Ibrahim S, Beran M, Zavadil J, Efstratiadis A, Taghon T, Michor F, Levine RL, Aifantis I: A novel tumour-suppressor function for the Notch pathway in myeloid leukemia. Nature. 2011, 473: 230-233. 10.1038/nature09999.
CAS
PubMed Central
PubMed
Google Scholar
Nakahara F, Sakata-Yanagimoto M, Komeno Y, Kato N, Uchida T, Haraguchi K, Kumano K, Harada Y, Harada H, Kitaura J, Ogawa S, Kurokawa M, Kitamura T, Chiba S: Hes1 immortalizes committed progenitors and plays a role in blast crisis transition in chronic myelogenous leukemia. Blood. 2010, 115: 2872-2881. 10.1182/blood-2009-05-222836.
CAS
PubMed
Google Scholar
Rizzo P, Miao H, D'Souza G, Osipo C, Song LL, Yun J, Zhao H, Mascarenhas J, Wyatt D, Antico G, Hao L, Yao K, Rajan P, Hicks C, Siziopikou K, Selvaggi S, Bashir A, Bhandari D, Marchese A, Lendahl U, Qin JZ, Tonetti DA, Albain K, Nickoloff BJ, Miele L: Cross-talk between Notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches. Cancer Res. 2008, 68: 5226-5235. 10.1158/0008-5472.CAN-07-5744.
CAS
PubMed Central
PubMed
Google Scholar
Gao J, Graves S, Koch U, Mao J, Morgan KJ, Lee BH, Kharas MG, Miller PG, Cornejo MG, Okabe R, Armstrong SA, Ghilardi N, Gould S, de Sauvage FJ, McMahon AP, Gilliland DG: Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell. 2009, 4: 548-558. 10.1016/j.stem.2009.03.015.
CAS
PubMed Central
PubMed
Google Scholar
Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T: Hedgehog signaling is essential for maintenance of cancer stem cells in myeloid leukemia. Nature. 2009, 458: 776-779. 10.1038/nature07737.
CAS
PubMed Central
PubMed
Google Scholar
Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M: Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008, 14: 2338-2349.
Google Scholar
Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y, Kato J: Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells. Cancer Sci. 2009, 100: 948-955. 10.1111/j.1349-7006.2009.01111.x.
CAS
PubMed
Google Scholar
Bai LY, Chiu CF, Lin CW, Hsu NY, Lin CL, Lo WJ, Cao MC: Differential expression of Sonic hedgehog and Gli1 in hematological malignancies. Leukemia. 2008, 22: 226-228. 10.1038/sj.leu.2404978.
CAS
PubMed
Google Scholar
Yiting L, Matsui W: Hedgehog Signaling in Hematopoiesis. Crit Rev Eukaryot Gene Expr. 2010, 20: 129-139. 10.1615/CritRevEukarGeneExpr.v20.i2.30.
Google Scholar
Sims-Mourtada J, Izzo JG, Ajani J, Chao KS: Sonic hedgehog promotes multi-drug resistance by regulation of drug transport. Oncogene. 2007, 26: 5674-5679. 10.1038/sj.onc.1210356.
CAS
PubMed
Google Scholar
Regl G, Kasper M, Schnider H, Eichberger T, Neill GW, Philpott MP, Esterbauer H, Hauser-Kronberger C, Frischauf AM, Aberger F: Activation of the BCL2 promoter in response to Hedgehog/GLI signal is predominantly mediated by GLI2. Cancer Res. 2004, 64: 7724-7731. 10.1158/0008-5472.CAN-04-1085.
CAS
PubMed
Google Scholar
Blank U, Karlsson G, Karlsson S: Signaling pathways governing stem-cell fate. Blood. 2008, 111: 492-503. 10.1182/blood-2007-07-075168.
CAS
PubMed
Google Scholar
Yaswen L, Kulkarni AB, Fredrickson T, Mittleman B, Schiffman R, Payne S, Longenecker G, Mozes E, Karlsson S: Autoimmune manifestation in the transforming growth-factor beta 1 knockout mouse. Blood. 1996, 87: 1439-1445.
CAS
PubMed
Google Scholar
Leveen P, Larsson J, Ehinger M, Cilio CM, Sundler M, Sjöstrand LJ, Holmdahl R, Karlsson S: Induced disruption of the transforming-growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood. 2002, 100: 560-568. 10.1182/blood.V100.2.560.
CAS
PubMed
Google Scholar
Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M: Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001, 2: 172-180. 10.1038/84282.
CAS
PubMed
Google Scholar
Kim SJ, Letterio J: Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia. 2003, 17: 1731-1737. 10.1038/sj.leu.2403069.
CAS
PubMed
Google Scholar
Quéré R, Karlsson G, Hertwig F, Rissler M, Lindqvist B, Fioretos T, Vandenberghe P, Slovak ML, Cammenga J, Karlsson S: Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood. 2011, 117: 5918-5930. 10.1182/blood-2010-08-301879.
PubMed
Google Scholar
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JB, Zon LI, Daley GQ: BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell. 2008, 2: 72-82. 10.1016/j.stem.2007.10.022.
CAS
PubMed
Google Scholar
Wang N, Kim HG, Cotta CV, Wan M, Tang Y, Klug CA, Cao X: TGFβ/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability. EMBO J. 2006, 25: 1469-1480. 10.1038/sj.emboj.7601037.
CAS
PubMed Central
PubMed
Google Scholar
Pilon N, Oh K, Sylvestre J, Bouchard N, Bouchard N, Savory J, Lohnes D: Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol. 2006, 289: 55-63. 10.1016/j.ydbio.2005.10.005.
CAS
PubMed
Google Scholar
Bansal D, Scholl C, Fröhling S, McDowell E, Lee BH, Döhner K, Ernst P, Davidson AJ, Daley GQ, Zon LI, Gilliland DG, Huntly BJ: Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA. 2006, 10345: 16924-16929.
Google Scholar
Buske C, Humphries RK: Homeobox genes in leukemogenesis. Int J Hematol. 2000, 71: 301-308.
CAS
PubMed
Google Scholar
Perkins A, Kongsuwan K, Visvader J, Adams JM, Cory S: Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci USA. 1990, 87: 8398-8402. 10.1073/pnas.87.21.8398.
CAS
PubMed Central
PubMed
Google Scholar
Scholl C, Bansal D, Döhner K, Eiwen K, Huntly BJ, Lee BH, Rücker FG, Schlenk RF, Bullinger L, Döhner H, Gilliland DG, Fröhling S: The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest. 2007, 117: 1037-1048. 10.1172/JCI30182.
CAS
PubMed Central
PubMed
Google Scholar
Faber K, Bullinger L, Ragu C, Garding A, Mertens D, Miller C, Martin D, Walcher D, Döhner K, Döhner H, Claus R, Plass C, Sykes SM, Lane SW, Scholl C, Fröhling S: CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARγ signaling. J Clin Invest. 2013, 123: 299-314. 10.1172/JCI64745.
CAS
PubMed Central
PubMed
Google Scholar
Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD: Fusion of the nucleoporin gene NUP98 to HoxA9 by the chromosome translocation t(7, 11)(p15;p15) in human myeloid leukemia. Nat Genet. 1996, 12: 154-158. 10.1038/ng0296-154.
CAS
PubMed
Google Scholar
Borrow J, Shearman AM, Stanton VP, Becher R, Collins T, Williams Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD: The t(7;11)(p15;p15) translocation in acute myeloid leukemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HoxA9. Nat Genet. 1996, 12: 159-167. 10.1038/ng0296-159.
CAS
PubMed
Google Scholar
Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C, Humphreys RK: Overexpression of HoxB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity. 1997, 6: 13-22. 10.1016/S1074-7613(00)80238-1.
CAS
PubMed
Google Scholar
Antonchuk J, Sauvageau G, Humphries RK: HoxB4-Induced Expansion of Adult Hematopoietic Stem Cells Ex Vivo. Cell. 2002, 109: 39-45. 10.1016/S0092-8674(02)00697-9.
CAS
PubMed
Google Scholar
Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK: Overexpression of HoxA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol. 1997, 17: 495-505.
CAS
PubMed Central
PubMed
Google Scholar
Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, Humphries RK, Sauvageau G: Overexpression of the myeloid leukemia-associated HoxA9 gene in bone marrow cells induces stem cell expansion. Blood. 2002, 99: 121-129. 10.1182/blood.V99.1.121.
CAS
PubMed
Google Scholar
Bansal D, Scholl C, Fröhling S, McDowell E, Lee BH, Döhner K, Ernst P, Davidson AJ, Daley GQ, Zon LI, Gilliland DG, Huntly BJ: Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proc Natl Acad Sci USA. 2006, 103: 16924-169249. 10.1073/pnas.0604579103.
PubMed Central
PubMed
Google Scholar
Tedeschi FA, Zalazar FE: HoxA9 gene expression in the chronic myeloid leukemia progression. Leuk Res. 2006, 30: 1453-1456. 10.1016/j.leukres.2006.02.022.
CAS
PubMed
Google Scholar
Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G: HoxA9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998, 17: 3714-3725. 10.1093/emboj/17.13.3714.
CAS
PubMed Central
PubMed
Google Scholar
Zuber J, Rappaport AR, Lo W, Wang E, Chen C, Vaseva AV, Shi J, Weissmueller S, Fellmann C, Taylor MJ, Weissenboeck M, Graeber TG, Kogan SC, Vakoc CR, Lowe SW: An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 2011, 25: 1628-40. 10.1101/gad.17269211.
CAS
PubMed Central
PubMed
Google Scholar
Nyguyen AT, Zhang Y: The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 2011, 25: 1345-1358. 10.1101/gad.2057811.
Google Scholar
Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM: Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011, 20: 53-65. 10.1016/j.ccr.2011.06.009.
CAS
PubMed Central
PubMed
Google Scholar
Bernt KM, Armstrong SA: Targeting epigenetic programs in MLL-rearranged leukemias. Hematol Am Soc Hematol Educ Program. 2011, 2011: 354-360. 10.1182/asheducation-2011.1.354.
Google Scholar
Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y: Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003, 9: 1158-1165. 10.1038/nm909.
CAS
PubMed
Google Scholar
Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T, Niitsu Y: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 2008, 22: 353-360. 10.1038/sj.leu.2405017.
CAS
PubMed
Google Scholar
Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF: Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009, 113: 6206-14. 10.1182/blood-2008-06-162123.
CAS
PubMed Central
PubMed
Google Scholar
Li H, Guo L, Jie S, Liu W, Liu W, Zhu J, Du W, Fan L, Wang X, Fu B, Huang S: Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells. Biomed Pharmocother. 2008, 62: 573-578. 10.1016/j.biopha.2008.08.003.
CAS
Google Scholar
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006, 10: 1167-1174.
Google Scholar
Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R, Banerjee S: Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia. 2007, 21: 949-955.
CAS
PubMed
Google Scholar
Magnusson M, Brun AC, Miyake N: HoxA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood. 2007, 109: 3687-3696. 10.1182/blood-2006-10-054676.
CAS
PubMed
Google Scholar
Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC: Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007, 282: 27298-27305. 10.1074/jbc.M702811200.
CAS
PubMed
Google Scholar
Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P: ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signaling. EMBO J. 2005, 24: 742-752. 10.1038/sj.emboj.7600548.
CAS
PubMed Central
PubMed
Google Scholar
Schürch C, Riether C, Matter MS, Tzankov A, Ochsenbein AF: CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression. J Clin Invest. 2012, 122: 624-638. 10.1172/JCI45977.
PubMed Central
PubMed
Google Scholar
Herault O, Hope KJ, Deneault E, Mayotte N, Chagraoui J, Wilhelm BT, Cellot S, Sauvageau M, Andrade-Navarro MA, Hébert J, Sauvageau G: A role for GPx3 in activity of normal and leukemia stem cells. J Exp Med. 2012, 209: 895-901. 10.1084/jem.20102386.
CAS
PubMed Central
PubMed
Google Scholar
Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, Ferraro F, Mercier F, Singh H, Brumme KM, Acharya SS, Scholl C, Tothova Z, Attar EC, Fröhling S, DePinho RA, Armstrong SA, Gilliland DG, Scadden DT: AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell. 2011, 14: 697-708.
Google Scholar
Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, Jones C, Zehnder JL, Keating A, Negrin RS, Weissman IL, Jamieson CH: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 2009, 106: 3925-3929. 10.1073/pnas.0900189106.
CAS
PubMed Central
PubMed
Google Scholar
Kitagawa K, Kotake Y, Hiramatsu Y, Liu N, Suzuki S, Nakamura S, Kikuchi A, Kitagawa M: GSK3 regulates the expressions of human and mouse c-Myb via different mechanisms. Cell Div. 2010, 5: 27-10.1186/1747-1028-5-27.
CAS
PubMed Central
PubMed
Google Scholar
Wang Z, Iwasaki M, Ficara F, Lin C, Matheny C, Wong SH, Smith KS, Cleary ML: GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell. 2010, 17: 597-608. 10.1016/j.ccr.2010.04.024.
CAS
PubMed Central
PubMed
Google Scholar