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Abstract

Background: Fibroblasts are the powerhouses responsible for the production and assembly of extracellular
matrix (ECM). Their activity needs to be tightly controlled especially within the musculoskeletal system, where
changes to ECM composition affect force transmission and mechanical loading that are required for effective
movement of the body. Extracellular vesicles (EVs) are a mode of cell-cell communication within and between
tissues, which has been largely characterised in cancer. However, it is unclear what the role of healthy fibroblast-
derived EVs is during tissue homeostasis.

Methods: Here, we performed proteomic analysis of small EVs derived from primary human muscle and tendon
cells to identify the potential functions of healthy fibroblast-derived EVs.

Results: Mass spectrometry-based proteomics revealed comprehensive profiles for small EVs released from healthy
human fibroblasts from different tissues. We found that fibroblast-derived EVs were more similar than EVs from
differentiating myoblasts, but there were significant differences between tendon fibroblast and muscle fibroblast
EVs. Small EVs from tendon fibroblasts contained higher levels of proteins that support ECM synthesis, including
TGFR1, and muscle fibroblast EVs contained proteins that support myofiber function and components of the
skeletal muscle matrix.

Conclusions: Our data demonstrates a marked heterogeneity among healthy fibroblast-derived EVs, indicating
shared tasks between EVs of skeletal muscle myoblasts and fibroblasts, whereas tendon fibroblast EVs could play a
fibrotic role in human tendon tissue. These findings suggest an important role for EVs in tissue homeostasis of both
tendon and skeletal muscle in humans.
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Background

Fibroblasts are cells responsible for producing extracellu-
lar matrix (ECM) and their activity is tightly regulated. For
examples, too much or too little ECM causes fibrosis or
tissue frailty, respectively, and changes to the ECM com-
position will affect both the mechanical properties and the
biochemistry of the tissue. A relatively new mechanism by
which fibroblasts can be regulated is via extracellular vesi-
cles (EVs), which are cell-released lipid membrane encap-
sulated particles. The two most studied subtypes of EVs
are exosomes, which are 50—150 nm vesicles that are de-
rived from the endosomal pathway and microvesicles
(sometimes referred to as ectosomes), which are from 100
nm up to 1 pm in size and are formed by direct budding
of the plasma membrane [1, 2]. Although they have differ-
ent routes to their formation there are no specific protein
markers to differentiate them [2, 3]; Many marker proteins
for exosomes are also present in microvesicles [2], which
include tetraspannins (e.g. CD81), heat shock proteins,
components of the endosomal sorting complexes required
for transport (ESCRT), integrins and regulators of intra-
cellular trafficking (e.g. Ras-associated binding proteins,
annexins and clathrins). The molecular content of exo-
somes is, however, highly specific to the cell of origin and
can be passed on to other cells as part of intra- and inter-
tissue communication [4-7]. How exosomes and other
EVs from healthy fibroblasts regulate tissue homeostasis is
unknown and the lack of biomarkers makes them difficult
to study.

Multiple studies have demonstrated that exosomes and
microvesicles are able to dock and fuse with cells to deliver
functional protein cargo, as well as micro RNAs and mes-
senger RNAs [2, 3, 5]. The most studied examples of
exosome-mediated crosstalk with fibroblasts are in tumour
growth and metastasis [8, 9]. Exosomes produced by cancer
cells activate stromal fibroblasts to become cancer-
associated fibroblasts (CAFs) and exosomes released from
CAFs induce metastatic properties in cancer cells lines and
have also been demonstrated to reprogram stromal fibro-
blasts in the pre-metastatic niche [6, 10, 11]. Induction of
the pro-tumour progression phenotype in normal stromal
fibroblasts is attributed to transforming growth factor 1
(TGEP1) that is localised inside CAF exosomes [6, 11]. We
hypothesised that EVs from healthy fibroblasts also regu-
lates the ECM during tissue homeostasis and they do so via
their tissue-specific, functional cargo.

In the musculoskeletal system tendon fibroblasts make
large amounts of type I collagen whereas muscle fibro-
blasts make more type III than type I collagen, and in
smaller amounts than tendon [12, 13]. Treatment of
tenocytes in a number of in vitro and in vivo experimen-
tal models with EVs from various sources, e.g. plasma
[14], adipose stem cells [15], tendon progenitors [16],
macrophages [17], have demonstrated that signalling
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through EVs can modulate the expression of genes that
regulate ECM synthesis and remodelling. Exosomes derived
from tendon cells have also been reported [18, 19]; and one
study showed that tendon cell-derived exosomes induce the
expression of tenogenic genes in bone marrow-derived mes-
enchymal stem cells in a TGFp-dependent manner [19].
Compared to tendon, muscle is a more complex tissue with
more than one cell type. Collagen synthesis by muscle fibro-
blasts is tightly regulated and exosomes derived from satellite
cells play a role in preventing fibrosis in healthy muscle tis-
sues [20]. Interestingly, tendon rupture in humans and ani-
mal models causes an increase of type I collagen in the
adjacent muscle tissue, which correlates to increased muscle
stiffness and decreased muscle function [12, 21-26]. Estab-
lishing the biochemistry of healthy fibroblast EVs may be a
crucial first step in understanding their role when tissues are
damaged.

Exosomes and other EVs have great potential as a non-
invasive source of biomarkers for disease detection and mon-
itoring as they can be isolated from various bodily fluids in
addition to blood, including urine, saliva, breast milk and
sweat [7, 27, 28]. In order to determine the health status of a
specific tissue from a pool of EVs derived from all the tissues
in the body, we must be able to isolate tissue-specific exo-
somes and the identification of membrane-localised proteins
can aid the capture of EVs for targeted analyses. Recent stud-
ies have demonstrated that EV surface proteins bear charac-
teristics of their tissue of origin and these EVs can be
captured from bodily fluids using antibody-based assays tar-
geting these proteins [29, 30]. Proteomic profiling of EVs is a
novel and sensitive approach to increase understanding of
EV function and its use has been successful in unravelling
their role in cancer [31]. A proteomic approach will also re-
veal potential protein biomarkers for isolating tissue-specific
EVs. In this study, we took a proteomics approach to investi-
gate and compare the proteome of small EVs isolated from
the major cell populations in human tendon and muscle to
elucidate key molecules and understand how homeostasis of
the different ECMs in these two tissues is regulated.

Methods

Ethics

Informed consent was obtained from all tissue donors
(ethics approval H-3-2010-070 by the Regional Ethical
Committee for the Hospital Region of Greater
Copenhagen, in accordance with the Declaration of
Helsinki II). The study was reported to the Danish regis-
ter (Datatilsynet) and was performed in accordance with
Danish law (Lov om behandling af personoplysninger).

Human tissues

Human tissue was obtained in connection with anterior
cruciate ligament reconstruction surgery. Gracilis and
semitendinosus tendon and muscle tissues were harvested
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under general anaesthetic. After the surgeon had obtained
the tendon required for the reconstruction, any waste tis-
sues were transferred to ice-cold PBS containing 50 U/ml
penicillin and 50 pg/ml streptomycin (Thermo Fisher Sci-
entific). Tissues from five biological samples (2 females, 3
males) with a mean age 29.6 + 7.2 (standard deviation (SD))
years old were used (Supplementary Figure la and 1b).
Muscle fibroblasts derived from one of the samples did not
proliferate enough and so they were not included in the
study.

Tendon fibroblasts

Tendon tissues that were cleaned of muscle tissue were
cut into small pieces and incubated overnight in 400 U/ml
collagenase type 2 (Worthington Biochemical Corpor-
ation) prepared in DMEM/F-12 (Thermo Fisher Scientific)
supplemented with 20% FCS (BioWest) and 50 U/ml peni-
cillin and 50 pg/ml streptomycin at 37°C in 5% CO..
After, cells were strained through a 70 pum filter (BD Bio-
sciences) and centrifuged for 6 min at 600 x g, washed
with PBS, pelleted again and then resuspended in
medium. Tendon fibroblasts were cultured in DMEM/F-
12 medium supplemented with 10% FCS and 50 U/ml
penicillin and 50 pg/ml streptomycin at 37 °C in 5% COs.

Myoblasts and muscle fibroblasts

Muscle tissues were cut into small pieces and incu-
bated for 1h in 2 mg/ml collagenase B (Roche), 2 mg/
ml dispase II (Roche) in Skeletal Muscle Basal
Medium (Promocell) at 37°C in 5% CO,, with
agitation by pipetting every 15min. After, cells were
strained through a 70 um filter and centrifuged for 6
min at 600 x g, washed with PBS, pelleted again and
then resuspended in medium. Muscle tissue cells were
cultured for 1week in Human Skeletal Growth
Medium (Promocell) supplemented with 15% FCS, 2
mM L-glutamine, 20 U/ml penicillin and 100 pug/ml
streptomycin at 37°C in 5% CO,. After, CD56+ myo-
genic cells (myoblasts) were sorted from CD56- non-
myogenic cells (muscle fibroblasts) as described previ-
ously [32]. In brief, muscle cells were treated for a
maximum of 2min at 37°C in 5% CO, with trypsin
EDTA solution C (Biological Industries) diluted 1:2 in
PBS. Detached cells were pelleted, washed in PBS and
pelleted again. The cell pellet was resuspended in
170 ul MACS Separation Buffer (Miltenyi Biotec) and
35 ul CD56 magnetic beads (Human CD56 MicroBead
Kit; Miltenyi Biotec) and incubated for 15 min at 4 °C.
After, cells were centrifuged for 6 min at 600 x g, re-
suspended in MACS Separation Buffer and passed
through a 30 pum pre-separation filter into a large cell
column attached to a MiniMACS Separator (all from
Miltenyi Biotec) following the manufacturer’s proto-
col. Both CD56- muscle fibroblasts and CD56+
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myoblasts were collected and cultured separately in
DMEM/F-12 medium supplemented with 10% FCS
and 50 U/ml penicillin and 50 pg/ml streptomycin and
in Human Skeletal Growth Medium supplemented
with 15% FCS, 2 mM L-glutamine, 20 U/ml penicillin
and 100 pg/ml streptomycin, respectively, at 37 °C in
5% CO,. Before EV isolation, myoblasts were differen-
tiated by culturing for 4 days in Skeletal Muscle Basal
Medium supplemented with 2 mM L-glutamine, 20 U/
ml penicillin and 100 pg/ml streptomycin, at 37 °C in
5% CO,.

Small extracellular vesicle isolation

For each sample, cells ~80% confluency from one T175
flask were used for small EV isolation. Cells were cul-
tured without serum, in DMEM/F-12 supplemented
with 0.035% sodium bicarbonate, 10 mM HEPES, 1x
GlutaMAX supplement and 50 U/ml penicillin and
50 pg/ml streptomycin at 37 °C in 5% CO,. After 16h,
the conditioned medium was collected. The conditioned
media was ultra-filtered through 0.22 pm filter (Satorius)
to remove any intact cells, contaminating microvesicles
and apoptotic bodies, and then centrifuged at 2000 x g
for 20 min at 4°C to remove any remaining cell debris.
The supernatant was further centrifuged at 4566 x g for
1h at 4°C to remove any remaining microvesicles. The
supernatant was ultracentrifuged in 5-ml polypropylene
centrifuge tubes (Beckman Coulter) at 100000 x g for 2
h at 4°C using an SW55Ti rotor and Optima L-80 XP
Ultracentrifuge (Beckman Coulter). The pellet contain-
ing crude EV extract was resuspended in 40 pl PBS con-
taining protease inhibitor cocktail (Roche). The EV
extract was mixed with 4 ml BioUltra PBS (Sigma-Al-
drich) and ultracentrifuged in 5-ml polypropylene centri-
fuge tubes at 100000 x g for 2h at 4°C. The pellet of
small EVs was then resuspended in 20 ul 6 M guanidine
hydrochloride, 10 mM Tris (2-carboxyethyl) phosphine
hydrochloride, 40 mM 2-chloroacetamide, 100 mM Tris
pH 8.5 for mass spectrometry analysis. Samples were
stored at -80 °C.

Transmission electron microscopy

For TEM analysis of EVs, EV pellets were re-suspended
and fixed in 2% glutaraldehyde in 100 mM phosphate
buffer. Fixed EVs were mounted on to glow-discharged
copper grids (Agar Scientific) coated with a continuous
carbon film, then stained with 1% (w/v) uranyl acetate
(Sigma Aldrich) in ddH,O for 1 min at RT, and washed
with ddH,O. Grids were examined with a CM 100
TWIN (Philips) fitted with a 2kx2k side-mounted
TEM CCD camera (Olympus Veleta). EV diameter mea-
surements were made using FIJI. Median diameter was
calculated from at least 300 measurements per sample,
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the average and SD of median EV diameters were calcu-
lated from 3 biological samples.

Tryptic digestion of small EV proteins

Protein concentrations were determined by Quick Start
Bradford Protein Assay (Bio-Rad). In 1.5ml low-bind
eppendorf tubes proteins (<5 pg in 20 pl) were digested
with 10% acetonitrile in 50 mM HEPES pH 8.5 (40 pl)
containing Lys-C protease (20 ng/pug protein) at 37 °C,
600 rpm for 3h and with additional trypsin (10 ng/pg
protein) and 10% acetonitrile in 50 mM HEPES pH 8.5
(140 ul) for 16 h at 37°C, 600 rpm. After, samples were
acidified with equal volume of 2% trifluoroacetic acid
(200 pul) and vortexed. Acidified samples (all 400 ul) were
then run through equilibrated stage tips containing two
Empore C18 filters (3 M) prepared in 200-pl pipette tips.
Stage tips were centrifuged at 3000 rpm until the sample
had filtered through. Peptides were eluted in 30 pl 40%
acetonitrile and 0.1% formic acid into 1.5ml low-bind
eppendorf tubes and dehydrated with a speed vac at
65 °C for ~ 60 min. Dehydrated samples were then resus-
pended in 12 ul 2% acetonitrile and 1% trifluoroacetic
acid containing indexed retention time peptides (iRT
peptides at 1:500, Biognosys AG) and transferred to 0.5
ml low-bind eppendorf tubes. Peptide concentrations
were measured using a DS-11 FX+ spectrophotometer
(DeNovix).

Liquid chromatography-mass spectrometry (LC-MS)

For each sample, 50 ng peptides were loaded onto a 2-
cm C18 trap column (Thermo Fisher Scientific), con-
nected in-line to a 50-cm C18 reverse-phase analytical
column (Easy-Spray ES803 LC column, Thermo Fisher
Scientific) using 0.1% formic acid in water at 4 pl/min,
using the Easy-nLC 1200 high-performance liquid chro-
matography system (Thermo Fisher Scientific), and the
column oven operating at 45°C. Peptides were eluted
over a 140-min gradient ranging from 6 to 60% of 80%
acetonitrile, 0.1% formic acid at 250 nl/min, and the
Orbitrap Fusion instrument (Thermo Fisher Scientific)
was run in a data-dependent-MS/MS (DD-MS2) top
speed method. Full MS spectra were collected at a reso-
lution of 120,000, with an AGC target of 4 x 10° or max-
imum injection time of 50 ms and a scan range of 400—
1500 m/z. The MS2 spectra were obtained in the ion
trap operating at rapid speed, with an AGC target value
of 1x 10* or maximum injection time of 35ms, a nor-
malised higher-energy collisional dissociation (HCD)
collision energy of 30 and an intensity threshold of 1.7¢*.
Dynamic exclusion was set to 60s, and ions with a
charge state <2, >7 or unknown were excluded. MS
performance was verified for consistency by running
complex cell lysate quality control standards, and chro-
matography was monitored to check for reproducibility.
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Label-free quantitative proteomics analysis

The mass spectrometry data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository (http://www.ebi.ac.uk/pride/archive/) with the
data set identifier PXD018233. The mass spectrometry
raw files were analysed using Proteome Discoverer 2.4
and can be found in Supplementary Data 1. Label-free
quantitation (LFQ) was enabled in the processing and
consensus steps, and spectra were matched against the
Homo sapiens database obtained from Uniprot. Dynamic
modifications were set as oxidation (M), deamidation
(N,Q) and acetyl on protein N-termini. Cysteine carba-
midomethyl was set as a static modification. All results
were filtered to a 1% false discovery rate (FDR), and pro-
tein quantitation done using the built-in Minora Feature
Detector. Proteins suggest by the Minimal Information
of Studies for EVs 2018 [33] were used for protein
content-based EV characterisation.

Statistical analysis of LC-MS data

The normalised protein intensities generated by LC-MS
were analysed using the R-based integrated web applica-
tion Differential Expression and Pathway version 0.90
(iDEP) [34]. In the interest of identifying fibroblast EV-
enriched proteins, only those detected in at least 2 bio-
logical replicates of small EVs derived from tendon fi-
broblasts (TenX) and small EVs derived from muscle
fibroblasts (FibX) samples were further analysed (612
proteins). We did not find that removing proteins af-
fected the distribution pattern of TenX and FibX sam-
ples. Supplementary Data 2 contains the customised R
code for the iDEP workflow. Supplementary Data 3 con-
tains the log transformed protein intensities with miss-
ing values filled in by imputation of the median intensity
for the protein within the sample group. iDEP-generated
values for heatmaps can be found in Supplementary
Data 4 and 5. Supplementary Data 6 contains the results
from the DESeq2 (an iDEP package), using a threshold
of false discovery rate (FDR) p < 0.1 and fold-change > +
2. Functional enrichment analysis was performed on
high abundance proteins, e.g. by combining proteins
identified as high in one type of small EV, when com-
pared to the other two types of small EVs using the on-
line tool DAVID version 6.7 [35] and the resultant
enrichment clusters are contained in Supplementary
Data 7 and 8. Venny version 2.1 (BioinfoGP, Spanish
National Biotechnology Centre) was used to identify
common and unique proteins between groups and the
output can be found in Supplementary Data 9. Statistical
significance indicated in figures (*p <0.05, **p <0.01,
***p <0.001 and ***p <0.0001) was derived from the
DESeq2 analysis (see Supplementary Data 6 for all ad-
justed p values).
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Results

Comparison of proteins from human EVs

We derived and expanded sufficient number of tendon
fibroblasts, myoblasts (CD56+) and muscle fibroblasts
(CD56-) cells from four biological samples but only ten-
don fibroblasts and myoblasts from sample 5 (Supple-
mentary Figure la and 1b). Small EVs isolated from
conditioned media from tendon fibroblasts (TenX), dif-
ferentiating myoblasts (MyoX) and muscle fibroblasts
(FibX) were analysed by transmission electron micros-
copy (TEM). EV preparations from these three cell types
showed the presence of membrane-bound vesicles with
median diameters of approximately 30-50 nm, where
MyoX were the largest and FibX were the smallest (Sup-
plementary Figure 1c and 1d). EV preparations were
digested with trypsin and the peptides were prepared for
LC-MS. The raw LC-MS data were searched against a
human database and were mapped to 1850 proteins and
of these, 1179 were supported by at least two unique
peptides and of these, 612 proteins were detected in at
least two of the five TenX samples and two of the four
FibX samples (Supplementary Figure 2a). Distribution of
the transformed data showed that all five TenX samples
contained a narrower distribution of protein abundances
and contained fewer of the low abundance proteins
compared to MyoX or FibX samples (Supplementary
Figure 2b and 2c). FibX samples also showed more vari-
ation in protein abundance in the four replicates than
the MyoX or TenX samples.

The proteome of the EV preparations contained pro-
teins known to be enriched in EVs and proteins often
co-isolated with EVs (Supplementary Figure 3). Com-
monly used exosome marker proteins, Alix (ALG-2-
interacting protein X), tetraspanin CD81, and flotillin-2
were detected in all EV samples (Fig. 1la). Other EV-
enriched proteins, chaperones heat shock protein (Hsp)
70 (Fig. 1b), Hsp90 (Fig. 1c), clathrins (Fig. 1d), annexins
(Fig. 1e), cell-surface receptors (Fig. 1f), Ras-associated
binding (Rab) proteins (Fig. 1g) and endosomal sorting
complexes required for transport (ESCRT) proteins
(Fig. 1h) were also present the LC-MS data set. There
were no significant differences in the abundance of these
exosomal markers except for heatshock protein 70
(Hsp70) (Hsc70; HSPAS8) (Fig. 1b), Hsp90-p (Fig. 1c), in-
tegrin a6 (Fig. 1f), Rablb, Rab7a and Rabl4 (Fig. 1g),
Vps28, CHMP1B (charged multivesicular body protein
1B) and CHMP2A (Fig. 1h), the abundance of which
were significantly higher in MyoX.

Pearson’s correlation coefficients of individual TenX,
MyoX and FibX biological replicates showed strong cor-
relation within MyoX samples and between TenX and
FibX samples (Fig. 2a). This grouping of fibroblast-
derived small EVs was also observed when principal
component analysis (PCA) was performed. The first PC
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identified that the largest variance in the data set, which
accounted for 40% of the variability, was between MyoX
and TenX/FibX samples, and PC2 identified variances
between TenX and FibX samples but there was overlap
of TenX sample 1 and FibX sample 3 (Fig. 2b). iDEP
program ranked the proteins by their standard deviation
across all the samples by hierarchical clustering. The re-
sultant heatmap further highlighted the similarities in the
protein abundance pattern between TenX and FibX sam-
ples (Fig. 2c, Supplementary Data 4).

Functional annotation of proteins enriched in MyoX, TenX
and FibX

Differentially abundant proteins with a greater than +2-
fold mean and FDR p < 0.1 were identified. As expected,
a comparison of TenX and FibX samples yielded the
fewest differentially abundant proteins (89 proteins;
Fig. 3a and ¢, Supplementary Data 6). Surprisingly, the
MyoX and FibX comparison identified more differen-
tially abundant proteins than TenX and MyoX compari-
son (333 and 231 proteins, respectively; Fig. 3a, b and d,
Supplementary Data 6). Functional enrichment analysis
showed that MyoX contained a high abundance of pro-
teins that were overrepresented in translation, RNA pro-
cessing, which included many components of 60S and
40S ribosomal subunits, chaperones and over 80 RNA-
binding proteins (Fig. 3e, see Supplementary Data 7 for
protein identifications) and unsurprisingly there was an
overrepresentation of myofibril proteins in MyoX. In
TenX there was an enrichment of proteins that were of
the ECM including collagens and proteoglycans, and
similar to MyoX, contained many of the same transla-
tion components (Fig. 3f, see Supplementary Data 7 for
protein identifications). Surprisingly, FibX were not
enriched in proteins that support translation but similar
to TenX, they were enriched in ECM proteins (Fig. 3g,
see Supplementary Data 7 for protein identifications).

Comparison of ECM proteins of fibroblast EVs

To elucidate the different functions of TenX and FibX
we performed functional enrichment analysis on the
89 significantly differentially abundant proteins. The
top enrichment term was translation elongation,
followed by ECM, and terms that contained vesicle
(endosome, Golgi) transport/membrane proteins and
RNA metabolism proteins, and cytoskeletal organisa-
tion (Fig. 4a, see Supplementary Data 8). All transla-
tion proteins present under the enrichment term were
more abundant in TenX than in FibX and included
two 40S ribosomal subunits and 15 60S ribosomal
(Fig. 4b). There were differences in the abundance of
specific ECM proteins; fibulin-1 (FBLN1), matrix me-
talloproteinase 2 (MMP2), nidogen-2, metalloprotein-
ase inhibitor 3 (TIMP3) and tenascin-X (TNXB) were
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(See figure on previous page.)

Fig. 1 Presence of exosome-enriched proteins in small EVs derived from tendon and muscle tissue cells. a-g Log transformed intensity of a
exosome-enriched, b HSP70, ¢ HSP90, d clathrin, e annexin, f cell surface receptor, g Ras-associated binding (Rab), and h endosomal sorting
complexes required for transport (ESCRT) proteins detected in EVs isolated from differentiating myoblasts (MyoX), tendon fibroblasts (TenX) and
muscle fibroblasts (FibX). *p < 0.05, **p < 0.01. See Supplementary Data 3 for transformed intensity values used for statistical analysis. See

Supplementary Data 6 for all adjusted p-values from DESeq?2 analysis

present at higher abundance in FibX than in TenX
(Fig. 4c). Membrane organisation proteins involved in
transport in endosomes and Golgi vesicles were also
identified as differentially enriched between TenX and
FibX (Fig. 4d and e). Cation-transporting ATPases
(ATP2B4, ATP6V1B2 and ATP6VI1El) under the en-

Identification of fibroblast-specific small EV proteins

To identify unique TenX-enriched proteins, those that
were significantly higher in abundance from TenX-
MyoX and TenX-FibX comparisons were compared and
10 proteins were found to be uniquely abundant in
TenX (FDR < 0.1; Fig. 5a, see Supplementary Data 9). Of

richment term ribonucleotide metabolism process
were also more abundant in TenX than in FibX

(Fig. 4f).

these, anthrax toxin receptor 2 (ANTXR2), apurinic/
apyrimidinic endodeoxyribonuclease 1 (APEX1), G1 to S
phase transition 1 (GSPT1), platelet activating factor
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acetylhydrolase 1b catalytic subunit 2 (PAFAH1B2),
plasma membrane Ca®>*-ATPase 4 (PMCA4; ATP2B4),
prostaglandin F2 receptor negative regulator (PTGFRN),
syntaxin-4, syntaxin-7 and TGFB1 proteins were signifi-
cantly higher in abundance in TenX than in MyoX or

FibX (Fig. 5¢). We performed the same analysis for the
identification of FibX-enriched proteins and found 9
proteins were uniquely abundant in FibX (Fig. 5b, see
Supplementary Data 9). Of these, acetyl-CoA acetyl-
transferase (HADHB), fibulin-1, MMP2, proteasome 20S
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(See figure on previous page.)

Fig. 5 Identification of tendon EV-enriched proteins. a Venn diagram showing the number of proteins with > 2-fold mean differential abundance
in TenX when compared to MyoX (90 proteins) and in TenX when compared to FibX (68 proteins), with 10 proteins in common. b Venn diagram
showing the number of proteins with > — 2-fold mean differential abundance in TenX when compared to FibX (21 proteins) and in MyoX when
compared to FibX (83 proteins), with 9 proteins in common. See Supplementary Data 9 for full list of proteins (FDR < 0.01). ¢ Plots showing the
log transformed intensities of the 10 commonly over abundant TenX proteins. AMembrane-localised proteins: ANTXR2, PMCA4 (ATP2B4), PTGFRN,
syntaxin-4 and syntaxin-7. d Plots showing the log transformed intensities of the 9 commonly over abundant FibX proteins. ®Membrane-localised

DESeq? analysis

protein: CD73 (NT5F). *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. See Supplementary Data 6 for all adjusted p-values from

subunit 5 (PSMB5), metalloproteinase inhibitor 3
(TIMP3) and tenascin-X were significantly higher in
abundance in FibX than in MyoX or TenX (Fig. 5d).

Discussion

In this study, we identified key functional differences of
small EVs produced by healthy fibroblasts isolated from
human musculoskeletal tissues. By performing label-free
quantitative LC-MS-based proteomics analysis we have,
in an unprecedented manner, established three different
proteome profiles of small EVs isolated from primary
cultures of tendon fibroblasts, muscle fibroblasts and dif-
ferentiating myoblasts. We found a high abundance of
proteins that support substantial ECM synthesis in ten-
don fibroblasts EVs but not in muscle fibroblast EVs. In
differentiating myoblast EVs a high myofibrillar synthesis
was indicated, and in skeletal muscle fibroblast EV pro-
teins supporting myoblast differentiation and the skeletal
muscle ECM were present (Fig. 6).

Proteome studies on EVs have focused on cancer, in
which high numbers of EVs containing many more pro-
teins are produced [31, 36, 37]. We identified over 1000
proteins in small EVs purified from conditioned media
and confirmed the presence of EV marker proteins. No
one has to our knowledge previously performed EV

proteomics on human tendon tissue. The only other ten-
don fibroblast EV proteome data published is of porcine
tendon exosomes, where only 199 proteins were identi-
fied [18], making the current TenX proteome profile the
most comprehensive to date. MyoX contained signifi-
cantly more of some of EV marker proteins, which was
expected as Hsc70 and Hsp90-f upregulation are re-
quired during myoblast differentiation [38—40], and the
presence of these chaperones might be a mechanism of
autocrine or paracrine signalling. Integrin «6 is a laminin
receptor and their enrichment in MyoX is reflective of
the basement membrane adhesion profile of differentiat-
ing myoblasts [41], and ESCRT-III molecules are
enriched in myoblasts as they are responsible for the
shedding of injured membranes [42]. MyoX were also
enriched in proteins required for translation elongation,
and this enrichment is consistent with previously pub-
lished biochemical contents of differentiating human
myoblasts-derived exosomes and microvesicles [43].
Taken together, our data suggest that the main role of
MyoX is to regulate myoblast differentiation and/or
myofiber homeostasis (Fig. 6).

We used iDEP, an R-based web application designed
to easily analyse transcriptomic and proteomic data [34].
The analysis revealed that the largest source of
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variability was between fibroblast- and non-fibroblast-
derived EVs and the second largest source of variance
was between TenX and FibX proteome profiles. So, des-
pite the fibroblasts having been removed from their native
in vivo environments and put into the same culture condi-
tions, these two EV proteome profiles remained distinct.

Functional analysis of the TenX proteome identified
an enrichment of ECM proteins (collagens), translational
proteins (ribosomal proteins) and cytoskeletal proteins
(keratins and myosins), which is consistent with the
proteome of porcine tendon exosomes [18]. On the
other hand FibX distinctly lacked a high abundance of
ribosomal proteins, Golgi transport proteins and ATPase
ion-transporters but contained significantly higher levels
of the collagenase MMP2 than TenX. FibX were also
uniquely enriched in the ECM proteins fibulin-1,
nidogen-2 and tenascin X, all of which are components
of the skeletal muscle ECM [44]; TIMP3, a negative
regulator of tumour necrosis factor a autocrine signal-
ling in satellite cells during muscle regeneration [45];
and acetyl-CoA acyl-transferase, a subunit of the mito-
chondrial trifunctional protein complex and autosomal
recessive mutations of this gene causes muscle weakness
[46—48]. The presence of these proteins could indicate the
mechanisms of interaction between the skeletal muscle fi-
broblasts and the muscle cell (Fig. 6), an idea that is sup-
ported by earlier findings that demonstrated an intimate
interplay between different cell types in skeletal muscle
through EVs [20]. Further, it has been shown that de-
adhesion and adhesion activity is involved in muscle re-
generation after heavy mechanical loading [49], suggesting
that the intramuscular connective tissue is prepared to co-
ordinate tasks in adaptation and regeneration with the
myonuclei of the muscle cell and the satellite cells.

More than half of secreted TGFp1 are localised to EVs
[11] and it is commonly identified in EVs released by
cancer associated fibroblasts [8]. Here we report that
small EVs released by healthy human tendon fibroblasts
also contained a significantly high abundance of TGFf1
compared to MyoX and FibX. A recent study showed
that injection of exosomes isolated from cultures of ten-
don progenitors into an in vivo collagenase-induced ten-
dinopathy model in rat Achilles increased type I collagen
synthesis and improved tissue biomechanics [16]. An-
other study showed that the ability of tendon exosomes
to reprogram mesenchymal stem cells to produce type I
collagen could be blocked using a TGEp inhibitor [19].
Thus, we hypothesise that it is likely that TGFp1 is also
a functional cargo of tendon EVs that may regulate the
tendon ECM. Further studies confirming TGEp localisa-
tion in TenX and its specific function are required and
these should be performed carefully to exclude activity
associated with co-isolated soluble mediators [33]. To-
gether these data suggest that tendon EVs have the
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potential to induce collagen synthesis, transportation of
new proteins for post-translational modifications and
ECM assembly in recipient cells (Fig. 6), whereas EVs
derived from muscle fibroblasts may maintain the skel-
etal muscle ECM as well as the low fibrotic potential of
healthy muscle fibroblasts [50].

Muscle tissue-derived exosomes are released into the
circulation upon exercise and are targeted to the liver
[51]. We propose that small EVs produced by tendon
cells, however, remain in the tissue under normal condi-
tions and are used to synchronise ECM remodelling via
autocrine and paracrine signalling. Rupture of the tissue
could lead to the release of tendon EVs into the tissue
surroundings, such as the adjacent muscle, potentially
being responsible for the initiation of a transient fibrotic
response.

Isolation of specific types of EVs is challenging with
small samples. Although we were able to identify many
exosome-enriched proteins in our samples, the protocol
we used, without the inclusion of a density-gradient sep-
aration step that produces a higher purity of exosomes
at the cost of yield, does not separate out other small
vesicles [52, 53]. We observed a large number of riboso-
mal proteins that are commonly co-isolated with EVs
(Supplementary Figure 3d). The role of these ribosomal
proteins may include forming protein-RNA complexes
inside exosomes and other EVs [54, 55] but it is possible
that they are co-isolated as non-EV protein aggregates
rather than promiscuous loading [56, 57]. Further inves-
tigations of purer exosome isolations in combination
with immuno-electron microscopy would establish the
location of ribosomal and ECM proteins identified by
proteomics.

The proteome profiles revealed the potential functions
of fibroblast EVs but it is clear that the EV protein con-
tents capture a snap shot of the cell’s biochemistry at a
given time, e.g. the differentiation of myo-progenitors.
Therefore EVs could permit long-term monitoring of
tissue health in a non-invasive manner in tissues includ-
ing tendon [58] that cannot be sampled repeatedly. A
very recent study demonstrated that exosomes from dif-
ferent sources are characterised by specific combinations
of their surface proteins that can be quantified using
antibody-based barcoding assay [59]. We identified five
membrane proteins that are significantly enriched in
tendon EVs (ANTXR2, PMCA4, PTGERN, syntaxin-4
and syntaxin-7) and one membrane protein that is sig-
nificantly enriched in muscle fibroblast EVs (CD73) that,
hypothetically, could be targeted in combination with
other exosome-specific surface proteins in antibody-
binding assays to capture themfrom various bodily fluids
[29, 30] for analysis. The ability to identify tissue-specific
EVs expands the potential of exosomes as biomarker
carriers in non-cancerous diseases.
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Conclusions

This study reports, for the first time, comprehensive
proteome profiles for small EVs released from healthy
human fibroblasts and their potential roles in tissue
homeostasis. Our results also demonstrate that with LC-
MS-based proteome profiling it was possible to reveal a
marked heterogeneity among fibroblast-derived small
EVs, indicating shared tasks between EVs in skeletal
muscle myoblasts and fibroblast, whereas tendon fibro-
blast extracellular vesicles demonstrated a potential to
be pro-fibrotic in human tendon tissue.
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