Skip to main content
Fig. 1 | Cell Communication and Signaling

Fig. 1

From: Polyamines: their significance for maintaining health and contributing to diseases

Fig. 1

The source and metabolism of polyamine. a The presence of polyamines is ubiquitous in virtually all food sources. The main polyamines in breast milk are spermidine and spermidine, and the content and distribution of polyamines in plant-derived and animal-derived foods differ based on their respective categorizations. b The intestinal microbiota has the capability to produce polyamines. c The biosynthesis of polyamines commences with the conversion of L-ornithine into putrescine via the action of ornithine decarboxylase (ODC). Subsequently, the addition of an aminopropyl group, which is contributed by dcAdoMet, results in the formation of spermidine and spermine. In the process of polyamine catabolism, the enzyme SSAT are responsible for the acetylation of spermine and spermidine, resulting in the production of N1-acetylspermine and N1-acetylspermidine. SMOX can oxidize spermine directly to spermidine These metabolites are either secreted from cells or undergo reconversion back into spermidine and putrescine via the enzyme PAOX. Created with BioRender.com

Back to article page