Skip to main content
Fig. 2 | Cell Communication and Signaling

Fig. 2

From: Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast cancer cells

Fig. 2

Overexpression and intercellular transfer of GFP-tagged CD63 and tdTomato-tagged MTA1 (tdTom-MTA1) in breast cancer cells. a. Confocal microscopy images of MCF7 and MDA-MB-231 breast cancer cells co-expressing the GFP-tagged exosome marker CD63 (CD63-GFP) and tdTomato-tagged MTA1, 40X. b. Western blot analysis of MTA1 expression in MCF7 and MDA-MB-231 cells expressing only CD63-GFP and tdTomato-MTA1. GAPDH is included as an equal loading control. c. Cell viability assay of wildtype and MTA1 overexpressing MCF7 and MDA-MB-231 cells, n = 3 **p > 0.01 Two-way ANOVA. d. Fluorescent microscopy imaging of CD63-GFP and tdTom-MTA1 transfer from MCF7 and MDA-MB-231 cells to endothelial (EA.hy926) and breast cancer cells (ZR-75-1) after co-culture in a transwell system for 4 days. e. Quantitative co-localization analysis of exosome uptake in (d), mean + SEM of 4 regions of interest per image. f. Western blot analysis of RFP (tdTom) and MTA1 uptake via exosomes isolated from MDA-MB-231 cells expressing tdTomato-MTA1. Approximately, 700–900 μg of purified exosomes were added to cultures of Ea.hy926 and ZR-75-1 cells for the indicated time. GAPDH is included as an equal loading control

Back to article page