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HYPOTHESIS

On the role of bacterial metalloproteases 
in COVID‑19 associated cytokine storm
László Földvári‑Nagy1, Tamás Schnabel2, Gabriella Dörnyei1, Tamás Korcsmáros3,4 and Katalin Lenti1* 

Abstract 

The cytokine release syndrome or cytokine storm, which is the hyper-induction of inflammatory responses has a 
central role in the mortality rate of COVID-19 and some other viral infections. Interleukin-6 (IL-6) is a key player in the 
development of cytokine storms. Shedding of interleukin-6 receptor (IL-6Rα) results in the accumulation of soluble 
interleukin-6 receptors (sIL-6R). Only relatively few cells express membrane-bound IL-6Rα. However, sIL-6R can act 
on potentially all cells and organs through the ubiquitously expressed gp130, the coreceptor of IL-6Rα. Through 
this, so-called trans-signaling, IL-6–sIL-6R is a powerful factor in the development of cytokine storms and multiorgan 
involvement. Some bacteria (e.g., Serratia marcescens, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria mono-
cytogenes), commonly considered to cause co-infections during viral pneumonia, can directly induce the shedding of 
membrane receptors, including IL-6Rα, or enhance endogenous shedding mechanisms causing the increase of sIL-6R 
level. Here we hypothesise that bacteria promoting shedding and increase the sIL-6R level can be an important con‑
tributing factor for the development of cytokine storms. Therefore, inhibition of IL-6Rα shedding by drastically reduc‑
ing the number of relevant bacteria may be a critical element in reducing the chance of a cytokine storm. Validation 
of this hypothesis can support the consideration of the prophylactic use of antibiotics more widely and at an earlier 
stage of infection to decrease the mortality rate of COVID-19.

Keywords:  IL-6, Cytokine storm, Metalloprotease, Bacteria, COVID-19

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
As of 16 October 2020 the worldwide mortality rate of 
COVID-19 caused by the SARS-CoV-2 virus is approxi-
mately 2.5% (49,727,316 confirmed cases, 1,248,373 
deaths), but in specific countries, the current mortality 
rate can be much higher, e.g., Italy 4.5%, UK 4.2% [1]. The 
possibility that cytokine release syndrome or cytokine 
storm stands behind the severe cases of COVID-19 has 
been raised by several research groups [2–6]. Cytokine 
storm is a hyperreaction of the immune system, driven 
by a sudden increase in interleukin levels [7] often due 
to a sudden increase in viral load [8]. The cytokine storm 
has also been described previously for several infections 

e.g., H1N1 [9–11], H5N1 [12] influenza, MERS-CoV [13] 
and SARS-CoV [14] and we recently analysed the key 
cytokines involved in these infections [15].

One of the central protein molecules in the cytokine 
storm is interleukin-6 (IL-6). Monocytes, endothelial 
cells, fibroblasts, and activated Th2 cells produce IL-6 
[16]. Viral infection induces IL-6 production through 
TNF-α [17–19].

IL-6 acts on the IL-6 receptor (IL-6R). IL-6R is a pro-
tein expressed primarily in hepatocytes, megakaryo-
cytes, and leukocytes [20, 21]. The IL-6R cell surface 
receptor complex consists of an 80  kDa IL-6 binding 
subunit, called gp80 (IL-6Rα), and a 130  kDa signaling 
subunit, called gp130 [22, 23]. The extracellular part is 
responsible for IL-6 binding. The resulting IL-6–IL-6Rα 
complex binds to gp130, causing gp130 to homodimer-
ise (Fig.  1a). The intracellular region of homodimerised 
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gp130 activates signalling [24, 25]. On the cells express-
ing IL-6Rα, IL-6Rα binds to gp130 membrane receptors, 
resulting in a cell-dependent response of IL-6 through 
activation of gp130 [21]. Gp130 is found not only on the 
surfaces of cells expressing IL-6Rα, but on nearly all cells 
in almost every organs [16, 26]. Thus, gp130 is also found 
on the surface of cells that, in the absence of the IL-6Rα 
receptor, are normally unaffected by IL-6.

The extracellular part of IL-6Rα can be cleaved by met-
alloproteases in a process called shedding [27, 28]. These 
metalloproteases can be endogenous metalloproteases 

such as ADAM10 and ADAM17 [29, 30] and exogenous 
bacterial metalloproteases [31] that cleave IL-6Rα to gen-
erate soluble IL-6Rα (sIL-6R). SIL-6R can bind IL-6 sim-
ilarly as IL-6Rα, and promotes the IL-6 signal to gp130 
(Fig. 1b) [32, 33]. Signaling via sIL-6R is called trans-sign-
aling [34, 35].

Many pathogenic bacteria affect IL-6 signaling through 
several direct and indirect mechanisms. First, they can 
induce higher IL-6 expression [36]. Second, they produce 
exogenous metalloproteases that stimulate the formation 
of sIL-6R by the shedding. Exogenous metalloproteases 
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Fig. 1  The mode of action of IL-6. a IL-6 binds to membrane-bound IL-6Rα (gp80). The IL-6–IL-6Rα complex binds to gp130 membrane receptor, 
which is responsible for signaling. IL-6 acts on cells expressing IL-6Rα. b Metalloproteases are able to cleave the exodomain of membrane-bound 
IL-6Rα (gp80). Bacterial exogenous metalloproteases are directly capable of IL-6Rα shedding. In addition, bacteria are able to solubilize IL-6Rα by 
activating endogenous metalloproteases. The resulting soluble sIL-6R binds IL-6 with the same affinity as membrane-bound IL-6Rα. The IL-6–sIL-6R 
complex is also able to bind to the gp130 membrane receptor on cells that do not express IL-6Rα, thus affecting organs that would not be affected 
by IL-6 and the cytokine storm. This mechanism may contribute to the development of multiorgan involvement in the cytokine storm
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from many bacteria, such as Bacillus subtilis, Serratia 
marcescens, Staphylococcus aureus, Pseudomonas aer-
uginosa, Listeria monocytogenes are able to cleave IL-6Rα 
and other cell surface receptors [31, 37]. Bacteria-cleaved 
sIL-6R exhibits the same biological activity as those 
that are cleaved by endogenous metalloproteases or the 
membrane-bound IL-6Rα itself [31, 38]. The same activ-
ity includes that these sIL-6Rs are capable to induce IL-6 
signaling in other, often distant cells through trans-sign-
aling (Fig. 1b) [31, 33]. Third, bacteria can also be stimu-
lators of endogenous receptor shedding by producing 
substances and toxins [38–40]. Bacterial toxins at very 
low, even at ng/ml concentrations, can induce a drastic 
(up to 50%) cleavage of IL-6Rα in a very short time (in 
10 min) resulting in measurable physiological effect [38]. 
For example, the toxins streptolysin O by Group A Strep-
tococcus (GAS) and hemolysin by Escherichia coli can 
induce the release of IL-6Rα from human monocytes and 
macrophages [38, 41]. The lipoteichoic acid toxin of S. 
aureus stimulates, for example, ADAM10, which not only 
solubilizes IL-6Rα, but also influences EGF receptor acti-
vation by playing a role in HB-EGF ectodomain shedding. 
Through the HB-EGF ectodomain shedding, the toxin of 
S. aureus activates the production of mucin in the lung, 
leading to airway obstruction, which is also a problem 
in COVID-19 infection [42]. S. aureus and P. aeruginosa 
induce IL-6Rα shedding by stimulating ADAM17 [36]. 
Because of all the reasons above, it is highly important 
to acknowledge that in a number of bacterial infections 
the exogenous or endogenous metalloprotease levels and 
their activity are elevated [31, 38]. Even if the bacteria do 
not manifest a disease, it can cause high levels of sIL-6R, 
and through the formation of IL-6–sIL-6R complexes, it 
can significantly increase the number of cells and organs 
responding to IL-6 signaling (Fig. 1b) [43–45].

Presentation of the hypothesis
Based on the known direct and indirect effect of certain 
bacterial species to increase the level of sIL-6R [31, 38], 
and the previously published role of the IL-6‒sIL-6 com-
plex in forming cytokine storms [46], here we propose 
that these bacterial species could be key contributors to 
induce the IL-6 mediated cytokine storms.

Many bacterial species with exogenous metallopro-
teases that increase the level of sIL-6R are also the most 
common co-infections in viral pneumonia [47]: S. aureus, 
Klebsiella pneumoniae, P. aeruginosa, and S. marcescens. 
We hypothesise that the presence of any of these or simi-
lar bacteria at the time of a viral infection can lead to an 
increased level of sIL-6R and exacerbation of the severe 
disease processes, including multiorgan involvement and 
cytokine storms. Thus, the presence of these bacteria 
should be considered not only as cause of co-infections 

but as predisposing factors, which may worsen the out-
come of SARS-CoV-2 virus infection by enhancing IL-6 
mediated signaling.

Our hypothesis fits perfectly with the two-hit model of 
systemic inflammation caused by lung injury leading to 
cytokine storm. Recently, the two-hit model was applied 
to SARS-CoV-2 infection, where following lung injuries, 
as a first hit cytokine (e.g., IL-6) release is increased, then 
the released cytokines and other factors induce inflam-
mation in the lungs [48]. Through the stimulation of bone 
marrow, cytokines induce further lung inflammation. 
This feedback loop, as a second hit results in a cytokine 
storm [48]. We point out here that the initial lung injury 
can be the result of or associated with the preliminary 
presence in the host of bacterial species capable of induc-
ing metalloproteases.

Testing the hypothesis
The proposed hypothesis is complex to test but it is pos-
sible. One approach should aim to demonstrate the role 
of a bacterial predisposition, in particular the role of 
metalloproteases in increasing the cytokine storm effect 
upon SARS-CoV-2 infection through increased IL-6/sIL-
6R levels. Ideally, this experiment should be in  vivo to 
demonstrate the physiological relevance of the proposed 
model. Another approach should validate the relevance 
of these findings in infected human lung models, which 
recapitulate COVID-19.

To demonstrate the physiological relevance of our 
hypothesis, rodent models would be adequate, such as 
hACE2 transgenic mice or hamsters, as they generate 
similar immune responses to humans upon SARS-CoV-2 
infection [49]. In this in vivo experiment, animals would 
be pre-treated with one of the bacterial species listed 
above (e.g., S. aureus, P. aeruginosa, S. marcescens), fol-
lowed by SARS-CoV-2 infection. The experiment would 
contain the following conditions: (1) normal control (no 
treatment), (2) only bacterial pre-treatment, (3) only 
SARS-CoV-2 infection, (4) both bacterial pre-treatment 
and SARS-CoV-2 infection. Furthermore, we propose 
to generate a bacterial strain that lacks its known and 
key metalloprotease (e.g., S. marcescens metallopro-
teinase) and use it in additional conditions to demon-
strate the metalloprotease dependency of the observed 
changes. We suggest measuring the serum level of sIl-6r 
and cytokine storm markers (Il-8, Il-18, Ang-2 and von 
Willebrand factor) [50] in five time points over 3 weeks 
to capture the dynamics of the cytokine storm. In addi-
tion, while it is not essential to directly prove the hypoth-
esis, after sacrificing the animals, key organs such as 
lung, kidney, brain or the intestine can be used to gain 
deeper understanding of local tissue damage in the vari-
ous conditions. The measurements from each condition 
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can be compared to establish: (a) the effect of bacterial 
pre-treatment on the dynamics of cytokine storm devel-
opment (using condition 3 vs 4, and condition 2 as a con-
trol); (b) the role of a bacterial metalloprotease in the 
cytokine storm dynamics (comparing measures upon 
pre-treatment with wild-type and metalloprotease lack-
ing bacterial strains in condition 2 and condition 4 sepa-
rately. We assume to prove our hypothesis, comparison 
of condition 3 versus 4 will result in decreased time and 
potentially increased level for cytokine storm markers, 
and these levels would correlate with the serum level of 
sIl-6r.

To validate the relevance of the hypothesis for human 
COVID-19 and to confirm the specific role of the met-
alloproteases in this process, we propose to use human 
lung organ chip systems, such as the one created recently 
by Zhang et  al. [51]. Here using similar conditions as 
proposed above, the production of Ang-2 and von Wille-
brand factor from the endothelial cells can be measured 
and compared between the same conditions. Further-
more, this experimental model will enable us to add only 
specific metalloproteases or bacterial toxins to the sys-
tem, like SMP (Serratia marescens metalloproteinase), 
hemolysin (E. coli) or Streptolysin O (Group A Strepto-
coccus) and not living bacteria. With this approach we 
can eliminate the co-infection related complex effect pro-
posed in the previous experiment, and address the role of 
these specific metalloproteases (one in each experiment 
with three conditions based on previous publications 
[38]. Finally, to validate the proposed mechanism itself, 
this experimental system also allows to model the effect 
of increased IL-6 even without SARS-CoV-2 infection. By 
adding IL-6 to the microfluidic system with and without 
the presence of bacterial pre-treatment, one can measure 
sIL-6R levels and key IL-6 target gene expression changes 
with qPCR.

Implications of the hypothesis
Validation of our hypothesis will support efforts to 
reduce the risk of developing life-threatening conditions, 
for example by initiating appropriate antibiotic therapy 
prophylactically in the early stages of infection. For those 
at risk and/or those with underlying health conditions it 
would be worthwhile to reconsider the treatment recom-
mendations to minimize sIL-6R shedding much earlier, in 
the initial stage of the disease. We recommend consider-
ing the administration of antibiotics to reduce the likeli-
hood of developing a cytokine storm.

Several studies suggest that treatment of COVID-19 
patients with antibiotics may be important for the pre-
vention and treatment of bacterial co-infections [52–
54]. However, treatment protocols/recommendations 
recommend antibiotic treatment in case of bacterial 

co-infections [47, 55, 56], often in patients with develop-
ing severe conditions or in the case of multiorgan failure.

Medical recommendations are usually very cautious 
about the use of antibiotics due to the risk of developing 
antibiotic-resistant bacterial strains. In addition, cau-
tion is advised as some antibiotics act by stimulating the 
immune response (increasing the amount of IL-6, IL-1, 
TNF-α), which can potentially induce a cytokine storm, 
thus helping to develop a life-threatening condition [57].

Based on the physiological processes mentioned above, 
it is probable that an earlier introduced antibiotic treat-
ment to a wider population may contribute to a better 
prognosis. This may be particularly important in virus 
infected closed communities (e.g., nursing homes, non-
COVID-19 hospital wards).

In case of clinical approval of the efficacy of our sug-
gestion, it would be important to test similar antibiotic 
treatment for other viral diseases threatening to develop 
a cytokine storm (such as H1N1, MERS-CoV, SARS-
CoV), and after confirmation include the antibiotics in 
the respective treatment protocol.

Limitations and further considerations
Further analysis on the effectiveness of the empirical 
antibiotic treatment is recommended in clinical stud-
ies. Considering the huge variety of chronic diseases and 
the various use of antibiotic regiments, it is going to be 
difficult to randomise the required data in an extensive 
clinical study. Therefore, we suggest data examination 
through the means of meta-analysis and/or systematic 
review. Planning of such study would require sufficient 
general data of the patients, their chronic diseases and 
the antibiotics used prior to and during their treatment. 
There are multiple integrated global resources already 
available for researcher, like the commercial IBM Mar-
ketScan® [58], Clinical Practice Research Datalink [59] 
and Premier® Healthcare Database (PHD) [60]. They con-
tain data of patients currently under antibiotics for a dif-
ferent reason and their hospitalization rates, CRP levels, 
ventilation and need of ICU. In the near future, analysing 
these databases could indicate the possible role of bacte-
rial infection in the severity of COVID-19. While these 
meta-analysis studies would provide indirect evidence, 
they could be complemented with those direct valida-
tory experiments we propose above. Data extraction and 
randomisation from retrospective and case studies would 
not require any additional clinical testing.

The higher level of sIL-6R proved to be correlated with 
diseases e.g., asthma [61] and dermatitis [62]. It is pos-
sible to measure the sIL-6R level from serum or spu-
tum [63] of patients at a very early stage of infection or 
those at risk of SARS-CoV-2 infection. These data may 
provide information to define possible predictive sIL-6R 
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risk levels. Defining key sIL-6R levels that can predict the 
potential outcome of the infection would help to plan the 
most effective, personal treatment for each patient. How-
ever, it is important to note that the sIL-6R level can be 
influenced by many circumstances (advanced stage of 
COVID-19 infection, other diseases, genetic differences, 
alternative splicing etc.). Therefore, the measurement of 
sIL-6R level can be a useful and effective predictive tool 
but not specific to measure the influence of bacterial 
induced metalloproteases.

In several countries a higher rate of mortality asso-
ciated to COVID-19 is observed in Black, Asian and 
Minority Ethnic (BAME) communities [64, 65]. There 
is no explanation for the difference yet. Among the pos-
sible reasons, a relevant difference in the bacterial flora 
cannot be ruled out. However, the polymorphism of the 
IL-6 and IL-6R genes in different ethnic groups is more 
likely to be behind the observed difference [66, 67]. These 
polymorphisms can be associated with differences in 
the incidence of certain diseases (e.g., atrial fibrillation, 
cancer) between ethnic groups [67–69]. Our hypoth-
esis study does not cover the study of such differences, 
only the description of the hypothesised mechanism and 
the prevention or alleviation of diseases associated with 
cytokine storms, respectively. However, the problem of 
different mortality of ethnic groups is important from a 
clinical point of view, so it would be worthwhile to exam-
ine this in more detailed, subsequent studies.

As it was shown for COVID-19 infection that levels of 
IL-6, along with IL-8 and TNF-α, were powerful predic-
tors of severity and survival at the time of hospitalization 
[70], using IL-6 inhibitors could be a promising therapy 
against sever COVID-19. At present however it is too 
early to declare whether IL-6 inhibitors, such as Tocili-
zumab (TCZ) will prove to be efficient. In a number of 
single centre studies TCZ seems to be effective [71–73] 
but other studies do not seem to report positive results 
[74, 75]. The systematic reviews and meta-analysis data 
still have a high grade of bias due to the high variation of 
therapeutic schemes [76]. If any gp130 antagonist or any 
IL-6 inhibitor/antibody treatment would prove to be effi-
cient in the future, it would support our theory.

Patients may face serious conditions and complications 
that are typically associated with COVID-19 infection 
at a later stage (e.g., COVID-19 Associated Lung Injury, 
Diffuse Alveolar Damage, edema, respiratory failure etc.) 
[48]. These diseases can lead to serious, life-threatening 
conditions and can induce a cytokine storm as a conse-
quence of lung damages and inflammation. In this paper, 
we wanted to draw attention to the risk factors in the 
very early stages of COVID-19 infection and potential 
options for their elimination. While there are multiple 
reasons that can lead to the development of a cytokine 

storm especially in the later stages of COVID-19 infec-
tion, bacterial induced elevation of sIL-6Rs as a result of 
early and preceding bacterial infections could be one of 
the causes that can be well controlled. Removing these 
bacterial infections will not eliminate all the causes, espe-
cially those caused by subsequent severe conditions, but 
it can have an important preventive effect in a hopefully 
significant part of the cases or groups at risk.
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