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Abstract

Glioma is the most common primary brain tumor, and is a major health problem throughout the world. Today,
researchers have discovered many risk factors that are associated with the initiation and progression of gliomas.
Studies have shown that PIWl-interacting RNAs (piRNAs) and PIWI proteins are involved in tumorigenesis by
epigenetic mechanisms. Hence, it seems that piRNAs and PIWI proteins may be potential prognostic, diagnostic or
therapeutic biomarkers in the treatment of glioma. Previous studies have demonstrated a relationship between
piRNAs and PIWI proteins and some of the molecular and cellular pathways in glioma. Here, we summarize recent
evidence and evaluate the molecular mechanisms by which piRNAs and PIWI proteins are involved in glioma.
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Background

Glioma is known as the most common primary brain
tumors and is one of the major global health problems
worldwide. Glioma tumors can occur in different parts
of the central nervous system (CNS) [1]. The World
Health Organization (WHO) has classified gliomas into
low-grade and high-grade; 10% are low-grade glioma
(LGG) while 90% are high-grade glioma (HGG) [2]. Pri-
mary brain tumors are classified into four grades (I, I,
III, and IV) based on their microscopic appearance, and
their prognosis and therapy depend on the grade. LGGs
are divided into grades I and II; including various types
of astrocytoma, oligodendroglioma, gangliogliomas, desmo-
plastic infantile ganglioglioma, dysembroplastic neuroepithe-
lial tumors and mixed glioma [3]. HGGs are divided into
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grades III and IV; grade III includes anaplastic astrocytoma,
anaplastic ependymoma and anaplastic oligodendroglioma;
grade IV includes gliosarcoma and glioblastoma multiforme
(GBM) [4, 5]. Hypo-fractionated stereotactic radiotherapy is
an effective treatment that helps to improve the quality of
life in HGG [6]. In addition, a significant prolongation of
survival is obtained by chemotherapy with a 15% relative
reduction of the risk of death [7]. A study reported that
temozolomide (TMZ) chemotherapy can be a valid option
for treatment of LGG [8]. In addition, it has been reported
that there was no significant difference between the effects
of radiotherapy alone versus temozolomide chemotherapy
alone in the treatment of patients with LGG [9].

Recently, it has been demonstrated that non-coding
RNAs (ncRNAs) play essential roles in the pathophysiology
and treatment of glioma. One of these types of small non-
coding RNAs is Piwi-interacting RNAs (piRNAs) that are
involved in the pathogenesis of glioma [3]. It has been
shown that expression of a Piwi-like 1 protein was associ-
ated with Ki67 expression in gliomas [10]. Furthermore,
piR-30,188 and PIWIL3 expression are decreased and
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negatively correlated with pathological grade of the glioma.
piR-30,188 suppresses tumor cell proliferation, invasion,
and migration, and promotes apoptosis [11]. PiR-8041 was
also down-regulated (10.3-fold) in GBM relative to normal
tissue, and acts to reduce cell proliferation [12].

piRNAs are formed from long intergenic transcripts, 3
UTRs of protein-coding RNAs, and ncRNAs [13]. Two
major mechanisms are involved in the biogenesis of
piRNAs, primary and secondary biogenesis [14]. The tran-
scriptional processing of piRNAs includes the generation of
pre-piRNAs, the modification of the 5 " and 3" ends, and
finally methylation. The pre-piRNA is produced by the
movement of RNA polymerase in the 3 " to 5 * direction
along the heterochromatin DNA strand [15]. The pre-
piRNAs are transported out of the nucleus, and then bind
to Yb bodies which are located around the mitochondria.
Yb bodies are cytoplamisc organelles that were first discov-
ered in Drosophila, and allow the PIWI proteins and
piRNAs to assemble into a complex. The PIWI protein
binds to the pre-piRNA to form piRISC by recognizing the
5 ’-end of piRNA [16]. The piRNAs play essential func-
tional roles in epigenetic reprogramming, and can regulate
transcription, translation, development and mRNA stability
[17, 18]. The piRNAs can regulate transposable elements,
probably through de novo DNA methylation [19]. In
addition, piRNAs directly regulate chromatin architecture
for control of genomic stability [17]. Target gene suppres-
sion by piRNAs is involved in transcriptional gene silencing
(TGS), as well as post-transcriptional gene silencing (PTGS)
in mice and flies [20]. It has been reported that the piRNAs
are present in the CNS [21]. Rajasethupathy et al. [22]
reported that there were 300 separate genomic regions that
encoded piRNAs in the neurons of Aplysia (sea slugs).
Another study reported that piRNA pathway genes were
pivotal for multi-generational epigenetic memory in the
Caenorhabditis elegans germline [23]. The piRNAs play an
important role in the pathogenesis of brain-related disor-
ders. piRNAs are abundant in the human brain, and may
be biomarkers for the risk of Alzheimer’s disease [24]. An-
other study reported that tau-induced depletion of piRNAs
led to neuronal mortality via transposable element dysregu-
lation in tau-related neuro-degenerative disease [25].

PIWI proteins belong to the family of Argonaute
proteins, which are abundantly expressed in animal and
human germlines, where they contribute to gametogenesis
and stem cell self-renewal [26]. It has been reported that
the Piwi-like proteins can serve as clinical biomarkers and
can detect cancers with poor prognosis [27, 28]. PIWI pro-
teins are associated with several properties of tumor cells,
including invasion, rapid growth, and apoptosis [29-31].
One study reported that the PIWI-piRNA complex was
associated with expression of the neurotransmitter sero-
tonin through CpG methylation of the cAMP-responsive
element-binding protein 2 (CREB2) promoter [32]. The
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Piwi/piRNA complex is regulated by CREB2 in the Aplysia
brain [22]. The PIWI-piRNA pathway is also involved in
hepatocarcinogenesis [32]. In addition it was reported that
PIWT proteins contributed to the pathogenesis of glioma
[33]. Recently, the contribution of piRNAs and PIWI pro-
teins to glioma has become an interesting topic for re-
searchers, and a few studies have already been performed.
These pathways might have a crucial role in the pathogen-
esis of many cancers including glioma.

Hence, it appears likely that these non-coding RNAs
could be used as diagnostic, prognostic and therapeutic
biomarkers in the treatment of glioma. Not only have
deregulated piRNAs been detected in many cancer tis-
sues, but the involvement of piRNAs in carcinogenesis
and metastasis of several types of cancers has also been
demonstrated. Moreover, the presence of piRNAs in hu-
man body fluids, (such as serum and plasma) make this
class of non-coding RNAs more useful as biomarkers
biomarkers [34]. In the same way as miRNAs, piRNAs
are stable in plasma and blood for some time [35]. The
most troubling problem confronting the use piRNAs as
biomarkers is their detection methods, which are not as
easy as miRNAs [36]. Moreover, each biological species
has many unique piRNA sequences, and these sequences
are not conserved between species. The sequence com-
plexity of piRNAs makes it challenging to arrive at broad
functional conclusions [17]. In recent years the role
of miRNAs as biomarkers has been well explored,
while piRNAs as the largest class of small non-coding
RNAs expressed in animal cells, are beginning to be
explored as biomarkers. However, more extensive
studies are still needed to translate this finding into
clinical applications [37].

Besides the use of non-coding RNAs (and piRNAs in
particular) as prognostic and diagnostic biomarkers, these
molecules can also be used as therapeutic targets. A few
studies assessed the therapeutic roles of piRNAs in animal
models of cancer. Tan et al, showed that the level of
piRNA-36,712 was considerably lower in breast cancer
compared to healthy breast tissue, and that it could indicate
a poor clinical outcome in affected individuals [38]. Func-
tional investigations showed that piRNA-36,712 could
interact with RNAs generated by SEPW1P, a SEPW1 retro-
processed pseudogene, and suppressed the expression of
SEPW1 via competing with SEPWIP RNA for binding to
miR-7 and miR-324. Moreover, it was shown that the
increased expression of SEPW1 following piRNA-36,712
down-regulation could inhibit P53 in breast cancer, result-
ing in decreased levels of E-cadherin and P21, and up-
regulated levels of Slug, thereby increasing the proliferation,
migration, and invasion of the cancer cells. Additionally,
they found that piRNA-36,712 exerted a synergistic antitu-
mor effect when combined with doxorubicin or paclitaxel,
as chemotherapeutic drugs [38].
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In the present review we summarize recent supporting
evidence and evaluate the mechanisms by which piRNAs
and PIWI proteins could be involved in glioma.

Biogenesis of piRNAs

There are two different pathways for the production of
piRNAs, called the “primary processing pathway” and
the “ping-pong cycle” or secondary pathway (Fig.1). In
this respect, primary piRNAs contain uridine (U) at their
5" nucleic acid, whereas secondary piRNAs show a 10-nt
complementary binding sequence with primary piRNAs
at their 5" end and are biased with adenosine bases
[5, 21, 22, 29, 31]. The primary pathway operates in
germline cells as well as somatic cells in Drosophila
ovaries, while the ping-pong cycle only functions in
germline cells. The Piwi protein is the only one of
the PIWI sub-family members in Drosophila ovarian
somatic cells, where the piRNA precursors are encoded by
piRNA clusters e.g. the flamenco (flam) locus and proc-
essed by successive steps (Fig.2) [21]. In this regard, the
flam locus contains many truncated transposons that are

Page 3 of 11

strands of the transposons [21, 41, 42]. The main tran-
scripts from the piRNA clusters are then transferred to
the cytoplasm and processed into intermediates, albeit
these processes are not completely understood. The endo-
nuclease Zucchini (Zuc) is situated on the outside of mito-
chondria and has been assumed to be vital for preparing
precursor RNAs [43, 46], but whether RNAs with U at the
5" end can be produced by Zuc should be investigated.
The loading and development steps most likely take place
in peri-nuclear granules identified as Yb bodies and
located on the outside of the mitochondria (Fig.2). More-
over, components of the the Yb bodies, such as fs (1) Yb
(Yb), Vreteno (Vret), Armitage (Armi), Shutdown, and
Sister of Yb (SoYb) are required for producing the final
piRNAs [47, 52]. Furthermore, GasZ and Minotaur
(Mino) are restricted to mitochondria and also participate
in primary piRNA production [53, 54]. Although the asso-
ciation between mitochondria and piRNA biogenesis is ac-
cepted, it is unclear exactly which mitochondrial functions
are involved. piRNA precursors are transformed into the
final piRNA sizes via an obscure 3'-5 exonuclease activity
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silence target genes. Transcripts of piRNA clusters, which contain numerous sequences complementary to transposons, serve as precursors to
piRNAs. piRNA precursors are processed into piRNA intermediates and exported to the cytoplasm. Intermediates are processed by the
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and 2-O-methylated by Hen1 and then transferred into the nucleus. Within the nucleus, Piwi-piRNA complexes regulate their target genes by
modifying histones and affecting the association of Pol Il with target genes. Several factors, such as DmGTSF1, Mael, and HP 13, are involved in
this process, but the regulatory mechanism remains to be completely understood. Abbreviations: Armi, Armitage; Mael, Maelstrom; Mito,
mitochondria; N, nucleus; piRNA, PIWI-interacting RNA; Pol Il, RNA polymerase II; Shut, Shutdown; TE, transposable element; Vret, Vreteno; Yb, fs (1)

transferase adds a 2'-O-methyl group to the 3’ ends of
piRNAs in order to allow the formation of the Piwi-piRNA
complex and Piwi-piRISCs [56, 57]. The Piwi-piRNA com-
plex is transported to the nucleus in order to control the
transcription of target genes [58]. piRNA-free Piwi also
remains in the cytoplasm, implying that the Yb body is the
location to assemble the functional piRISCs. It should be
noted that only the functional complex can be transported
into the nucleus [47, 48]. Transcripts or their intermediates
originating from the flam locus, also accumulate at peri-
nuclear locations adjacent to the Yb bodies, known as flam

bodies [59], whose formation is controlled by the RNA-
binding activity of Yb. This suggests that Yb incorporates
primary piRNA transcripts and related intermediates into
the flam body. Primary piRNAs are produced from double-
stranded piRNA clusters, including the 42AB locus in
Drosophila germline cells, and are then loaded into Aub
and Piwi to assemble the piRISCs. Moreover, germline piR-
NAs are lower in Drosophila mutants with reduced expres-
sion of Armi [60], implying that somatic components are
also needed for the biogenesis of germline piRNAs. Never-
theless, the existence of germline equivalents to the
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components of Yb bodies should be recognized. Therefore,
the primary piRNA pathway is somewhat different between
germline cells and somatic cells, but how the primary
pathway functions in Drosophila germline cells is not com-
pletely clear. Moreover, mammalian orthologs related to
the factors that govern somatic primary piRNA biogenesis
in Drosophila have been discovered [61, 65]. As one ex-
ample, mitoPLD is a mouse ortholog of Zuc, identified
as a mitochondrial protein implicated in piRNA generation
[63, 65]. Furthermore a mouse ortholog of Armi
(MOVI10L1) is an RNA helicase, which has been proposed
to be involved in the biogenesis of piRNA [62, 66]. There-
fore mammalian primary piRNAs are likely to be generated
by means of pathways resembling those of Drosophila, al-
though further experimental studies are needed to confirm
this hypothesis.

Distribution and physiological functions of Piwi and
piRNAs

Two different approaches have been employed for the de-
tection of piRNAs. The first approach utilizes sequence-
based features to identify the piRNAs. piRNAs tend to
have uridine at the 5" cleavage sites, and can be identified
as piRNAs by checking the occurrence of uridine within
the 10 upstream and downstream bases [39]. The predic-
tion accuracy of this approach is between 61 and 72% for
mouse piRNAs. The analysis of K-mer sequences provides
the spectrum of K-mers (k=1-5). All 1364 K-mers from
1-mer sequences to 5-mer sequences were analyzed to
predict the occurrence of piRNAs [40]. The second ap-
proach uses bioinformatics analysis of the clustering locus
within genomic piRNA clusters for piRNA detection [41].
Currently the gold standard methods for detection of
piRNA expression are Northern Blot analysis and in situ
hybridization, although a multiplex detection method
based on real-time PCR for profiling of multiple piRNAs
has been developed [42].

Several studies have examined the distribution of piR-
NAs within the brain of experimental animals. For in-
stance, in multiple regions of the mouse brain, including
the hippocampus, Piwi mRNA expression was detected
by in situ hybridization. Lee and colleagues reported that
there were plentiful piRNA detected in mouse dendritic
spines, and that knockdown of piRNAs led to decreased
spine density in the axons [21]. piRNAs were shown to
be present in Aplysia brain neurons [22], and their
mutations affected the neuron function as well as brain
development. Further investigations also demonstrated
the potential roles of piRNA in the brains of many dif-
ferent organisms [43, 44]. Lee and co-workers sequenced
small RNA libraries obtained from the mouse hippocam-
pus to identify small non-coding RNAs (ncRNAs) (<35
bp) using RNA-Seq technology (30x) [21]. This study
generated a total of 9.18 x 10° reads in the female mouse
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brain and 14.83 x 10° 35-bp reads in the male mouse
brain. Among these reads, 66.7% mapped to the mouse
genome, accounting for 9.89 x 10° (male) and 6.12 x 10°
(female) unique RNA transcripts. After filtering out
small RNAs <25nt, miRNAs, adaptors, rRNAs, and
tRNAs, 11.3% of these transcripts ranged from 25 to 32
nt. Among these piRNA-like small RNAs with 25-32
nucleotides, 2297 (0.76%) were confirmed as piRNAs
and deposited in the piRNA databank (pirnabank.ibab.
ac.in) or the ncRNA database (RNAdb).

Serotonin is a neurotransmitter that is mainly pro-
duced within the serotonergic neurons of the CNS, and
acts to modulate sleep, appetite, and mood. Its regula-
tion of synaptic transmission contributes to the pharma-
cological effects of antidepressants drugs, and it also
affects cognitive functions, including learning and mem-
ory. In the Aplysia brain, it was found that the levels of
Piwi/piRNA complexes were sensitive to serotonin regu-
lation [22]. Moreover, CREB2, a transcriptional repressor
binds to the cAMP-responsive element (CRE), and has a
role in development of the nervous system. CREB2 is an
important memory suppressor gene in neurons that con-
strains the growth of new synaptic connections,. It has
been shown that the Piwi/piRNA complex modulates
the activity of CREB2 in the Aplysia brain [22]. In
neurons, the methylation of the serotonin-dependent
conserved CREB2 promoter CpG island is facilitated by
Piwi/piRNA complexes, thereby modulating memory
storage, learning-associated synaptic plasticity, and long-
term enhancement of synaptic transmission [22]. Also,
the Piwi/piRNA complex plays a role in synaptic trans-
mission in mouse neuronal dendrites [21]. It is likely
that Piwi/piRNA complexes regulate the development of
dendritic spines [21]. One study revealed that Piwi/piRNA
acts to carry out transcriptional and post-transcriptional
silencing of the alcohol dehydrogenase gene (Adh) in
Drosophila [44, 45]. The main site of expression of Adh is
the liver, however, it is also expressed in the brain [46]. Its
homolog, the ADH gene, is a major risk facor gene for
alcohol dependence as reported by many genome-wide
association studies (GWASs) and candidate gene investi-
gations [47]. piRNA activity has been detected in various
mammalian brain samples, but this may be different from
humans because of the poor conservation across species.
However, these studies have provided some clues
about possible roles of Piwi/piRNAs in human brain
diseases [48].

As discussed earlier, the main function of piRNAs is to
regulate transposons. This raises the question of whether
piRNAs play an important role in brain tumors, because
transposition events are commonly seen in human brain
cancer cells [48]. This may be supported by evidence in-
dicating that inactivation of Aub or Piwi in Drosophila,
inhibits the growth of lethal malignant brain tumors
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[49]. Another clue regarding piRNA function in the
brain was provided by the discovery of L1 retrotranspo-
sons in rat, mouse, and human brain samples. L1 retro-
transposons have been implicated in somatic mosaicism
of neuronal cells, heterogeneity, and differentiation in
the brain [50, 51]. A number of retrotransposons and
piRNAs co-exist within the brain. L1 retrotransposons
are regulated by these piRNAs, and piRNA mutants show
increased retrotransposon expression in the brain. The
combination of retrotransposons and piRNAs probably
plays an essential role in the brain and its develop-
ment [48].

piRNAs in gliomas

Recently, it has been shown that piRNAs are involved in
the tumorigenesis processes in several different organs
by epigenetic mechanisms [52]. However, few studies
have evaluated the role of piRNAs in gliomas (Table 1,
Fig. 3). Jacobs et al. [3] reported that variant
rs147061479 in piR-598 elevated the risk of glioma by
using qPCR and genome-wide expression profiling. They
found that rs147061479 abolished the tumor-suppressive
function of piR-598, instead conferring tumor growth-
promoting properties. In another study using array-
based piRNA profiling as well as expression difference
analysis of GBM relative to normal tissue, they found
that the expression levels of piR-15,988, piR-20,249, piR-
54,022 and piR-8041 were all reduced in GBM. Further-
more, these differences in expression were confirmed in
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individual samples using qPCR. Interestingly, piR-8041
was reported to be approximately 15-fold and 35-fold
lower expressed in two GBM cell lines (U87 and A172)
[12]. Pretreatment with piR-8041 remarkably decreased
the rapid growth of glioma cells, caused cell cycle arrest
and apoptosis, inhibited cell survival pathways, and re-
duced the tumor volume in vivo [12].

The microRNA miR-153 is also involved in pathogen-
esis of gliomas [53]. MiR-153 is a tumor suppressor gene
that causes apoptosis and suppresses migration and inva-
sion in glioma [54—56]. Moreover, miR-377 is also impli-
cated in the pathogenesis of glioma, because it suppressed
proliferation and invasion in glioma cells [57]. In addition,
the transcription factor FoxR2 increased glioma prolifera-
tion and tumorigenicity [58].

It has been reported that piR-DQ590027 is reduced in
glioma-derived endothelial cells (GECs). Up-regulation
of piR-DQ590027 decreased the expression of occludin,
claudin-5 and ZO-1, and increased the permeability of
the blood-brain barrier (BBB) [59]. It is known that in-
creased blood-tumor barrier permeability is associated with
the down-regulation of occludin, ZO-1, and claudin-5 [60].
Furthermore, a key step in brain metastasis is the inter-
action and penetration of the BBB by cancer cells [61].
Therefore, up-regulation of piR-DQ590027 might be a
mechanism for increasing the BBB permeability as well as
penetration by cancer cells. Moreover, piR-598, piR-8041
and piR-DQ590027 may be used as diagnostic markers for
glioma tumors.

Table 1 Studies reporting the role of piRNAs and PIWI proteins in glioma

piRNA/PIWI proteins Disease/samples Expression Publication Year Ref
piR-8041 GBM/Human tissue Down-regulated 2018 [12]
piR-15,988 GBM/Human tissue Down-regulated 2018 [12]
piR-20,249 GBM/Human tissue Down-regulated 2018 2]
piR-54,022 GBM/Human tissue Down-regulated 2018 [12]
piR-DQ590027 Glioma/Cell line Down-regulated 2018 [59]
piR-DQ593109 Glioma/Cell line Up-regulated 2018 [82]
piR-30,188 Glioma/Human tissue and cell line Down-regulated 2018 [11]
PIWIL1 Glioma/ Cell line Up-regulated 2018 [82]
GBM/Human tissue and cell line Up-regulated 2018 [33]
PIWIL2 Glioma/Human tissue and cell line Up-regulated 2017 [67]
PIWIL3 Glioma/Human tissue and cell line Down-regulated 2018 [11]
PIWIL4 Glioma/Human tissue and cell line Up-regulated 2016 [68]
piR-598 Glioma/Human tissue and cell line Down-regulated 2016 [3]
piR-18,913/ rs62435800 Glioma/Human tissue and cell line Polymorphism 2016 [3]
piR-598/rs147061479 Glioma/Human tissue and cell line Polymorphism 2016 [3]
PiR-11,714/rs142742690 Glioma/Human tissue and cell line Polymorphism 2016 [3]
piR-3266/rs35712968 Glioma/Human tissue and cell line Polymorphism 2016 [3]
piR-2799/ 15149336947 Glioma/Human tissue and cell line Polymorphism 2016 [3]




Tamtaji et al. Cell Communication and Signaling (2020) 18:168

Page 7 of 11

-

PiR-DQ590027

@/@

TRAF4 CEBPA
EED €&
-/’;?-301 88
PIWIL3

Z0-1, zonula occludens-1

a %
D © D D a2

Fig. 3 Schematic representation of the molecular signaling pathways targeted by piRNAs and PIWI proteins in glioma. CEBPA, CCAAT/enhancer
binding protein alpha; MEG3, maternally expressed gene 3; RUNX3, Runt-related transcription factor 3; TRAF4, TNF receptor-associated factor 4,

PiR-DQ593109

PIWIL1

4
[ wess

PiR-8041

:::::::::::::::::::::::::::___ PIWIL2

PIWIL1

..

MiR-154-5p
PIWIL4
CRNDE

Jacobs et al. carried out a study to evaluate the roles of
piRNAs in glioma. They analyzed the genetic variants in
1428 separate piRNAs and their association with glioma
risk, using imputed and measured genotypes from the
GliomaScan genome-wide association study (2401 con-
trols and 1840 cases) [3]. To investigate the functional
effect of the most recognized piRNA and its variant
allele, an in vitro assay was also conducted. Variants in
five piRNAs were found to be associated with glioma
riak, and four of these showed narrow clusters of higher
association signals surrounding the index variant. piR-
598 functional analysis showed that wild-type piRNA
transfection affected the expression of genes implicated
in cell death and survival, and attenuated colony forma-
tion and glioma cell viability. On the other hand, trans-
fection with piR-598 containing the variant allele at
rs147061479 increased cell proliferation. Use of genetic
association analysis has identified numerous piRNAs re-
lated to glioma risk, and follow-up functional analysis
suggested that variant rs147061479 in piR-598 increased
glioma risk by abolishing the tumor-inhibitory property
of piR-598, and instead conferring growth-promoting
properties [3].

PIWI proteins in glioma

PIWTI proteins could be an appropriate target for cancer
therapy [62]. The microRNA miR-154-5p is involved
in the pathogenesis of different cancers, and has been
shown to inhibit migration, invasion and proliferation
in prostate cancer cell lines by targeting E2F5 [63]. PIW1I
L1 is a target for miR-154-5p, and this may explain the
anti-cancer effects of miR-154-5p [33]. Another study re-
ported that miR-154 could suppress migration and inva-
sion in non-small cell lung cancer by regulating the
epithelial-mesenchymal transition via targeting Zinc finger
E-box binding homeobox 2 [64]. One study reported that
miR-154 expression was down-regulated in glioblastoma
tissues [65]. Another study reported that up-regulation of
miR-154-5p inhibited rapid growth and metastasis of
GBM, and promoted apoptosis, while inhibition miR-154-
5p expression had the opposite effects. It was proposed
that up-regulation of miR-154-5p exerted these changes
via targeting PIWIL1 in glioblastoma [33].

The Ki-67 index measures proliferation of cells in hu-
man glioma and is correlated with the histological classi-
fication of tumors [66]. There has been found to be a
correlation between PIWIL2 expression, and the Ki-67



Tamtaji et al. Cell Communication and Signaling (2020) 18:168

index and the grade of human glioma. PIWIL2 may
therefore be a prognostic factor for survival of glioma
patients. In vitro studies showed that knock-down of
PIWIL2 in glioma cells induced cell cycle arrest and
promoted apoptosis. In addition, silencing of PIWIL2
expression inhibited the migration of glioma cells [67].

The miR-384/PIWIL4/STAT3 axis has an important role
in pathogenesis of glioma [68]. The colorectal neoplasia
differentially expressed (CRNDE), is a IncRNA with an
important role in the growth and progression of different
cancers [69]. The expression of CRNDE was shown to be
significantly elevated in glioma tissue. The CRNDE over-
expression was correlated with increased tumor size,
higher grade and likelihood of recurrence. Moreover,
up-regulation of CRNDE expression was also related to
poor survival in glioma patients [70]. Increased expres-
sion of IncRNA CRNDE in human glioma was impli-
cated in increased cell migration and proliferation [71].
CRNDE up-regulation promoted rapid cell growth, in-
vasion and migration, while also suppressing apoptosis
in glioma cells [72]. MiR-384 has been found to be
down-regulated in glioma tissue, and in vitro it signifi-
cantly suppressed proliferation, invasion, and migration of
glioma cells [73]. Both CRNDE knock-down or miR-384
up-regulation led to a decrease in PIWIL4 in glioma. In
addition, some down-stream proteins of PIWIL4, includ-
ing STAT3, cyclin D1, SLUG, VEGFA, MMP-9, Bcl-2,
Bcl-xL and caspase 3 were regulated by treatment with
miR-384 and PIWIL4 [68].

In one study, Sun et al,, evaluated the clinical significance
of Hiwi (human equivalent of Piwi) in glioma. They found
that Hiwi was specifically expressed in most glioma sam-
ples, and the levels correlated with higher tumor grades
[74]. Statistically, it was determined that patients with high
Hiwi expression had poorer outcomes compared to individ-
uals with low expression of Hiwi. They concluded that Hiwi
was an important factor in the progression of glioma, and
could be a candidate as a biomarker for diagnosis and prog-
nosis of malignant glioma [74].

Interactions between PiRNAs and PIWI in glioma

Piwi proteins and piRNA transcripts are localized in the
mitochondrial fractions of somatic cancer cells [75]. It is
well-known that there is a relationship between epigenetic
modifications (such as histone alterations and DNA hypo/
hyper-methylation) and the development and progression
of cancer [76]. piRNA/PIWI complexes may be involved in
tumorigenesis via abnormal DNA methylation leading to
genomic silencing and an increased stem-like state [52].
Furthermore, there is a complex interaction between
piRNAs and miRNAs that can modulate cellular processes.
It was found that the repression of a piRNA amplification
loop by miR-17-5p led to increased levels of transposon
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mutagenesis. This happened because the amplification loop
of piRNA had an identical 5’ sequence, and could target
Mili/Miwi2 (an essential component of the piRNA amplifi-
cation loop) as well as the DNA methyltransferase, Dnmt3a
[37]. However, the exact mechanisms of interaction be-
tween piRNAs and miRNAs was not completely elucidated.

The IncRNA called maternally expressed gene 3
(MEG3) has an important role in the pathogenesis of
different cancers by affecting cell proliferation and
apoptosis [77, 78]. Moreover, MEG3 strongly de-
creased tumor growth and volume, and the expression
of proliferating cell nuclear antigen (PCNA) and Ki67.
MEG3 also suppressed miR-93 and inhibited the
PISK/AKT pathway in glioma [79]. Runt-associated
transcription factor 3 (RUNX3) is another tumor sup-
pressor gene, which has been demonstrated to show
lower expression in human glioma [80, 81]. The PIWI
L1/piRNA-DQ593109 (piR-DQ593109) is known to be
a central regulator of blood-tumor barrier (BTB) permeabil-
ity. PIWIL1 and piR-DQ593109 were over-expressed in
glioma-derived GECs. Down-regulation of PIWIL1 and piR-
DQ593109 promoted BTB permeability. Moreover, piR-
DQ593109 and PIWIL1 lowered MEG3 expression, while
restoration of MEG3 abrogated the post-transcriptional sup-
pression of RUNX3 by sponging miR-330-5p. Therefore,
down-regulation of PIWIL1 and piR-DQ593109 increased
BTB permeability via affecting the MEG3/miR-330-5p/
RUNX3 axis [82].

PIWIL3 plus piR-30,188 and the PIWIL3/OIP5-AS1/
miR-367-3p/CEBPA (CCAAT/enhancer-binding protein
alpha) complex is involved in the pathogenesis of glioma
[11]. It has been shown that miR-367-3p has an import-
ant role in the pathogenesis of cancer [83, 84]. MiR-367
regulated cell metastasis and proliferation via targeting
metastasis-associated protein 3 (MTA3) [85]. miR-367-
3p improves the effects of Sorafenib chemotherapy by
supressing pAKT and pERK signaling [86]. A study dem-
onstrated that low expression of miR-367 was linked to
progression and a poor clinical outcome in glioma pa-
tients [87]. One study reported that PTWIL3, piR-30,188
and miR-367-3p were decreased and OIP5-AS1 was in-
creased in glioma. Up-regulation of miR-367-3p, piR-30,
188 and PIWIL3 or knockdown of OIP5-AS1 led to sup-
pression of glioma progression. PiR-30,188 was found to
bind to PIWIL3, however up-regulation of piR-30,188
and PIWIL3, jointly or separately, suppressed OIP5-AS1
expression. Moreover, up-regulation of miR-367-3p also
reduced OIP5-AS1. CEBPA and TRAF4 are both over-
expressed in glioma cells and tissues, and show a posi-
tive correlation with the pathological grade of glioma.
Increased expression of PIWIL3 and piR-30,188, or the
reduction of OIP5-AS1, or their combined application
suppressed TNF receptor-associated factor 4 (TRAF4)
and CEBPA expression [11].



Tamtaji et al. Cell Communication and Signaling (2020) 18:168

Conclusions

Glioma is most common primary brain tumor, with high
mortality throughout the world. Several risk factors have
been determined for glioma that could help in its diag-
nosis, but timely diagnosis and prediction of treatment
outcome are important issues for oncologists. Recently,
piRNAs and PIWI proteins have been attracting much
attention for diagnosis and prediction of different dis-
eases. Researchers have identified different piRNAs and
PIWI proteins which are expressed in glioma cells and
tumors. These reports have indicated that piRNAs and
PIWTI proteins could be promising biomarkers for the
diagnosis and prognosis of glioma. In addition, several
studies have been performed to evaluate the roles of
specific piRNAs and PIWI proteins in the pathogenesis
of glioma. PiR-598, piR-8041, piR-DQ590027, piR-DQ5
93109, PIWIL1, PIWIL2, PIWIL3, and PIWIL4 may all
be involved in the pathogenesis of glioma, and could be
diagnostic markers for glioma. However, further studies
are necessary to discover the mechanisms of action of
piRNAs and PIWI proteins in glioma initiation and
progression. Moreover, it has been proposed that a web-
server should be set up to display their findings in a flex-
ible way, so that users can manipulate the display and
input their data as desired. Such a database would cer-
tainly be very useful for drug design.

Future perspectives

PiRNAs have recently been found to be expressed across
diverse cancer types in a tissue-specific manner. Deregu-
lated piRNAs have been detected in colon, gastric, lung,
breast, bladder, uterine, thyroid, and kidney cancer tissues.
Abnormal expression of piRNAs is a signature finding
with valuable prognostic or diagnostic implications for
several types of cancer. Of note, it has been observed that
piRNAs can be detected in human body fluids, such as the
plasma and serum of healthy people as well as cancer
sufferers, in a significantly stable form [34, 88]. Taken to-
gether these findings suggest that piRNAs could be used
as diagnostic, prognostic or therapeutic biomarkers in the
treatment of several cancers such as gliomas.
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