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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy and its mortality continues to
rise globally. Because of its high heterogeneity and complex molecular landscapes, published gene signatures have
demonstrated low specificity and robustness. Functional signatures containing a group of genes involved in similar
biological functions may display a more robust performance.

Methods: The present study was designed to excavate potential functional signatures for PDAC by analyzing
maximal number of datasets extracted from available databases with a recently developed method of FAIME
(Functional Analysis of Individual Microarray Expression) in a comprehensive and integrated way.

Results: Eleven PDAC datasets were extracted from GEO, ICGC and TCGA databases. By systemically analyzing these
datasets, we identified a robust functional signature of subpathway (path:00982_1), which belongs to the drug
metabolism-cytochrome P450 pathway. The signature has displayed a more powerful and robust capacity in
predicting prognosis, drug response and chemotherapeutic efficacy for PDAC, particularly for the classical subtype,
in comparison with published gene signatures and clinically used TNM staging system. This signature was verified
by meta-analyses and validated in available cell line and clinical datasets with chemotherapeutic efficacy.

Conclusion: The present study has identified a novel functional PDAC signature, which has the potential to
improve the current systems for predicting the prognosis and monitoring drug response, and to serve a linkage to
therapeutic options for combating PDAC. However, the involvement of path:00982_1 subpathway in the
metabolism of anti-PDAC chemotherapeutic drugs, particularly its biological interpretation, requires a further
investigation.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer-related deaths worldwide and is
predicted to be the second in the United States and Europe
by 2030 [1, 2]. PDAC is regarded as a devastating malig-
nancy due to its aggressive nature, presenting at an ad-
vanced stage and resistance to most treatment modalities,
resulting in an overall 5-year survival rate at 9% [3], which
is the lowest 5-year survival rate among all solid malignan-
cies [4]. Such a poor outcome highlights an urgent need for
seeking novel biomarkers to predict survival and monitor
therapy response, which may also provide a more precise
link to therapeutic options for combating PDAC.
PDAC has a very complex molecular landscape [5]. Ef-

forts in deeply analyzing datasets have led to the discovery
of potential PDAC gene signatures, which contain various
numbers of distinguishable genes [6–16]. However, these
reported signatures have few overlapping component genes
with different functions, raising questions about their bio-
logical relevance, clinical significance and universal applica-
tion for the management of PDAC. Each of them only
reflects a specific biological trait because of cancer genetic
instability, profusion of gene expression and diverse mo-
lecular subtyping, given that a high degree of heterogeneity
among individuals and even within the same PDAC tumor
[17, 18]. On the other hand, functions of genes and path-
ways explain the major features of pancreatic tumorigenesis
and progression [19], thus functional signatures may display
more robust performance since they contain a group of
genes involved in similar biological functions [10, 20]. In
order to excavate functional mechanism-anchored signa-
tures, an analytical method called Functional Analysis of In-
dividual Microarray Expression (FAIME) has been
developed, which converts the transcriptomic information
into molecular functional profiles [21]. By employing
FAIME, we and others have identified several functional
signatures for lung cancer [22], melanoma [23] and meta-
bolic disorders [24]. We, therefore, designed the present
study aiming at seeking potential functional signatures for
PDAC by analyzing maximal number of datasets extracted
from available public databases with FAIME in a compre-
hensive and integrated way.

Materials and methods
Datasets
Seven datasets extracted from databases of Gene Expres-
sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/
geo/) by using appropriate searching strategies (Supple-
mentary Figure S1 and S2) were used as training sets,
and 3 datasets from International Cancer Genome Con-
sortium (ICGC) database (http://icgc.org/) and one from
The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) were used as test sets (Supple-
mentary Table S1).

Cell line datasets contained profiles of mRNA expres-
sion and drug sensitivity data of 44 and 32 human
PDAC cell line samples were extracted from databases
of Cancer Cell Line Encyclopedia (CCLE) and Genomics
of Drug Sensitivity in Cancer (GDSC) up to March of
2019, respectively.

Resources of pathways and subpathways
The pathway graphs were obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[25] by using an R-based package called SubpathwayMi-
ner [26] and converted into undirected graphs, where
genes were represented by nodes. The subpathway
graphs were defined based on the distance similarity rule
[26] so that the distance of any two gene nodes was no
larger than the cutoff k (default cutoff k = 3). Finally, a
total of 300 pathways and 1773 subpathways were in-
cluded in the study.

Methods of comprehensive and integrated analyses
Comprehensive and integrated analyses were performed
at levels of gene, subpathway and pathway by using vari-
ous combinations of training sets, which consisted of 5,
6 or 7 training datasets. An example of the procedure
for a combination of 5 datasets at the level of subpath-
way is shown in Fig. 1. The activities of each pathway
and subpathway were evaluated by using a method of
FAIME with modification [21].
Firstly, all the expressed genes (Ng) from each sample

were ranked in a descending order according to their ex-
pression levels, and the exponential decreasing weights
(w) were calculated for the ordered genes (wg, s) by using
Formula (1) as follows:

wg;s ¼ rg;s
� �

• e
rg;s
jN j

� �
ð1Þ

where rg, s is the rank for gene g in sample s, and ∣N∣,
the total number of genes in the sample. For analyzing
the subpathway graph i, a component-set subpathi indi-
cates that it satisfies component ∈ subpathi and N/sub-
pathi, all the other components not included in the
subpathway graph i. The score of subpathway i activity (
sPAsubpathi;s ) was calculated by using Formula (2) as
follows:
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The normalized score of subpathway activity ( sPA nor
msubpathi;s) was calculated by using Formula (3) as follows:
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sPA normsubpathi;s¼
sPAsubpathi;s−sPAsubpathi

S sPAsubpathi

� � ð3Þ

where sPAsubpathi is the mean score of subpathway ac-
tivity in all analyzed samples, and SðsPAsubpathiÞ, standard
deviation.
The P-value of each subpathway in each training set

was calculated by using a univariate Cox, and an inte-
grated prognostic score (ipScore) of each subpathway in
various combinations of training sets was calculated by
using Formula (4) as follows:

ipScore ¼

XN

i

− log10 P−valueið Þ

N
ð4Þ

where N (=5, 6 or 7) is the number of training sets in
combinations.
The ipScore for each pathway was calculated and nor-

malized to form the pathway activity matrix by using the

same method as described above. And for gene level
analysis, a univariate cox was performed based on the
gene expression level, and the ipScore for each gene was
calculated according to the Formula (4).

Meta-analyses
The software STATA (version 14) was employed to evalu-
ate hazard ratio (HR), and a funnel plot, the publication
bias. Heterogeneity was assessed by using the I2 statistic
according to the Cochrane handbook for systematic re-
views of interventions and I2 > 50% indicates the existence
of substantial heterogeneity. A fixed-effect model was used
to summarize the results when I2 < 50%, otherwise, a
random-effect model was used. The possible source of
heterogeneity was evaluated by sensitive analysis.

Statistical analyses
A univariate Cox method was employed to evaluate the cor-
relation between the signature and the survival. A K-mean
clustering method (K = 2) was performed for analyzing

Fig. 1 Outline of comprehensive and integrated analyses. An integrated prognostic score (ipScore) for each signature at gene, subpathway and
pathway levels was calculated as described in Materials and Methods. An analysis at subpathway level by using a combination of 5 training sets is
shown as an example
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multiple variable signatures. A log-rank test was used to
compare the difference in survival between the two groups.
Statistical analyses for hierarchical cluster, spearman correl-
ation, hypergeometric test, wilcoxon rank sum test and Cox
proportional hazards were performed by using an R soft-
ware package (Version 3.1.0). P-value < 0.05 is considered
statistically significant.

Results
Excavation of gene, subpathway and pathway signatures
An ipScore of each biomarker was calculated in 29 dif-
ferent combinations (each contained 5, 6 or 7 datasets)
of the 7 training sets. Based on their ranks, top 30 signa-
tures obtained from each combination were regrouped
into serial 28 sets, which contained 3–30 signatures (1st-
3rd, 1st-4th, 1st-5th … ...1st-30th), respectively, and were
further assessed in the 4 test sets (Fig. 2a). A high het-
erogeneity existed among different combinations, but
functional signatures showed a higher robustness than
gene signatures (Fig. 2a).
The appearing frequency of each signature from each

combination was counted in the other 28 combinations
at levels of gene, subpathway and pathway (Analytical
data File 1–3). Top counted signatures showed cumula-
tive effects as assessed in the test sets, the predictive
capacity became more robust when the number of signa-
tures was ≥10 (Supplementary Figure S3).
Based on their appearing frequency (cut-off ≥20) in all

the 29 combinations, 9 genes (Fig. 2b), 15 subpathways
(Fig. 2c) and 22 pathways (Fig. 2d) were selected as can-
didate signatures, whose relevance with PDAC was fur-
ther examined by using datasets of 3000 cancer-related
and 250 PDAC-related genes derived from Genetic As-
sociation Database (GAD). None of 9 gene signatures
are PDAC-related (Fig. 2b), in accordance with their
poor predictive ability (Fig. 2a). By analyzing the bio-
logical functions, commonalities, intersection points and
their subsidiary relationship, we chose three pairs (path:
00980_2/path:00980, path:00982_1/path:00982 and path:
00477_1/path:00477) for further analyses because they
were shown to be associated with cancer and/or PDAC
at both pathway and subpathway levels (Fig. 2c and d).

Identification of the path:00982_1 subpathway signature
We next analyzed whether these three pairs shared com-
mon genes at the levels of subpathway and pathway. As
shown in Fig. 3a, the path:00980_2 subpathway covered
all the genes of path:00982_1 subpathway, while path:
00980 pathway covered most genes (65/73, 89.04%) of
path:00982 pathway; but neither path:00477_1 subpath-
way nor path:04711 pathway shared any genes with the
other two pairs. The prognostic capacity of each signa-
ture was analyzed in each dataset by using a univariate
Cox analysis, which showed that the path:00980_2/path:

00980 and path:00982_1/path:00982 signatures had
higher predictive capacities than path:00477_1/path:
00477 signatures (Fig. 3b). Based on the above compre-
hensive and integrated analyses and considering the
number of genes and the overall predictive capacity, we
finally selected the path:00982_1 signature (Supplemen-
tary Figure S4 and Supplementary Figure S2) for further
analysis.

The path:00982_1 signature is a protective signature for
PDAC
Meta-analyses showed that the path:00982_1 signature
was a significantly protective factor for PDAC with an
overall pooled HR of 0.82 (95% confidence interval [CI]
0.77, 0.89; p < 0.001) (Fig. 4a). The funnel was generally
symmetrical without obvious publication biases, indicat-
ing the results of meta-analyses were credible (Fig. 4b).
However, the heterogeneity (I2 = 71.4%) was high as ana-
lyzed by using sensitivity analyses. The overall pooled es-
timate could be reduced by excluding GSE79668 and
TCGA datasets, and in particular, exclusion of TCGA
dataset made the overall pooled estimate even closer to
the lower CI limit (Fig. 4c). After further investigating
the detailed techniques employed for generating gene
expression profiles of each dataset, we found that RNA-
seq (RNA sequencing) techniques were used in
GSE79668 and TCGA datasets. We thus classified all the
datasets into microarray and RNA-seq subgroups. By
using meta-analyses, we found that the microarray sub-
group had an overall pooled HR of 0.71 (95% CI 0.61,
0.83; p = 0.053) and an I2 of 51.8%, indicating a low het-
erogeneity; however, the RNA-seq subgroup had an
overall pooled HR of 0.93 (95% CI 0.74, 1.16; p = 0.007)
and an I2 of 75.4%, indicating a high heterogeneity in
this subgroup (Fig. 4d). Based on the above results, we
postulate that the heterogeneity is caused by RNA-seq
techniques.
In addition, by using multivariate Cox analyses, we

found that the path:00982_1 signature was an independent
predictive factor as examined in all the available datasets,
which included clinical information of age, gender, ethni-
city, lymph nodes, grade, maximum tumor dimension,
TNM (tumor, lymph nodes & metastasis) stages, N classi-
fication, molecular subtype (classical and basal) and his-
tory of diabetes [27–29] (Analytical data File 4).

The path:00982_1 signature displays a higher prognostic
capacity for the classical subtype
By adopting a published classification [30], we stratified
PDAC patients into classical, quasi-mesenchymal (QM-
PDA) and exocrine-like subtypes. Except for GSE57495
and GSE79668 datasets (Supplementary Figure S5), PDAC
patients could be classified into three subtypes in the
other 9 datasets (Fig. 5). The path:00982_1 signature
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demonstrated a significant predictive capacity for the clas-
sical subtype in 7 datasets (exclusive of GSE71729 and
TCGA) (Fig. 5). By using another classification [31], we
stratified PDAC patients into classical, basal-like and
“others” subtypes. The path:00982_1 signature demon-
strated a significant predictive capacity for the classical
subtype in GSE21501, GSE28735, GSE62452 and ICGC.-
CA.seq datasets (Supplementary Figure S6).

The path:00982_1 signature appears to be associated
with the efficacy of chemotherapy for PDAC
The path:00982_1 subpathway belongs to the drug
metabolism-cytochrome P450 (CYP) pathway, which is re-
sponsible for drug response and the survival of PDAC pa-
tients [32–34]. We therefore explored its intervention with
anti-PDAC drugs contained in the standard chemothera-
peutic regimens FOLFIRINOX (folinic acid-fluorouracil-

Fig. 2 Excavation of potential signatures associated with PDAC. a The integrated prognostic score for each signature is calculated and assessed
as described in Materials and Methods. P-value is calculated and -log10 of P-value used as Y-axis. b-d Top-counted signatures identified at levels
of gene (b), subpathway (c) and pathway (d). Percentages of cancer- and PDAC-related genes are calculated and P-values, determined by a
hypergeometric test in (c) and (d). Significant results are marked by red color. “*” indicates that the pathway or subpathway was selected for
further analyses
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irinotecan-oxaliplatin) and gemcitabine plus nab-paclitaxel
[35, 36]. Since the data of oxaliplatin and nab-paclitaxel
were unavailable, we were only able to analyze the data of
half maximal inhibitory concentration (IC50) of irinotecan,
gemcitabine, cisplatin (belonging to platinum-based drugs
as oxaliplatin) and 5-fluorouracil in PDAC cell lines derived
from CCLE and GDSC databases (Analytical data File 5
and 6). A negative correlation was found between the IC50

of each drug and the activity of path:00982_1 subpathway
in PDAC cells of classical subtype though it was moderate
possibly because of small number of samples (Fig. 6a). We
next employed a permutation analysis, in which the same
number of samples of classical subtype were randomly se-
lected from total samples, and the correlation between the
path:00982_1 activity and the IC50 of each drug was calcu-
lated for 10,000 times. The number of times (N) was
counted when the correlation value was less than the real
correlation value, and P-value was calculated by using a
formula (N/10000). The results indicated that the real cor-
relation for irinotecan and gemcitabine was significant (P =
0.0248 and P = 0.0265, respectively) but not for cisplatin or
5-fluorouracil (P = 0.1546 and P = 0.0934, respectively) in
PDAC cells of classical subtype.

We next searched for available clinical chemother-
apy data in all the datasets and were only able to ex-
tract 63 and 50 cases from the ICGC.CA.seq and
TCGA datasets, respectively. Patients were classified
into subgroups depending on tumor responses,
complete response (CR), partial response (PR), stable
disease (SD) and progressive disease (PD). As shown
in Fig. 6b, the path:00982_1 activity in CR + SD sub-
groups was significantly higher than that in PD sub-
group extracted from ICGC.CA.seq dataset, in which
patients received the first-line chemotherapy. The
path:00982_1 activity was slightly higher in SD + PR
subgroups than PD subgroup, in which patients re-
ceived the second-line chemotherapy, but the differ-
ence did not reach significance (Fig. 6b). Among
cases extracted from TCGA dataset, the difference in
path:00982_1 activity between PD and CR subgroups
receiving gemcitabine or between PD and CR + PR +
SD subgroups receiving gemcitabine/FOLFIRINOX
was not significant (Fig. 6c). Because the number of
samples that contained intact data was too small, we
were unable to stratify these patients into molecular
subtypes for further analysis.

Fig. 3 Analysis of the overlapping relationship and predictive ability of signatures. a Overlapping genes of pathways and subpathways. “n”
indicates the number of genes. b The predictive ability of signatures in the 11 datasets. Hazard ratio and P-value are calculated by using a
univariate Cox analysis
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Discussion
Here we report a functional path:00982_1 subpathway
signature, which displays a robust and significant cap-
acity in predicting survival, drug response and chemo-
therapeutic efficacy of PDAC, particularly those of
classical subtype, accounting for 48.5% of all PDAC sub-
types (Fig. 5). To our knowledge, this may be the first
functional signature identified from a systematic study
of the largest number of PDAC datasets involving com-
prehensive and integrated analyses with FAIME.
The TNM staging system is a globally recognized

standard for classifying the extent of spread of cancer
and is widely accepted for predicting the prognosis and
guiding treatment options for PDAC. The N classifica-
tion of the 8th Edition of the American Joint Committee
on Cancer (AJCC) scheme for PDAC, particularly re-
cently proposed LNR (lymph node ratio)-based N classi-
fication for respectable PDAC, has been shown to more
accurately predict patient response [27–29]. Therefore,
we employed a multivariate Cox analysis to compare the
predicting power of our signature with this clinical

system. As shown in Analytical data File 4, only N classi-
fication in GSE21501 dataset, TNM staging in
GSE57495 dataset and number of positive lymph nodes
in TCGA dataset were significantly correlated with the
prognosis. The results indicate that this clinical system
needs further optimization in predicting the prognosis of
PDAC, in accordance with a previous study [30]. In
comparison, the path:00982_1 signature displayed a sig-
nificant predictive capacity in 5 datasets (P < 0.05) and a
marginally significant predictive ability in 2 datasets
(0.1 < P > 0.05) in this analysis (Analytical data File 4).
Until now, 11 studies on the identification of gene sig-

natures in PDAC have been published [6–16]. By using
multivariate Cox methods, we retrospectively analyzed
the predictive capacity of these signatures in the present
11 datasets, in comparison with the path:00982_1 signa-
ture. The results showed that the path:00982_1 signature
was more robust than any of the published gene signa-
tures (Supplementary Table S3). For instance, the most
powerful signature reported by Haider, et al. [8] among
all the published gene signatures was shown to be

Fig. 4 Meta-analysis of the predictive capacity of path:00982_1 signature. a Forest plots of pooled hazard ratio for analyzing the impact of
path:00982_1 signature on the survival in each dataset. b Funnel plots of meta-analysis. c Sensitivity analysis of meta-analysis. d Forest plots for
analyzing the impact of path:00982_1 signature in two subgroups, microarray (the upper panel) and RNA sequencing (the middle panel). I-square
and P-value in each subgroup (subtotal) and for all datasets (overall, the lower panel) are calculated. ES, estimates; CI, confidence interval
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significant in 6 datasets, while the path:00982_1 signa-
ture was significant in 7 datasets. In addition, our study
has used 7 training sets and 4 test sets, while maximal 4
datasets including only one test set were used in any of
the above 11 published studies. More advantageously the
path:00982_1 signature was verified for different PDAC
molecular subtypes and further validated in cell line and
clinical datasets with chemotherapeutic efficacy [35, 36].
Chemotherapy plays an important role in the manage-

ment of PDAC because of its aggressive nature and be-
ing diagnosed at an advanced stage [36, 37]. The path:
00982_1 subpathway is located at the downstream of
CYPs (Supplementary Figure S7), which constitute a
large enzyme family that account for about 75% of the
total drug metabolism [38]. Therefore, we analyzed the
correlation of clinically used anti-PDAC chemotherapeu-
tic drugs and the activity of path:00982_1 subpathway in
available cell line and clinical datasets. The correlation
between IC50 of each drug (irinotecan, gemcitabine, cis-
platin and 5-fluorouracil) and path:00982_1 activity was
only moderate though the correlation was higher in clas-
sical subtype than in the overall samples. To further
analyze the data, we adopted a permutation analysis,
which confirmed that the real correlation for irinotecan

and gemcitabine was significant but not for cisplatin or
5-fluorouracil in PDAC cells of classical subtype. We
next analyzed the path:00982_1 activity in PDAC pa-
tients, who were classified based on tumor response to
chemotherapy. A significant result was found in patients
receiving the first-line chemotherapy but not the
second-line chemotherapy in the ICGC.CA.seq dataset,
and not in TCGA dataset as well. Because that the path:
00982_1 subpathway is composed of four groups of en-
zymes (Supplementary Table S2) [25], we further studied
these enzymes and tried to seek the association with the
above chemotherapeutic drugs. CYP2A6 participates in
the metabolism of fluorouracil and CYP3A4 is involved
with irinotecan pharmacokinetics [39], CYP2A6 is asso-
ciated with the efficacy of SOX (S-1 plus oxaliplatin)
regimen [40], and CYP4F2 partakes in the metabolism of
gemcitabine [41]. However, majority of molecules in this
subpathway are unable individually to exhibit a signifi-
cant predictive ability (Analytical Data File 7) by using a
univariate Cox method to evaluate the correlation be-
tween each gene and the survival of PDAC patients. The
unexpected results may imply that this functional signa-
ture should be treated as an integrated enzyme complex,
in which the 31 enzymes interact each other and work

Fig. 5 The prognostic capacity of path:00982_1 signature in different PDAC subtypes. PDAC patients in each dataset are stratified into three
subtypes: Classical, Quasi-mesenchymal (QM-PDA) and Exocrine-like, with the classification [30]. Hazard ratio and P-value for each subtype are
calculated. Data from 5 training datasets and 4 testing datasets are shown in the upper and lower panels, respectively. A number in red color
indicates a significance
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jointly to generate a biological function. The present re-
sults also emphasize the necessity of exploring functional
signatures, rather than individual genes for PDAC with a
high degree of heterogeneity [17, 18]. However, the role
of path:00982_1 subpathway in the metabolism of anti-
PDAC chemotherapeutic drugs, particularly its biological
interpretation, requires further investigation.
The present study has several limitations, which need

to be coped in the future. One is that the identified sig-
nature has not been verified in low-throughput experi-
ments and the key nodes involved in this subpathway

signature needs to be further mined. Another limitation
is that the patients were not stratified into PDAC sub-
types due to the small number of samples in available
clinical datasets that contained intact profiles of chemo-
therapy efficacy, survival and gene expression, which
may be the reason why the correlation between path:
00982_1 activity and tumor response to chemotherapy
was not shown to be significant. Finally, the predictive
ability of this signature was not exhibited in 4 out of 11
datasets possibly because of a high inter-study hetero-
geneity resulting from the sample processing, diverse

Fig. 6 Correlation of path:00982_1 signature and chemotherapeutic effects. a Correlation of path:00982_1 activity and the IC50 of each
chemotherapeutic drug against PDAC cell lines derived from CCLE and GDSC databases. R value is calculated by using a Spearman method. b, c
Correlation of path:00982_1 activity and chemotherapeutic efficacy in the ICGC.CA.Seq (b) and TCGA (c) databases. Tumor responses are classified
into complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). P-value is calculated by using a Wilcoxon rank
sum test. “n” in brackets refers to the number of patients. “Classical” indicates “classical subtype” according to the classification [30]
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molecular subtyping and particularly RNA-seq tech-
niques. The results also suggest that FAIME may not be
suitable for analyzing those datasets when the gene ex-
pression profiles were generated by using RNA-seq tech-
niques possibly because that FAIME was developed for
microarray expression profiles.

Conclusion
In summary, the present study has identified a novel ro-
bust functional signature, which displays a more power-
ful capacity in predicting the survival and chemotherapy
response for patients with PDAC of classical subtype
than the published gene signatures and the TNM staging
system. This discovery may have an impact to some ex-
tent on clinical PDAC practice in the future in three as-
pects. Firstly, PDAC patients, particularly those of
classical subtype, could be selected based on the activity
of this subpathway so that chemotherapeutic regimens
would be precisely and effectively targeted to those with
higher path:00982_1 subpathway activity. Secondly, the
signature could be used to improve the current systems
for predicting the prognosis and monitoring drug re-
sponse. Finally, interventions that increase the activity of
this subpathway may be applied together with anti-
PDAC drugs so that the efficacy of current chemother-
apy may be improved. However, the present study has
several limitations as mentioned above, and the involve-
ment of path:00982_1 subpathway in the metabolism of
anti-PDAC chemotherapeutic drugs, particularly its bio-
logical interpretation, requires further investigation.
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