Skip to main content
Figure 2 | Cell Communication and Signaling

Figure 2

From: NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions

Figure 2

NO did not reduce gap junctional Ca2+signal propagation in HUVEC. A depicts the fluorescence image (Fura2, excitation 380 nm), the stimulated cell (red), adjacent cells (green), and secondary adjacent cells (blue). All adjacent cells together are counted as neighbouring cells. B. The Ca2+ concentration (ratio) increased (0 s) after mechanical stimulation of the red marked HUVEC and the Ca2+i signal propagated to most neighbouring cells within 6 s. The time course of the Ca2+i increase in the marked cells (A) is shown in C. Ca2+i increased in the stimulated cell (red) and the signal propagated with a time delay of up to 3 s to adjacent (green) and up to 10 s to secondary adjacent (blue) cells. In the HUVEC monolayer, incubation with NO (15 min, 2 μM SNAP) did not reduce the number of responding (D) but increased the time delay (E) of the Ca2+i transfer to neighbouring endothelial cells. n = 39-66, w = 6, C = 4; *: p < 0.01, NG.

Back to article page