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Types of nuclear localization signals 
and mechanisms of protein import 
into the nucleus
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Abstract 

Nuclear localization signals (NLS) are generally short peptides that act as a signal fragment that mediates the trans-
port of proteins from the cytoplasm into the nucleus. This NLS-dependent protein recognition, a process necessary 
for cargo proteins to pass the nuclear envelope through the nuclear pore complex, is facilitated by members of the 
importin superfamily. Here, we summarized the types of NLS, focused on the recently reported related proteins 
containing nuclear localization signals, and briefly summarized some mechanisms that do not depend on nuclear 
localization signals into the nucleus.
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Background
One of the characteristic features of eukaryotic cells 
are membrane-bound functional organelles such as the 
nucleus, mitochondria, golgi apparatus, and others, 
which are surrounded by cytoplasm. For cells to function 
normally, organelle proteins synthesized in the cytoplasm 
must be selectively and efficiently transported into their 
destination compartments where they can exert their 
physiological functions [1]. Consequently, nucleocyto-
plasmic transport is an essential process in eukaryotes 
[2, 3]. The nucleus has a double membrane called nuclear 
envelope. In order to allow the exchange of proteins 
between the nucleus and cytoplasm, proteins must be 
transported efficiently through the nuclear pore complex 
(NPC), which penetrates the nuclear envelope [4]. The 
NPC is a large, multimeric structure that generally acts as 

a permeability barrier between the cytoplasm and nucle-
oplasm [5]. The main structural components of the NPC 
include the central channel, the cytoplasmic ring moiety 
and cytoplasmic filaments, and the nuclear ring moiety 
and nuclear basket [6]. The NPC has eightfold rotational 
symmetry. Each NPC is connected to the inner and outer 
nuclear membranes by symmetrical 8 molecular spoke 
proteins, and the 8 molecular spoke proteins surround 
each other into a central channel with an outer diameter 
of 122 nm and an inner diameter of 70 nm [7, 8]. Diverse 
proteins, such as transcription factors, histones, and cell 
cycle regulators, need to be transported into the nucleus 
through the NPC after their synthesis, which necessi-
tates the presence of a nuclear localization signal (NLS) 
on these cargo proteins [9]. The NLS is recognized by the 
corresponding nuclear transporters, which can interact 
with nucleoporins to help NLS-containing proteins reach 
the nucleus through NPCs [10]. Due to the complex roles 
of nuclear proteins, NLS-mediated nuclear transport is a 
highly regulated process. Here, we briefly review recent 
studies that defined NLS sequences in the nuclear import 
of cargo proteins and the mechanisms of protein import 
mediated by NLS.
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Overview of nuclear localization signals
Unlike proteins bound to the endoplasmic reticulum or 
mitochondria, whose N-terminal targeting signals are 
often cleaved after arrival at their destination organelle, 
nuclear localization signals remain intact and can be 
located at almost any part of the protein sequence, indi-
cating the possibility of multiple rounds of nucleocyto-
plasmic transport [11].

A nuclear localization signal (NLS) was firstly identi-
fied through the analysis of mutants of simian virus 40 
(SV40), whose NLS is composed of seven amino acids, 
Pro-Lys-Lys-Lys-Arg-Lys-Val (PKKKRKV) [12]. NLS 
sequences were subsequently identified in numerous 
other proteins imported into the nucleus.

In recent years, NLS were widely used in cancer 
treatment and viral infection prevention [13–15], and 
researchers paid more attention to identifying novel NLS 
motifs and the import nucleoporins that recognize and 
bind them. Here, we categorized NLS according to their 
residue composition into classical (cNLS), non-classical 
(ncNLS), and other types.

The classical nuclear localization signals (cNLS)
As shown in Table  1, the cNLS encompass two catego-
ries, termed “monopartite” (MP) and “bipartite” (BP) 
[16]. MP NLS are a single cluster composed of 4–8 basic 

amino acids, which generally contains 4 or more posi-
tively charged residues, that is, arginine (R) or lysine (K). 
The characteristic motif of MP NLS is usually defined as 
K (K/R) X (K/R), where X can be any residue [17]. For 
example, the NLS of SV40 large T-antigen is 126PKK-
KRKV132, with five consecutive positively charged amino 
acids (KKKRK). Interestingly, studies have shown that 
its reverse sequence has no nuclear transport function 
[12]. Furthermore, if the third amino acid lysine (K) of 
SV40 large T antigen NLS is mutated to threonine (T), its 
nuclear transport function is also lost [18].

Willis et al. identified a putative NLS (640PKLKRQ646) 
in vasopressin-activated calcium-mobilizing protein/cul-
lin5 (VACM-1/CUL5), which is necessary for its nuclear 
localization and inhibitory effect on cellular growth. This 
sequence starts with a proline (P) and is followed by an 
amino acid sequence containing three basic residues out 
of four (PKLKR) [19]. An analogous NLS, found in the 
146th-149th amino acids of chemokine receptor CXCR4, 
is composed of Arg-Pro-Arg-Lys (RPRK) [20]. CXCR4 
showed different subcellular distribution in pathological 
specimens of renal cell carcinoma derived from differ-
ent sources. In primary renal cell carcinoma, it is mainly 
distributed in the cell membrane, while in the metastatic 
focus, it is mainly distributed inside the cell and nucleus 
[34]. Therefore, nuclear translocation of CXCR4 may be 

Table 1  Classification of nuclear localization signals (partial)

Category Source Sequence Transport receptors

Classical nuclear localization signals
(cNLS)

MP NLS VACM-1/CUL5 [19] PKLKRQ Importin α/β1

CXCR4 [20] RPRK
VP1 [21] RRARRPRG

BP NLS 53BP1 [22] GKRKLITSEEERSPAKRGRKS

ING4 [23] KGKKGRTQKEKKAARARSKGKN

IER5 [24] RKRCAAGVGGGPAGCPAPGSTPLKKPRR
ERK5 [25] RKPVTAQERQREREEKRRRR​QERAK-

EREKRRQERER

Non-classical nuclear localization signals
(ncNLS)

PY-NLS Hrp1 [26] RSGGNHRRNGRG​GRG​GYNRRNNGYHPY Importin βs

UL79 [27] TLLLRETMNNLGVSDHAVLSRKTPQPY
EWS [28] PGKMDKGEHRQERRDRPY

Other non-classical 
NLS

PTHrP [29] GKKKKGKPGKRREQRKKKRRT​

Pho4 [30] SANKVTKNKSNSSPYLNKRKGKPGPDS

rpL23a [31] VHSHKKKKIPTSPTFTTPKTLTLRRQPKY-
PRKSAPRRNKLDHY

Other types of nuclear localization 
signals

Putative NLS PABPN1 None Importin αs/βs

Spatial epitope NLS STAT1 None

Cryptic NLS FGF2 None

Multiple NLS MSX1 [32] RKHKTNRKPR
NRRAKAKR

NLS-RARα [33] RNKKKK
RKVIK
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one of the important mechanisms leading to invasion and 
metastasis of malignant tumors such as renal cell carci-
noma. Additionally, viral protein1 (VP1) of chicken ane-
mia virus (CAV) was found to contain a functional NLS 
motif necessary for its import into the nucleus. It spans 
the amino acids 3RRARRPRG10, which makes it a classi-
cal MP NLS motif [21].

By contrast, BP NLS are characterized by two clusters 
of 2–3 positively charged amino acids that are separated 
by a 9–12 amino-acid linker region, which contains sev-
eral proline (P) residues [16]. The consensus sequence 
can be expressed as R/K(X)10-12KRXK [17]. Notably, in 
BP NLS, the upstream and downstream clusters of amino 
acids are interdependent and indispensable, and jointly 
determine the localization of the protein in the cell.

For instance, the BP NLS at the C-terminus of nucle-
oplasmin, whose sequence is 155KRPAATKKAGQ-
AKKKK170, can guide the protein into the nucleus. In 
addition to nucleoplasmin, 53BP1 (TP53-binding pro-
tein 1) also has a classical BP NLS with the sequence 
1666GKRKLITSEEERSPAKRGRKS1686. Its upstream 
(1667KRK1669) and downstream (1681KRGRK1685) clusters 
are required for proper localization of 53BP1 and main-
tenance of genomic integrity [22, 35, 36]. ING4 contains 
the potential BP NLS 128KGKKGRTQKEKKAARARSK-
GKN149, among which 142RARSK146 mainly binds to p53 
and mediates the nuclear localization of ING4 and p53 
[23]. The interaction of ING4 with p53 was abrogated 
in vitro and in vivo when certain mutations or deletion of 
the entire BP NLS domain occurred. Yamano et al. iden-
tified that the immediately-early response gene 5 (IER5) 
possess a classical BP NLS (217RKRCAAGVGGGPAGC-
PAPGSTPLKKPRR244), which is highly conserved among 
species [24], whereby both basic amino acid clusters at 
217–219 and 240–244 are required for nuclear localiza-
tion. The extracellular signal regulated kinase 5 (ERK5) is 
known to contain a classical BP NLS. Yan et al. [25, 37] 
found that the BP NLS (505RKPVTAQERQREREEKR-
RRR​QERAKEREKRRQERER539) of ERK5 is required for 
the nuclear targeting of ERK5 upon activation and that 
this NLS itself is sufficient to drive GFP to the nucleus, 
indicate that the ERK5 BP NLS is biologically functional.

Non‑classical nuclear localization signals (ncNLS)
Unlike classical nuclear localization signals, many pro-
teins have unusual NLS, which are neither similar to 
canonical signals nor rich in arginine or lysine residues 
[16]. This type of NLS is called the non-classical nuclear 
localization signal (ncNLS). Among them, the ncNLS of 
the “proline-tyrosine” category, named PY-NLS was stud-
ied in most detail.

PY-NLS is characterized by 20–30 amino acids that 
assume a disordered structure, consisting of N-terminal 

hydrophobic or basic motifs and C-terminal R/K/H(X)2-

5PY motifs (where X2-5 is any sequence of 2–5 residues) 
[27]. Two subclasses, hPY-NLS and bPY-NLS, were 
defined according to their N-terminal motifs. The hPY-
NLS contains φG/A/Sφφ motifs (where φ is a hydro-
phobic residue), whereas bPY-NLS is enriched in basic 
residues [27]. Collectively, the PY-NLS consensus cor-
responds to [basic/hydrophobic]-Xn- [R/H/K]-(X)2–5-PY 
[38], where X can be any residue.

Human heterogeneous nuclear ribonucleoprotein A1 
(hnRNP A1) is known as hPY-NLS due to its sequence 
263FGNYNNQSSNFGPMKGGNFGGRSSGPY289, which 
includes a hydrophobic region (273FGPM276) required 
for its nuclear localization. The NLS of heterogene-
ous nuclear ribonucleoprotein 1 (Hrp1) closely matches 
the consensus of bPY-NLS (Table 1). The basic residues 
(511HRR513) and C-terminal R525 (X)2-5PY motif are nec-
essary and sufficient for nuclear import, while also being 
required for receptor binding and protein function, 
respectively [26].

Wang et al. discovered the PY-NLS sequence 66TLLL-
RETMNNLGVSDHAVLSRKTPQPY92 at the N termi-
nus of the human cytomegalovirus protein UL79. This 
NLS very closely resembles a hPY-NLS, containing the 
C-terminal PY-core portion of the consensus sequence 
preceded by stretches of hydrophobic amino acids [27]. 
A double mutation in this PY-NLS-like sequence (P91A/
Y92A) led to cytoplasmic restriction. An analogous hPY-
NLS is found at the C-terminus of Ewing sarcoma (EWS) 
protein [28], and is required for its nuclear import. This 
hPY-NLS consists of 18 amino acid residues (639PGK-
MDKGEHRQERRDRPY656), among which the hydro-
phobic region 639PGKM 642 and C-terminal R652(X)2-5PY 
motif are essential. Each of the mutations R652A, P655A 
and Y656A could destroy the ability of the PY-NLS to 
direct EWS protein to the nucleus, similarly to what was 
observed when the whole PY-NLS was deleted [39].

However, a large number of ncNLS do not have a regu-
lar characteristic structure, including those of PTHrP 
(parathyroid hormone-related protein) [29], Pho4 (phos-
phorylation regulates association of the transcription 
factor) [30], and rpL23a (ribosomal protein L23a) [31], 
among others (Table 1).

Other types of nuclear localization signals
In addition to the discussed cNLS and ncNLS, there also 
exist other types of special NLS, some of which have been 
studied in more detail. These include: (a) The putative 
NLS has basic amino acid sequence composition charac-
teristics of nuclear localization signal. After verification, 
some of them have nuclear localization function, while 
others do not. For example, a PY-NLS-like sequence was 
predicted to be encoded by residues 259–306 of poly(A) 
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binding protein nuclear 1 (PABPN1). This putative NLS 
is dominated by basic amino acids, but has no nuclear 
positioning function [38]. (b) A spatial epitope NLS was 
found in the primary sequence of the signal transducers 
and activators of transcription 1 (STAT1) [40]. This pro-
tein does not have a classical NLS, but upon dimeriza-
tion, each subunit contributes basic residues that forms 
a cNLS, which mediates its nuclear entry [41, 42]. Such 
NLS cannot be recognized by the transport receptor 
alone, but can be recognized when several functional 
amino acid subunits interact. After protein–protein 
interaction, several basic amino acids of each subunit are 
close enough to each other to form a spatial structure rec-
ognized by the transport receptor, which then exerts its 
own nuclear positioning function [42]. (c) Cryptic NLS. 
Normally, proteins containing cryptic NLS cannot bind 
to the nuclear transport receptor, but under stimulation 
by specific signals, the protein structure containing the 
cryptic NLS can exchange to expose it, so that it can be 
recognized for nuclear import [43]. Min et al. identified 
a cryptic NLS in fibroblast growth factor 2 (FGF2). The 
primary amino acid sequence of low-molecular-weight 
(LMW) FGF2 shows that it does not have classical NLS 
sequence, but the apoptosis inhibitor 5 (API5) interacting 
region of FGF2 overlaps with its cryptic NLS region. The 
observations that LMW FGF2 is localized mainly in the 
nucleus when co-expressed with API5, but mainly in the 
cytoplasm when it fails to bind API5, suggested that API5 
acts as a carrier protein or a stimulus signal for FGF2 
trafficking into the nucleus [44]. (d) Multiple NLS. Multi-
ple studies have shown that there is often more than one 
functional NLS in a single nuclear protein. For example, 
in the process of nuclear localization of muscle segment 
homeobox  1 (MSX1), Shibata et  al. revealed that NLS1 
(161RKHKTNRKPR170) and NLS2 (216NRRAKAKR223) 
are independently insufficient for robust nuclear locali-
zation when attached to green fluorescent protein (GFP) 
[32]. However, they can work cooperatively to promote 
nuclear localization of MSX1, leading to a significant 
nuclear accumulation of the corresponding GFP fusion 
protein. Similarly, the promyelocytic leukemia-retinoic 
acid receptor α (PML/RARα) has two primary NLS, 
which include one from the PML (159RNKKKK164), and 
the other from the RARα (486RKVIK490), the NLS of the 
RARα portion in NLS-RARα is more favorable for the 
nuclear localization of NLS-RARα [33, 45].

Mechanisms of nuclear trafficking mediated by NLS
A schematic model for nuclear protein import through 
NPC illustrates how can a complex biological function 
can be generated by a spatially and temporally organized 
cycle of interactions between cargoes, carriers and Ran 
GTPase [46]. NLS-dependent protein trafficking from 

the cytoplasm into the nucleus is a facilitated process 
mediated by members of the importin (also referred to 
as karyopherin) superfamily [47]. Importins are further 
categorized into importin αs and importin βs, based on 
their structural and functional features [16]. In mamma-
lian cells, the importin αs protein family only contains 6 
members, namely, importin α1, importin α3, importin 
α4, importin α5, importin α6 and importin α7 [48, 49]. 
The energy for nuclear transport is provided by the small 
Ras family GTPases. Ran is the most abundant mem-
ber of the Ras superfamily of GTPases, constituting 
about 0.4% of the total cell protein [50]. Ran functions 
as a molecular switch and undergoes a conformational 
change between the GDP- and GTP-bound states, with 
the aid of a guanine nucleotide exchange factor (RanGEF) 
and a GTPase-activating protein (RanGAP) [51]. Because 
these key regulatory factors are compartmentalized, 
the different forms of Ran are asymmetrically distrib-
uted in the cell, with RanGTP enriched in the nucleus 
and RanGDP enriched in the cytoplasm [52]. This com-
partmentalization allows Ran to impart directionality to 
nuclear transport, acting as a molecular switch that con-
trols the compartment-specific binding and release of 
cargo proteins [42, 53].

Mechanism of cNLS‑mediated protein transport
Classical NLS on cargo proteins are recognized by the 
importin α subunit, which in turn is recognized by the 
importin β subunit. The resulting cNLS-cargo-importin 
α-importin β1 trimer is then imported into the nucleus 
through a series of steps [17]. This process involves the 
participation of multiple components as shown in Table 2 
[46]. Almost all importin βs contain two conserved 
domains, including the central HEAT domain (hun-
tingtin, elongation factor 3 (EF3), protein phosphatase 
2A (PP2A), and TOR1) and the importin β N-terminal 
domain (IBN) [54]. The central HEAT domain can pro-
vide binding sites for protein–protein interaction by 
changing its own conformation. All importin α proteins 
contain one importin β1 binding (IBB) domain at the 
N-terminal end, and the rest of the sequence contains 
10 Armadillo (ARM) repeats [55, 56]. The C-terminal 
region of importin α is essential for the regulation of 
cNLS-mediated protein transport. This region acts as 
an interacting domain for the nuclear export factor 
CAS, also known as Cse1, and nucleoporin 50 (Nup50, 
referred to as Npap60), which catalyze cargo dissociation 
and function as molecular ratchets that prevent futile 
cycles, allowing importin α to combine with RanGTP to 
be exported from the nucleus [46, 57]. The binding of 
importin α to the nucleoporin Nup153 was reported to 
promote the translocation of the cNLS-cargo-importin 
α-importin β1 trimeric complex into the nucleus [58]. 
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This observation is the first evidence that importin α 
within the trimeric complex actively contributes to the 
efficiency of cNLS-mediated cargo transport. These find-
ings suggest that importin α serves not only as an adap-
tor molecule between the cargo and importin β1, but also 
actively contributes to NPC-mediated translocation by 
the trimeric cNLS-cargo-importin α-importin β1 com-
plex [2, 47].

The cNLS-mediated protein transport mechanism can 
be conveniently divided into four steps: assembly of the 
cargo-carrier import complex in the cytoplasm, translo-
cation through the NPC, import-complex disassembly in 
the nucleus, and importin recycling [46].

Step 1: It has been demonstrated that more RanGDP 
protein is concentrated within the cytoplasm, and the 
cNLS of the cargo proteins are bound by the adaptor 
protein importin α, which is subsequently recognized by 
the carrier importin β1 to form a cNLS-cargo-importin 
α-importin β1 trimer. In the absence of importin β1, 
“NLS-like” sequences of the N-terminal IBB domain 
form an intramolecular bond with the NLS-binding site, 
inhibiting the interaction between importin α and the 
cNLS-cargo [59].

Step 2: Importin β1 does not directly interact with the 
cNLS-cargo but acts to direct importin α toward the 
NPC [59]. The number of NPCs in each nucleus varies 
depending on the organism, cell type and growth condi-
tions. Usually, mammalian cells contain ∼3,000 to 5,000 
NPCs [50]. The protein components of the NPC are 
known as nucleoporins (Nup). A single NPC contains 34 
different Nup types, most of which are conserved among 
different organisms, and each Nup is represented in mul-
tiple copies [60, 61]. Interaction of importin β1 with the 
NPC occurs through multiple phenylalanine-glycine (FG) 
repeats on the Nups, enabling the trimeric complex to 
translocate into the nucleus [62].

Step 3: Once the trimer complex is inside the nucleus, 
RanGTP binding causes a conformational change in 
importin β1, which releases the IBB region of importin 
α. This autoinhibitory domain, together with Nup50 and 

CAS, facilitates cNLS dissociation and delivery of the 
cNLS-cargo in the nucleus [42].

Step 4: After dissociation, importin α is exported from 
the nucleus by CAS in conjunction with RanGTP. The 
importin β1-RanGTP complex returns to the cytoplasm, 
where the GTP is hydrolyzed, releasing RanGDP from 
the importin, ready for reuse in the next round of trans-
port [47] (Fig. 1).

The mechanisms of ncNLS‑mediated protein transport
The early studies on cNLS revolutionized the field, but it 
quickly became apparent that many nuclear proteins do 
not contain classical monopartite (MP) or bipartite (BP) 
NLS, and must either use alternate entry mechanisms or 
piggyback on cargo proteins that do contain a classical 
NLS [50]. One example is the abundant hnRNPA1 pro-
tein, which shuttles efficiently between the nuclear and 
cytoplasmic compartments, but the sequence respon-
sible for shuttling, a PY-NLS, does not bind to importin 
α. Rather, hnRNPA1 was shown to be recognized by a 
novel protein, named importin β2, which belongs to the 
importin βs superfamily. Vast numbers of proteins are 
transported into and out of the nuclear by approximately 
20 species of importin βs superfamily nucleocytoplasmic 
transport receptors [65].

In general, PY-NLS-containing cargo proteins seem 
to be specifically imported by importin β2 [66]. By con-
trast, importin βs-dependent cargo proteins without a 
PY-NLS frequently use several importin βs-mediated 
nuclear import pathways [67]. Viral, ribosomal, and his-
tone proteins constitute the bulk of these cargo proteins 
[68]. The stimulated nuclear translocation of MAPKs can 
also directly interact with importin βs. It was shown that 
stimulated ERK directly interact with importin β7, while 
JNK and p38 form a trimer complex with importin β7 or 
importin β9 together with importin β3 and the kinase to 
facilitate the stimulated nuclear translocation of the latter 
[69]. This nuclear translocation requires the stimulated 
formation of heterotrimers composed of importin β3/
importin β7/MAPK or importin β3/importin β9/MAPK.

Table 2  Proteins related to the cNLS-mediated protein transport mechanism

* in Saccharomyces cerevisiae. NLS nuclear localization signal, NPC nuclear pore complex

Component Other names Function

Importin α Karyopherin α Adaptor that links cNLS-cargo to importin β1

Importin β Karyopherin β Transport factor that carries the cargo protein through the NPC

Ran Gsp1* Ras-superfamily GTPase that coordinates protein–protein interactions

CAS Cse1* A nuclear export factor dependent on importin α

RanGAP Ran1* GTPase-activating protein

RanGEF RCC1 Guanine nucleotide exchange factor

Nup50 NPap60 Acts as a molecular ratchet that prevents futile cycles
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It is worth noting that some proteins do not have 
NLS, but can use independent nuclear transport mecha-
nisms. One example is a specific armadillo repeats of the 
β-catenin protein, a key mediator of Wnt signaling [70]. 

The β-catenin has three distinct transport sequences: 
the N-terminal tail, C-terminal tail and Armadillo 
repeats10-12 [71]. These three regions, despite sharing 
no apparent sequence homology, are capable of binding 

Fig. 1  Schematic model of nucleoplasmic transport of cNLS-cargo protein. a Schematic model for cNLS-cargo protein import. The concentration 
of RanGDP protein in the cytoplasm is high, and cargo proteins with a cNLS are imported by the carrier importin β1, which binds them through 
the importin β1 binding (IBB) domain of the adaptor protein importin α to form the cNLS-cargo-importin α-importin β1 trimer under the action of 
various factors. Importin β1 directs importin α to the nuclear pore complex (NPC), and transfers the trimer complex to the nucleus by interacting 
with multiple phenylalanine-glycine (FG) repeats on the Nups [63]. The compartmentalization of RanGAP (GTPase activating protein) and RanEGF 
(guanine nucleotide exchange factor) is the basis of the proposed predominance of RanGDP in the cytoplasm and RanGTP in the nucleus [64]. b 
Schematic diagram of the cycle model of protein molecules related to nuclear transport. After passing through the NPC, the binding of RanGTP to 
importin β1 leads to the dissociation of importin β1 from the IBB domain of importin α. Nucleoporins such as Nup50 catalyze cargo dissociation 
and function as a molecular ratchet that prevents futile cycles. After dissociation, importin α is exported from the nucleus by CAS in conjunction 
with RanGTP. The importin β1-RanGTP complex is also returned to the cytoplasm, ready for reuse in the next round of transport
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Nup358, Nup62, Nup98 and Nup153 of the NPC, and 
thus of directly mediating β-catenin entry to the nucleus 
via sequential and transient interactions [72]. Addition-
ally, several publications showed that it is the direct inter-
action of importin β11 (IPO11) with β-catenin which 
mediates its nuclear import [73].

Similarly, Lyst et  al. found that the nuclear protein 
MeCP2 (Methyl-CpG binding protein 2) may pass 
through the nuclear pore complex in its NLS-independ-
ent manner and import proteins, which contains two 
sequence-specific DNA binding motifs, AT-hook1 and 
methyl-CpG binding domain (MBD). Among them, an 
intact MBD is sufficient for nuclear localization and then 
be retained in the nucleus due to its affinity for DNA [74].

Regulatory mechanisms of nuclear transport
A number of specific mechanisms precisely regulate 
nuclear transport in response to a variety of signals. Post-
translational modification (PTM) of signaling molecules 
through phosphorylation/dephosphorylation is the best-
understood mechanism through which nuclear transport 
is regulated by many different kinases/phosphatases [75, 
76]. During infection by influenza A virus, the phos-
phorylation and dephosphorylation of Ser9 and Tyr10 
controls the nuclear import of viral nucleoprotein (NP) 
by affecting the binding affinity between NP and differ-
ent isoforms of importin α [77, 78]. Like other protein 
modifications, arginine methylation serves to regulate 
protein–protein interactions. Arginine methylation was 
reported to play a role in nucleocytoplasmic protein dis-
tribution by inhibiting the import of some proteins into 
the nucleus, or alternatively by mediating the nuclear 
accumulation of others [39, 79]. Mallet et  al. published 
the first report of a functional role of arginine methyla-
tion in a cellular system by demonstrating that Arg161 
methylation of poly(A)-binding protein 2 (Pab2) down-
regulates PY-NLS-mediated nuclear import [38]. Fur-
thermore, acetylation was found to regulate the entry of 
proteins into the nucleus mainly by regulating the trans-
port ability of importin αs. Bannister et al. found that the 
binding of Rch1 (an importin α isomer, depend on acety-
lase CREB binding protein (CBP)) to importin β1 was 
increased approximately three to fourfold after it was 
acetylated at Lys22 [80].

Another regulatory mechanism that controls nuclear 
transport relies on the binding of NLS-containing cargo 
proteins to specific cytoplasmic or nuclear factors that 
serve to anchor or retain them in cytoplasmic or nuclear 
compartments [75]. In the absence of ligands, the glu-
cocorticoid receptor (GR) is retained in the cytoplasm 
through complexation with heat-shock protein HSP90. 
Upon ligand binding, GR is able to dissociate from HSP90 
and is then imported into the nucleus in NLS-dependent 

fashion [81]. The tumor-suppressor p53 similarly appears 
to be retained in the cytoplasm by the ubiquitin ligase 
p53-associated Parkin-like cytoplasmic protein (Parc) in 
the absence of stress stimuli [82].

Moreover, a recent report demonstrated that arginine-
rich dipeptide repeat proteins (DPRs) bind directly to 
importins and mediate importin condensation in a con-
centration- and repeat length-dependent manner [83]. 
This inhibits importin α/β1 and importin βs mediated 
nuclear import. One example is that C9orf72 arginine-
rich dipeptide repeat proteins (DPRs) can interact with 
importin βs, disrupt its cargo loading, and inhibit nuclear 
import of importin βs, importin α/β1, and cargoes in per-
meabilized mouse neurons and HeLa cells, in a manner 
that can be rescued by RNA [84, 85].

Conclusions and perspectives
NLS-mediated protein import into the nucleus is an 
important part of nuclear and cytoplasmic information 
exchange in cells. At present, there have been exam-
ples of the efficiency of cross-linking peptide modifica-
tion with nuclear localization signal content as vectors 
for intranuclear DNA delivery for the gene delivery into 
non-dividing cells [86]. Because of the remarkable effi-
ciency of NLS in disease treatment, its application has 
become a hot topic in life sciences. Nucleocytoplasmic 
trafficking is functionally and mechanistically diversified, 
serving not only to permit operation of the basal repli-
cation, transcription, and processing machinery, but also 
to regulate the cell cycle, transcriptional activation and 
repression, circadian rhythms, and a host of other pro-
cesses [50]. Classical NLS sequences have been used for 
artificial localization of green fluorescent protein (GFP) 
in the nucleus as a positioning marker, for measurement 
of the nuclear-cytoplasmic shuttling rate in living cells or 
for single molecules to track how a single protein travels 
through the nucleus [87–89]. In particular, many types 
of fluorescent proteins (FP) tagged with a NLS (FP-NLS) 
have been engineered as nuclear markers, as well as FP 
fusions with functional nuclear proteins (histone H2B, 
importin β et al.). The study of NLS can help reveal the 
nuclear transport mechanism of human and viral pro-
teins [90]. Also, it can help us discover novel functions of 
known proteins. Studies have shown that understanding 
the role of the NLS in the process of parvovirus infection 
and its mechanism of nuclear transport can contribute to 
the development of therapeutic vaccines and novel anti-
viral medicines [91]. Although the mechanism through 
which importin α/β1 recognize and transport proteins 
with cNLS into the nucleus has been understood reason-
ably well, it is necessary to further explore the regulatory 
mechanisms of importin entry, the expression of different 
members of the importin family in different species and 
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cell types, as well as the types of target proteins bound by 
importins. Finally, understanding the precise mechanism 
of translocation through the NPC remains an important 
future challenge.
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