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Abstract

potential directions for future research.

In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and
detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins,
and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by
initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for
orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially
to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both
determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour
progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved
include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling,
and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-
invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function,
thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We
also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some
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Introduction

Extracellular vesicles (EVs) are small cell-derived mem-
branous structures, serving as conduits for exchange of
significant information between cells [1, 2]. The compo-
nents of EVs (Fig. 1) include proteins, lipids, messenger
RNAs (mRNAs), microRNAs (miRNAs), long non-
coding RNAs (LncRNAs), and circular RNAs (circRNAs)
[2, 3]. EVs may potentially be the most complex and
powerful form of communication in living beings.

EVs have been demonstrated to take part in managing
tumour spread and medication resistance [4, 5]. Tumour-
derived EVs (T-EVs) negotiate intercellular communica-
tion between tumour cells and stromal cells in both
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regional and distant microenvironments [6]. T-EVs poten-
tially sustain tumour development by regulating several
biological functions, including angiogenesis, coagulation,
immunity, vascular leakiness, and reprogramming stromal
recipient cells to promote pre-metastatic niche (PMN) de-
velopment and subsequent metastasis [6—9].

Aside from the relatively well-researched proteins, lipids,
mRNAs, and miRNAs, emerging evidence demonstrates that
LncRNAs and circRNAs participate in managing the micro-
environment and tumour progression [10-12]. CircRNAs, a
unique class of endogenous non-coding RNAs, can participate
in both transcriptional and post-transcriptional regulation.
They are characterised by their covalently closed loop frame-
works without 5'-caps and 3'-poly tails [13, 14] and operate
as reliable miRNA “sponges” (or competing endogenous
RNAs; ceRNA) [15, 16], competing with pre-mRNA splicing
[17], and participating in circRNA—protein interactions [18].
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Fig. 1 Composition and structure of extracellular vesicles (EVs). EVs is
composed of a phospholipid bilayer surrounding protein (membrane
protein and cargo protein) and nucleic acid. Membrane proteins
include tetraspanins (CD9, CD63, CD81, etc), adhesion molecules
(integrins, EpCAM, Ephrin, etc.), MHC, and receptors. Nucleic acid
include DNA and RNA (mRNAs, miRNAs, LncRNAs, and circRNAs).
Phospholipid bilayer provides protection to the cargo inside

In this literature review, we provide a brief introduction
to EVs and the tumour microenvironment (TME), present
findings on the influences of T-EVs on neighbouring cells
and the TME, and describe EVs from non-malignant cells
(nmEVs) and their influences on the TME. We explore
the functions of EVs which are potentially important for
the next generation of diagnosis and therapy in the field of
malignant tumours, discuss the breakthroughs and short-
comings of current research, and suggest possible future
directions of research in this field.

Tumour microenvironment

The malignant properties of tumours and their advance-
ment are not solely regulated by the tumour cells [19],
but also by a variety of non-malignant cell types neigh-
bouring the tumour. These cells in the TME have been
identified as essential regulatory agents of tumour pro-
motion [20], and include fibroblasts (FBs), endothelial
cells (ECs), adipose cells, mesenchymal stem cells
(MSCs), and immune cells [19].

During the onset of tumourigenesis, the microenviron-
ment presents anti-tumour immunity and moderates
tumour growth [20], but as the tumour continues to develop,
the microenvironment becomes tumour-conducive [20]. The
steps involved in this process are of great interest to current
researchers. The PMN is defined by the progression of an
environment far from the primary tumour, which is appro-
priate for the survival and outgrowth of any arriving circulat-
ing tumour cells [21-23].
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The exchange of information in the TME may influ-
ence tumour incidence and advancement, in addition to
intrusion, metastasis, and various other malignant bio-
logical actions [24]. To explain this phenomenon and
develop further treatment options, researchers con-
ducted studies based on the traditional/classical theory
of intercellular communication. This involves direct con-
tact among cells, as well as paracrine signalling involving
cytokines and growth factors between tumour cells and
non-malignant cells within the TME [20, 25]. However,
there are many unexplained problems with the conven-
tional/traditional theory. Direct contact can only explain
the cells that are either already in direct contact or are
in direct contact after being recruited. The local effects
and effects on recruited cells can only be explained to a
certain extent by paracrine factor interaction. Two issues
regarding paracrine factors remain: (1) their effects
should rapidly decrease with distance; and (2) the com-
plexity of the information that growth factors/cytokines
can convey is too small to explain the complex intercel-
lular communication in the TME. Therefore, new theor-
ies are required to better explain these features.

Extracellular vesicles

It has been determined that EVs are intercellular mes-
sengers [9, 20, 26, 27]. The lipid bilayer of EVs envelops
their components, protecting them from enzymatic deg-
radation [20, 28, 29]. EVs are found in almost all body
fluids and are produced by almost all cells, including
both eukaryotic and prokaryotic cells [9, 26, 30].

EV classification
Theoretically speaking, EVs can be classified [30] as ei-
ther: (1) exosomes (Exos), which are small membrane
vesicles (30—100 nm in diameter) derived from the endo-
some—multi-vesicular bodies (MVBs) pathway; or (2)
microvesicles (MVs), which are large membrane vesicles
(100-1000 nm diameter) budding away from the plasma
membrane. In addition to these classic categories of EVs,
apoptotic bodies (a type of large EV, 800-5000 nm in
diameter) are shed from apoptotic cells during apoptosis
[30]. However, apoptotic bodies scarcely take part in
intercellular communication and are widely considered
to be eliminated by phagocytes, including macrophago-
cytes (M¢s), almost immediately after release [30].
However, this classification system is known to be
confusing. The definitions of the terms Exos or MVs in
the classification criteria are based on EV biogenesis, but
in many studies, researchers use these terms based on
particle size distributions rather than their true biogen-
esis. Top-level researchers in the field of EV research, in-
cluding Clotilde Thery, indicated that despite the fact
that Exos and MVs have disparate biogenic mechanisms,
the current technology for EV isolation is not able to
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precisely subdivide these EV sub-populations [30].
Smaller MVs of approximately 100 nm in diameter have
likewise been discussed [31]. This term is utilised in nu-
merous studies to describe small EVs recovered by a var-
iety of methods, which do not differentiate endosome-
derived EVs (Exos), from plasma membrane-derived EVs
(MVs) [6, 32]. Taking this into consideration, with the
exception of the section explaining the mechanisms of
EV biogenesis, we therefore utilise the term “EVs” rather
than “Exos” or “MVs” in this literature review [6]. Most
reviews follow this convention, as these articles do not
necessarily deduce a specifically endosomal or plasma
membrane EV source.

EV biogenesis

Exos biogenesis consists of a sequence of cellular activ-
ities (Fig. 2a). The donor/parental cells initially internal-
ise extracellular ligands and materials to develop
endosomes. Exos first come into being as intraluminal
vesicles (ILVs) inside the lumen of such endosomes via
“inward budding” of the endosomes [33]. After “inward
budding” and the selective incorporation of proteins, nu-
cleic acids, and lipids, endosomes are converted to
multi-vesicular endosomes (commonly referred to as
MVBs) [33, 34]. MVBs are predisposed to fuse with lyso-
somes for the degradation of their components, thus
providing the required materials and energy for cellular
activity. Nonetheless, they may additionally fuse with the
plasma membrane to release ILVs into the extracellular
environment [33]. After release, these ILVs are referred
to as Exos.

MYV biogenesis differs from that of MVB-derived Exos [33,
35, 36]. In brief (Fig. 2a), MVs are constructed via “outward
budding”, division of the plasma membrane, and direct dis-
charge into the extracellular environment [33, 35].

EVs in the microenvironment
EVs manage many different cellular procedures, such as
cell proliferation, survival, and transformation via auto-
crine and paracrine intercommunication [33, 37]. It is
known that EVs work as vehicles for bidirectional inter-
communication among cells. The ligands and receptors
identified on the surface of EVs offer vector-borne trans-
mission to cells showing the cognate ligand/receptors,
providing specificity for this intercommunication [37, 38].
There are several procedures through which EVs and
their consignments could be transmitted to recipient
cells. EVs can dock at the plasma membrane of a target
cell [28, 39], and combined EVs may possibly integrate
directly with the plasma membrane of the recipient cell
[28, 39]. Furthermore, combined EVs can be picked up
by processes such as phagocytosis, macropinocytosis,
lipid raft-mediated endocytosis, clathrin-mediated endo-
cytosis, and caveolin-mediated endocytosis (Fig. 2b) [9,
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28, 39]. The moment they are endocytosed, EVs can be
targeted to lysosomes for degradation [28, 39]. EVs can
also integrate with the delimiting membrane of an endo-
cytic compartment, thus permitting the discharge of EV
contents into the cytosol of the recipient cells [28, 39].
EVs transport bioactive molecular compounds, which
may influence the features and phenotypes of recipient
cells by affecting gene expression via de novo translation,
post-translational modification of target mRNAs [33,
37], or triggering multiple signalling pathways [37, 39].
Typical functions of EVs include promoting develop-
ment and growth [40, 41] and the immune avoidance of
the embryo in pregnant females [42—44]. EV-mediated
bidirectional correspondence between the embryo and
uterine endometrium is essential for successful embryo
implantation [45], and EVs may control angiogenesis,
tissue remodelling, and growth of the placenta [46, 47].
The fast growth of the field of EV study has illumi-
nated unfamiliar mechanisms involving the innate inter-
cellular correspondence systems occurring during
malignant tumour commencement and progression [48,
49]. Nevertheless, tumour cells take advantage of these
functions of EVs via transformation from a normal
microenvironment to the TME. Vesicles which used to
support and protect normal tissues then support the
growth of tumour tissue, provide nutrient support, and
help tumour cells escape the immune system. T-EVs
and nm-EVs have been linked in a variety of steps of
tumour development (proliferation, angiogenesis, drug
resistance, immune escape, and metastasis) [8, 49-52].

Tumour-derived EVs

T-EVs to tumour cells

T-EVs are able to transmit oncogenic molecules between
tumour cells (Fig. 3). Glioma cells expressing epidermal
growth factor receptor variant III (EGFRVIII) produce T-
EVs carrying EGERVIII in order to transfer it to
EGFRvIII-negative tumour cells inside the same primary
tumour [53]. Following T-EV-mediated uptake by recipi-
ent cells/tissues, EGFRVIII triggers the mitogen-activated
protein kinase (MAPK) and protein kinase B (PKB/Akt)
signalling pathways, causing morphological change and
boosting malignant tumour development [53]. Subpopu-
lations expressing high levels of Met (Met-high) in mel-
anoma cells show a varied phenotype, resistance to
BRAF inhibitors, and increased lung metastasis [54]. T-
EV-secreted Met originates from Met-high tumour cells,
and augmented Met expression in Met-low tumour cells
supports their metastatic capacity in the lungs.

In hepatocellular carcinoma (HCC) invasive cell lines,
in vitro and in vivo resistance to Sorafenib is caused by
the distribution of hepatocyte growth factor (HGF), with
the assistance of T-EVs and the subsequent activation of
the HGF/c-MET/PI3K/AKT signalling pathway [55].
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Fig. 2 Biogenesis and uptake of extracellular vesicles (EVs). a the biogenesis of EVs including exosomes (Exos) and microvesicles (MVs). Exos come
into being in MVBs via inward budding, while MVs are directly generated on cytomembrane via outward budding. b The uptake mechanism of
EVs. The effect of EVs on target cells can be achieved by direct fusion (with contents release into the target cells), “swallow” (including
phagocytosis, macropinocytosis, and caveola/lipid raft/clathrin/receptor-mediated endocytosis), and direct binding (membrane proteins directly
activate signaling pathways of target cells without “swallow” or content release)

Additionally, platelet-derived growth factor receptor-
beta (PDGFR-PB), which is greatly increased in T-EVs dis-
charged by melanoma cells resistant to the BRAF inhibi-
tor PLX4720, can be transported to recipient melanoma
cells. This leads to dose-dependent activation of PI3K/
AKT signalling and evasion of BRAF inhibition [56].
Malignant tumour cells are able to transfer resistance
via horizontal transmission of T-EVs containing “drug
outflow pumps” [57]. Amongst the most thoroughly
studied “drug outflow pumps”, T-EVs transporting P-
glycoprotein (ABCB1, P-gp, or MDR-1) have been impli-
cated in the transmission of multi-drug resistance to
sensitive cellules [58-61]. T-EV-mediated intercellular
transmission of effective MRP1 “drug outflow pumps”
(ABCC1) has been demonstrated in leukaemia cells [62].
Other “drug outflow pumps” such as ABCG2 or ABCA3

have been shown to be transmitted via T-EVs and to
regulate drug resistance in recipient cells [63, 64].

The existence of selective P-gp/MDR-1 mRNA in T-
EVs discharged from doxorubicin-resistant osteosarcoma
cells suggests that resistant tumour cells employ
methods for spreading drug resistance to sensitive cells.
This may occur via delivery of MDR proteins directly to
sensitive cells or by delivering the mRNA which encodes
them [61].

LncRNA also plays an important role in this process.
Lnc-ARSR is strongly expressed in sunitinib-resistant
renal cell cancer (RCC) cells compared to sunitinib-
sensitive RCC cells. EV-carrying Lnc-ARSR competi-
tively binds miR-34 and miR-449, triggering the im-
proved expression of AXL/c-MET and re-activation of
STAT3, AKT, and ERK signalling. Triggered AKT
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causes the transcriptional de-repression of Lnc-ARSR via
destruction of FOXO1/FOXO3a, developing a positive
feedback loop [65]. T-EVs carrying LncRNA-ROR assist
recipient cells in obtaining chemoresistance in HCC by
activating the TGF-p signalling pathway. In estrogen re-
ceptor (ER)-positive breast cancer cells, T-EVs carrying
LncRNA-UCA1 cause tamoxifen resistance [66].

Circ-PDESA was found to be a highly-expressed circRNA in
pancreatic ductal adenocarcinoma (PDAC) [67-70]. Circ-PDESA
easily binds to miR-338, and moderates the pathological function
of PDAC via the miR-338/MACC1/MET pathway [70]. Further,
scientists have verified that circ-PDE8A may improve tumour in-
vasion via EV-mediated intercommunication, including duodenal
invasion, vascular invasion, and liver metastasis [70].
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T-EVs to endothelial cells

Angiogenesis

Angiogenesis is the formation of new blood vessels from
pre-existing vessels under particular physiological cir-
cumstances, including development or in response to
tissue damage [71]. In healthy tissues, angiogenesis is
firmly controlled by an accurate equilibrium between in-
hibitory and stimulatory angiogenic signals regulating
EC proliferation and migration [71, 72]. An inequality in
this particular regulatory network can result in a number
of disorders, including malignant tumours [71-73]. T-
EVs play a very important role in tumour-related angio-
genesis (Fig. 3).

The upregulation of heparanase in myeloma and breast
cancer cells is connected with enhanced release of
syndecan-1, vascular endothelial growth factor (VEGE),
and HGF in T-EVs. This results in increased endothelial
infiltration via the extracellular matrix (ECM), and hence
enhanced angiogenic activity [74]. T-EVs generated by hu-
man lung or colorectal cancer cells transmit oncogenic
EGER to cultured ECs, through which they trigger EGFR-
dependent reactions. This leads to activation of the MAPK
and AKT signalling pathways, autocrine production, and
VEGF signalling, ultimately enhancing angiogenesis [75].

T-EVs regulate angiogenesis in tumours through the
release of non-coding RNAs. For instance, T-EVs trans-
porting miR-9 stimulate EC migration and tumour
angiogenesis via the reduction of suppressor of cytokine
signalling 5 (SOCS5) levels and activation of the JAK/
STAT pathway [76]. Furthermore, miR-23a transport
causes angiogenesis through SIRT1 targeting in recipient
ECs [77]. T-EVs carrying LncRNAs promote the pro-
angiogenic ability of circulating angiogenic cells by in-
creasing the expression of both membrane layer molecules
and soluble factors [78]. The LncRNA-HOTAIR is highly
expressed in glioma cells, and is contained in T-EVs and
subsequently transmitted to ECs. LncRNA-HOTAIR then
induces angiogenesis by upregulating VEGF-A expression
[79, 80]. LncRNA-H19 has been very closely associated
with hepatocarcinogenesis [81], hepatic metastases [82],
and angiogenesis [83]. T-EVs carrying LncRNA-H19 are
actually transmitted to and internalised by ECs, enhancing
the angiogenic phenotype and cell-to-cell adhesion by up-
regulating VEGF production [84].

Vascular leakiness

Vascular leakiness is a characteristic of PMN formation
[23, 85]. T-EVs seem to play an important role in this
process (Fig. 3). Melanoma-secreted T-EVs induce vas-
cular leakiness, inflammation, and recruitment of bone
marrow progenitor cells via upregulation of S100a8,
$100a9, and tumour necrosis factor o« (TNF-a) [86]. Hu-
man breast cancer-derived T-EVs increase vascular
leakiness in the lungs by upregulating a subset of S100
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proteins and triggering Src kinase signalling [87]. T-EVs
produced by glioblastoma cells contain high levels of
VEGEF-A and stimulate EC permeability, vascular leaki-
ness, and angiogenesis in vitro [88]. Proteomics analysis
of T-EVs has demonstrated that T-EVs discharge several
proteins, including MMP9, SERPINA1, and SERPINF2.
The upregulation of these proteins has a substantial role
in ECM remodelling, vascular leakiness, and invasiveness
[89]. T-EVs originating from lung cancer or breast can-
cer cells specifically carry miR-23a and miR-105, which
both target the tight junction protein ZO-1. This en-
hances vascular leakiness and the trans-endothelial mi-
gration of malignant tumours [90, 91].

More research is required to accurately identify the mech-
anism by which T-EVs influence the stability of the endothe-
lial barrier, as well as the specificity of this particular
targeting within the vasculature of various body organs.

T-EVs to fibroblasts

Tumour-associated FBs (tFBs; also known as cancer-
associated fibroblasts (CAFs)) comprise a large part of
the responsive tumour stroma, and carry out essential
functions in tumour development. These cells are repro-
grammed stromal cells that play a role in malignant
tumour initiation, ECM remodelling and advancement,
PMN development, and metastasis [92, 93]. In fact, there
is evidence to suggest that T-EVs have a close relation-
ship with tFBs (Fig. 3).

T-EVs deliver EMMPRIN to FBs, causing the produc-
tion of MMPs and allowing tumour invasion and metas-
tasis [47]. T-EVs containing transforming growth factor
beta (TGF-P) transform FBs into myofibroblasts (MFBs),
triggering vascularisation, tumour growth, and regional
invasion [94, 95].

T-EVs, but not those released by non-malignant cells
(normal cells), contain crucial enzymes associated with
miRNA biogenesis. These enable cell-independent
miRNA maturation inside EVs [96]. Inhibition of target
mRNA expression (such as PTEN and HOXD10) by
transmitted mature miRNAs triggers tumour progres-
sion in initially non-malignant cells [96]. Large T-EVs
produced by amoeboid tumour cells from RWPE-2 pros-
tate cancer cells are enriched in miR-1227 and can en-
hance FB migration [97].

Compared to normal FBs, ovarian tumour-adjacent
tFBs constantly downregulate miR-31 and miR-214
while upregulating miR-155. Transfecting miRNA
mimics (miR-31 and miR-214 mimics) and miRNA in-
hibitors (miR-155 inhibitors) induces a functional shift
of normal FBs into tFBs, while the reverse transfection
causes the opposite result, the reversion of tFBs into
normal FBs [98]. Successive studies have pointed out
that T-EVs alone can lead to the functional and pheno-
typic changes associated with the conversion of normal
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stromal FBs into pathogenic tFBs [99]. Transmission of
T-EVs carrying miR-494 and miR-542p to lymph node
stromal cells and lung FBs resulted in cadherin-17
(Cdh17) downregulation and matrix metalloproteinase
upregulation (MMP2, MMP14, and MMP3) [100].
Transmission of the pro-metastatic miR-9 in breast
cancer-derived T-EVs bolstered the transformation of
human breast FBs to tFBs, leading to strengthened cell
motility [101].

T-EVs to mesenchymal stromal cells

T-EVs are able to stimulate MSCs to differentiate into
tumour-supportive cells (Fig. 3) by delivering growth
factors, including TGF-p and various miRNAs [19, 102].
Breast cancer-derived T-EVs nurture a myofibroblastic
phenotype in adipose tissue-derived MSCs (Ad-MSCs),
accompanied by enhanced VEGF, TGF-f, stromal cell-
derived factor 1 (SDF-1), and C-C motif chemokine lig-
and 5 (CCL5) expression [103]. Furthermore, colorectal
cancer-derived EVs stimulate tumour-like behaviour in
MSCs, which may favour tumour growth and invasive-
ness [104]. Similarly, EVs originating from osteosarcoma
cells carry a high level of TGF-f1, which causes MSCs
to secrete interleukin-6 (IL-6). This is connected with
enhanced metastatic spread [105].

T-EVs to epithelial cells

In numerous cell types, epithelial-mesenchymal trans-
formation (EMT) pertains to tumour intrusion and me-
tastasis [106, 107]. Epithelial cells (EpiCs) undergo
structural changes after EMT, wherein their polarity is
lost. EMT is identified by the acquisition of a mesenchy-
mal phenotype as a result of reduced keratin filaments
and reduced E-cadherin expression, as well as increased
expression of vimentin, fibronectin, N-cadherin, a-SMA,
and various proteases [108, 109]. EMT facilitates tumour
cell invasion and migration, making it possible for
tumour cells to avert apoptosis.

T-EVs also take part in EMT (Fig. 3). EVs isolated
from the metastatic breast cancer cell line MDA-MB-
231 promoted linoleic acid stimulation in an EMT-like
fashion in MCF10A EpiCs [110]. The function of EVs in
regard to cell polarity and EMT initiation in vivo needs
to be further investigated [111].

Two miRNAs (miR-191 and let-7a) have been shown
to contribute to melanoma cell-derived T-EV-mediated
EMT [112]. A collection of miRNAs (specifically miR-
23a) are integrated into EMT-associated EVs, and are
substantially enhanced in TGF-p-treated mesenchymal
lung adenocarcinoma cells [113].

Primary urothelial bladder cancer (UBC) cells were de-
termined to affect the expression of EMT genes by
means of EV-carrying LncRNA-HOTAIR. These include
SNAIl, TWIST1, ZEB1, ZO1l, MMP1, LAMB3, and
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LAMC2. Utilising shHOTAIR in a pair of human blad-
der cancer cell lines showed that expression of the mas-
ter regulator of EMT (SNAI1) was dramatically
decreased [114]. LncRNA-ZFAS]1 expression is increased
in gastric cancer cells, and higher ZFAS1 has been corre-
lated with lymph node metastasis and with tumour node
metastasis (TNM) stages. ZFAS1 is delivered through T-
EVs, promoting gastric cancer expansion and migration
by supporting the EMT [115].

A recent study determined that circRNA-circPRMT5
was upregulated in serum and urine EVs from UBC pa-
tients. Further investigation determined that circPRMT5
supports the UBC cell EMT by serving as a miR-30c
“sponge”. As a result, the expression of its own target
gene SNAIL1 and E-cadherin is enriched, allowing the
cells to become more invasive [116].

T-EVs to platelets

It is commonly acknowledged that metastatic growth is
associated with the risk of thrombotic issues, which is a
major cause of death in malignant tumour patients [117].
Coagulation and platelet accumulation at malignant
tumour sites protect against recognition of malignant
tumour cells by the immune system, ensuring malignant
tumour cell migration and dissemination [118].

EVs associated with coagulation can originate from
platelets, inflammatory cells, and malignant tumour cells
[119]. Raised circulating levels of EVs containing tissue
factors (TFs) and various other coagulation-promoting
factors are monitored in malignant tumour patients, and
are associated with raised risk of thrombosis [119-121].

Fascinatingly, mutated KRAS and TP53 are associated
with raised levels of TFs in T-EVs secreted by human
colorectal tumour cells [122]. Pancreatic cancer cell-
derived T-EVs containing active TFs and P-selectin
glycoprotein ligand 1 (SELPLG) have been revealed to
accumulate at locations of impairment, reducing haem-
orrhage upon injection into living mice [123]. Taken to-
gether, these data suggest that T-EVs possess potential
pro-thrombotic qualities (Fig. 3) [123] and sustain co-
agulation activity in malignant tumour development and
metastasis [124].

T-EVs to immune cells

The TME is penetrated by a range of immune cells, in-
cluding lymphocytes (T cells, B cells, natural killer (NK)
cells, and T regulatory (Treg) cells), dendritic cells
(DCs), monocytes, M¢s, myeloid-derived suppressor
cells (MDSCs), and granulocytes (neutrophils, basophils,
eosinophils, and mast cells). The major function of these
cells is to ensure immune supervision. Nevertheless,
tumour cells are efficient in regulating signalling path-
ways within these immune cells, turning them into an
immunosuppressive entity and resulting in improved
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malignant tumour cell survival and proliferation [125].
There is a growing body of evidence suggesting the im-
portance of T-EVs in tumour-associated abnormal im-
munity (Fig. 4).

One study determined that T-EVs induce immunosup-
pression by promoting apoptosis of hematopoietic stem
cells (HSCs), DCs, and peripheral blood lymphocytes
(PBLCs) [126]. Many T-EVs have been shown to be
enriched for Fas ligand (Fas-L), which causes apoptosis
when it binds to its receptor. Fas-L(+) T-EVs cause im-
munosuppression by enhancing Treg cell expansion and
anti-tumour T cell apoptosis, resulting in immune es-
cape [127-131]. The existence of various other media-
tors of T cell apoptosis in T-EVs, such as galectin-1/-9,
has been shown to trigger T cell apoptosis and immuno-
suppression [132, 133].

T-EVs carry TGE-p externally and transport it to T cells,
suppressing their proliferation in response to IL-2 and al-
tering their phenotype to Treg cells [134, 135]. Further-
more, T-EVs inhibit the differentiation of monocytes into
DCs and enhance the production of a TGF-B-producing
myeloid immunosuppressive cell subset—MDSC—which
then suppresses T lymphocyte proliferation [136]. The en-
richment of prostaglandin E2 (PGE2) and TGF-f in T-
EVs causes the accumulation of MDSCs with immune
suppressive features [137]. It has also been revealed that
T-EV-associated Hsp72 or Hsp70 mediate inhibition of
MDSCs through STATS3 activation [138, 139].

These T-EVs have been revealed to trigger DCs and
cause IL-6 secretion, which enhances tumour invasion by
increasing MMP-9 metalloproteinase expression [140]. T-
EVs are able to induce IL-6 production inside monocytes
via toll-like receptor (TLR) activation. IL-6 then triggers
the signal transducer and activator of transcription 3
(STAT3) pathway in immune cells, stromal cells, and
tumour cells. This sustains the general immune escape of
malignant tumour cells [141]. Likewise, tumour cells are
able to discharge T-EVs containing MHC class 1-related
chain ligand A (MICA). This can bind to the NK cell re-
ceptor NKG2D, resulting in its downregulation and lead-
ing to a significant decrease in NK cytotoxicity,
independent of target cell NKG2D ligand expression
[142]. One study recently discovered that GD3, a ganglio-
side expressed on the surface of T-EVs, arrests T cells by
engaging their T cell receptor (TCR) [143].

A previous study confirmed that PD-L1 exists in EVs
derived from the urine or blood of patients with early
IgA nephropathy [144]. Research has affirmed that the
amounts of PD-L1 expressed on EVs, but certainly not
dissolvable PD-L1, are associated with the advancement
of head and neck squamous cell carcinoma (HNSCC)
[145]. Chen et al. have also determined that PD-L1 on
metastatic melanoma-derived T-EVs hinders CD8(+) T
cell activation and assists with tumour development.
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This could be interrupted by means of anti-PD-1 mono-
clonal antibody (mAB) treatment [146]. In HNSCC pa-
tients, PD-L1-high EVs considerably inhibited CD69 on
CD8(+) T cells [145]. In a prostate cancer syngeneic
model, mice were not reactive to anti-PD-L1 mAB therapy
as a result of PD-L1-carrying EVs. In 4 T1 tumour models,
the accumulation of PD-Ll-carrying EVs in the TME
caused resistance to immunotherapy by subduing gran-
zyme B secretion. Rab27a knockdown (KD) in tumour
cells considerably enriched the performance of anti-PD-1
treatment and inhibited 4 T1 tumour development [147].
Tumour-released miRNAs have similarly been associ-
ated with immunosuppression. For example, miR-214
carried by T-EVs was effectively transported into recipi-
ent T cells. An in vivo study has shown that miR-214
mediates Treg cell expansion, causing increased im-
munosuppression and tumour growth in mice [148].
Mg¢s are multifunctional antigen-presenting cells char-
acteristically classified into a pair of polarised pheno-
types: pro-inflammatory (M1) and anti-inflammatory
(M2) [149]. Tumour-associated M¢s (t-M¢s) are of the
M2 subtype (M2-M¢s) and penetrate malignant tissues
[150]. Inside the TME, t-M¢s produce IL-4/5/6, which
enhance angiogenesis, matrix remodelling, and immuno-
suppression [151]. When T-EVs are phagocytosed by
undifferentiated M¢s, they undergo M2 polarisation via
the suppressor of cytokine signalling (SOCS) 4/5/STAT3
pathway [152]. Pancreatic cancer (PC) cell-derived T-
EVs change the differentiation of M¢s to M2-M¢s, en-
suring immunosuppression and metastasis occurs inde-
pendently of HIF-1 and HIF-2. Furthermore, PC-derived
T-EVs activate the PI3Ky pathway to improve immuno-
suppressive gene expression in M2-M¢s [153].

T-EVs to extracellular spaces

Throughout the process of malignant tumour progression,
the molecular and cellular environments of stromal cells
and their extracellular proteins and enzymes are dynamic-
ally changing as a result of the influence of T-EVs (Fig. 4).
ECM remodelling is commonly believed to enhance the
invasive phenotype of tumours. T-EVs carry the ECM
compound fibronectin, thus supporting incipient adhesion
assembly and boosting cellular motility [154]. Proteomic
analysis of T-EVs showed that annexins, a-3 integrin, and
ADAMI10 were enriched in T-EVs, and were associated
with regional invasion and cell migration [155]. Large T-
EVs likewise harbour abundant bioactive molecules asso-
ciated with regional invasion (such as ARF6, Cav-1,
MMP9, and MMP2), and their abundance is also associ-
ated with tumour development [156].

Research has revealed that EVs participate in invasion
and metastasis by means of invadopodium formation
[157, 158]. Invadopodia are vibrant actin-rich membrane
protrusions which tumour cells generate to invade and
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degrade the ECM [157]. It was recently suggested that
invadopodia are docking sites for EVs, expediting ECM
degradation by means of localised secretion of metallo-
proteinase MT-1-MMP and therefore advancing cell in-
vasion [159, 160]. Similarly, the migration of tumour
cells throughout tissues and chemotactic gradients is in-
duced by the formation and release of fibronectin-bound
EVs at the leading edge of migrating cells. These
fibronectin-bound EVs enhance adhesion assembly and
stabilisation, enabling persistent and directional tumour
cell migration [154, 161].

EVs could be used as carriers by malignant tumour
cells to promote drug resistance via drug sequestration
and banishment (Fig. 4). Shedden et al. were the first to

mention a positive correlation between the expression of
genes related to EV shedding and drug resistance in
various malignant tumour cell lines [162]. In a breast can-
cer cell line, they used light microscopy and flow cytometry
to demonstrate that the fluorescent chemotherapeutic agent
doxorubicin was physically encapsulated in EVs and ejected
into the extracellular medium [162]. More recently, melan-
oma cells became resistant to cisplatin treatment via an
extracellular acidification-mediated increase in EV secretion
and the direct export of cisplatin into these EVs [163]. Cis-
platin was discovered to be removed from resistant ovarian
carcinoma cells via EVs [164]. B-cell lymphoma cells add-
itionally effectively expelled doxorubicin and pixantrone in
T-EVs in vitro [165].
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Malignant tumour cells can also make use of EVs as
“fake targets”, thus weakening targeted treatments (Fig.
4). T-EVs transport a huge selection of cellular antigens,
all of which are presented in an orientation identical to
those found on the surface of the cells from which they
originate. On the surface of EVs, the existence of anti-
gens targeted by immunotherapy acts as a sink for
monoclonal antibody-based drugs, thus reducing their
bioavailability to their anticipated target.

This is exemplified by B-cell lymphoma, when the exist-
ence of CD20 on the surface of EVs protects targeted
lymphoma cells from rituximab (an anti-CD20 mAB) [63].
Both in vitro and in vivo research into breast cancer has
demonstrated the function of HER2(+) EVs in regulating
resistance to the anti-HER2 mAB Trastuzumab. T-EVs
produced by either HER2(+) tumour cells in vitro or dis-
covered in the serum of breast cancer patients bind to
Trastuzumab, thus impeding its activity in vitro [166].

Immune checkpoint blockade therapies feature anti-
CTLA-4 monoclonal antibody (mAb), anti-PD-1 mAb,
and anti-PD-L1 mAb [167]. It is largely recognised that
a PD-1/PD-L1 blockade could possibly trigger T cells.
However, little has been discovered about the role of
PD-L1-carrying EVs in the relatively low response rate
to anti-PD-L1/PD-1 treatment [168]. The interruption of
intercommunication between the checkpoint ligand
(such as PD-L1) and the inhibitory checkpoint receptor
(PD-1) on T cells restores T cell function and anti-
tumour immunity. Nevertheless, not all patients respond
to this type of immune checkpoint inhibitor treatment.
The presence of the checkpoint ligand (PD-L1) on T-
EVs soon after treatment categorises melanoma patients
as either responders or resistant to anti-PD-1 treatment
[146]. T-EVs steer this type of antibody far from the
tumour by securing the immunotherapeutic antibody on
their surface, leaving it free to face PD-1 on approaching
tumour-specific T cells. The same machinery has been
used to explain glioblastoma in vitro, in which T-
EVs exhibit PD-L1 and suppress both T cell prolifer-
ation and antigen-specific T cell responses [169]. In
a prostate cancer mouse model, mice were not react-
ive to anti-PD-L1 mAB therapy as a result of EVs
carrying PD-L1. In 4T1 tumour models, the accu-
mulation of PD-L1 on EVs in the TME caused im-
munotherapy resistance by subduing granzyme B
secretion. Significantly, Rab27a KD in tumour cells
considerably improved the performance of anti-PD-1
treatment and inhibited 4 T1 tumour development
[147]. In HNSCC patients, PD-L1-high EVs consider-
ably hinder CD69 on CD8(+) T cells, which may also
be obstructed by anti-PD-1 antibodies [145]. In
Fig. 5a, we present a diagram summarising and dem-
onstrating the role of T-EVs in interference of regu-
lar PD-1/PD-L1 interactions.
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PMN build-up

Metastasis is a multi-step procedure resulting in the
spread of primary tumour cells to distant body organs.
T-EVs have been associated with all steps of tumour in-
vasion and metastasis [159, 170-172]. PMNs accumulate
by the means explained in the previous sections and
possess some characteristic functions.

T-EVs possess their own protein “postal code” of spe-
cific integrin profiles (Fig. 5b). This directs them to spe-
cific body organs, thereby deciding their metastatic
organotropism [87]. The metastatic organotropism and
building of a PMN is determined by T-EVs secreting
various sets of integrins (including a6p1, a634, or avp5),
which preferentially fuse tumour cells with resident cells
at their anticipated location. T-EVs taken up by organ-
specific cells prepare the PMNs, and specific integrin
patterns predict the organotropism of tumour cells,
integrins a6P1 and a6P4 as being related to lung metas-
tasis. However, integrin av(35 has been determined to be
related to liver metastasis [87].

CircRNAs in blood EVs, called ciRS-133, are closely
associated with the light browning of white adipose tis-
sue (WAT) and malignant tumour-associated cachexia.
After being provided to pre-adipocytes, ciRS-133 reduce
miR-133 expression, activate PRDM16, and promote the
differentiation of preadipocytes into brown-like cells. It
has been demonstrated that ciRS-133 KD may prevent
tumour-implanted mice from struggling with malignant
tumour-related cachexia, demonstrating the contribution
of EV-circRNAs in tumour pathogenesis [173].

EVs from non-tumour cells

Tumour expansion and drug resistance are not only de-
cided by malignant tumour cells but are also sustained
by non-tumour cells inside the TME. Hence, it is quite
reasonable to think that nmEVs also play an important
role in affecting the TME (Fig. 6). Thus tFB-derived EVs
(tFB-EVs) may reinforce tumour growth, survival, inva-
sion, and metastasis. By producing chemoresistance-
inducing EVs enclosing Snail and miR-146, pancreatic
tFBs, which are fundamentally resistant to the chemo-
therapeutic agent gemcitabine, mediate the transmission
of resistance to pancreatic cancer when exposed to gem-
citabine. This enhances their proliferation and survival
[174]. tFB-EVs may also magnify breast cancer protrusive
activity, motility, and metastasis by triggering autocrine
Wnt-planar cell polarity (PCP) signalling [175]. Studies
have determined that three miRNAs (miR-21, —378e, and
also — 143) are upregulated in tFB-EVs and can be easily
transferred into breast cancer cells to promote EMT
[176]. Similarly, the transposition of miR-21 from tFBs to
ovarian cancer cells minimises apoptosis and elevates pac-
litaxel chemoresistance by downregulating apoptotic pep-
tidase activating factor (APAF1) mRNA expression [177].
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MSC-derived EVs (MSC-EVs) may generate drug re-
sistance in gastric cancer cells by activating the CaM-Ks/
Raf/MEK/ERK signalling pathway [178]. EVs carrying
RNA from stromal cells, which are mainly transposable
elements and non-coding transcripts, may be trans-
ported to breast cancer cells. This leads to an increase in
therapy- and radiation-resistant breast cancer cells via a
mechanism requiring NOTCH3 induction [179]. MSC-
EVs with pro-angiogenesis miRNAs (miR-30b, 30c, 424,
and let-7f) can easily upregulate the expression of pro-
angiogenic factors in cancer cells [180].

HRAS overexpression in EpiCs boosts the packing of
mesenchymal markers (including vimentin and MMPs)
in EVs, possibly causing EMT in recipient cells [181].

Transfer of miR-365 in M¢-derived EVs (M¢-EVs)
causes pancreatic adenocarcinoma cells to become re-
sistant to gemcitabine in vitro and in vivo [182]. M2-
M¢s (t- M¢s)-derived miR-21 secretion confers cisplatin
resistance in gastric cancer cells. Functional investiga-
tions have disclosed that EVs carrying miR-21 may be
transported directly from M¢s to gastric cancer cells,
where they inhibit programmed cell death and increase
PI3K/AKT signalling pathway activation via PTEN
downregulation [183].

The transfer of miRNAs specifically targeting PTEN
expression from astrocyte-derived EVs to invading
tumour cells in the brain microenvironment supports

brain metastasis, despite the fact that other autocrine
and paracrine signalling may also be coordinated
throughout tumour development [184].

CircRNAs are commonly expressed in individual cells
such as blood cells [185, 186]. Researchers extracted EVs
from platelets and determined that circRNAs are select-
ively packaged and discharged directly into EVs. Given
that platelets participate in different physiological proce-
dures including neoplasm, inflammation, and coagulation
metastasis, EV-circRNAs could be transported throughout
the body to participate in a variety of regulatory functions
[187]. It was also noted that some EV-circRNAs derived
from adipose cells can easily influence de-ubiquitination
in HCC. Still more EV-circ-de-ubiquitination (circ-DB)
occurs in patients with greater rates of body fatty tissue.
Research has shown that circ-DB switches on USP7 in
HCC cells by lessening the degree of miR-34a expression.
The circ-DB/miR-34a/USP7/CyclinA2 signalling pathway
was discovered by this means, through which the EV-
circRNAs upregulated malignant tumour development
and inhibited DNA damage [188].

EVs and diagnosis

Given that they are incredibly stable, abundant, and
tumour-specific, T-EVs have numerous unique ad-
vantages as biomarkers [189]. One interesting T-EV
biomarker is the epithelial cell adhesion molecule
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(EpCAM) [190]. EpCAM(+) T-EVs enhance malig-
nant ovarian tumour development, and are signifi-
cantly more numerous in patients with malignant
ovarian tumours than in females with benign ovarian
disorder or healthy control subjects [191].

EV integrins (as a counterpart to tumour-expressed
integrins) can act as biomarkers to predict the

probability of malignant tumours, in addition to deter-
mining metastatic tendencies in specific organ sites [87].
Specific EV integrin mixtures determine organ-specific
metastasis. The a6p4 and a6B1 EV integrins are associ-
ated with lung metastasis, avp5 EV integrins with liver
metastasis, and avp3 EV integrins with brain metastasis
models [87].
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Circulating T-EVs from patients with stage IV melan-
oma carry a protein signature composed of the
melanoma-specific protein tyrosinase-related protein-2
(TYRP2), very late antigen 4 (VLA-4), HSP70, and MET
oncoprotein [86]. T-EVs from the plasma of melanoma
patients are enriched in caveolin-1 compared with
healthy controls, suggesting that caveolin-1(+) T-EVs are
likely to be another prospective melanoma biomarker
[192]. EV glypican-1 has likewise been suggested as a
prognostic and diagnostic indicator for pancreatic malig-
nant tumours [193]. In patients with pancreatic ductal
adenocarcinoma (PDAC), the amount of the protein
MIF inside T-EVs may represent a prognostic marker
for liver metastasis. Circulating T-EVs from stage-I
PDAC patients that later showed established liver metas-
tasis had been improved by higher levels of MIF, as
compared with patients whose cancer did not advance
and healthy control cases [194].

Research has illustrated that the detection of PD-L1(+)
EVs in serum is correlated with poor prognosis in indi-
viduals with pancreatic ductal adenocarcinoma [195].
New findings have suggested that miR-21 contained in
PD-L1(+) EVs possesses the potential to become a bio-
marker for distinguishing between NSCLC patients and
healthy controls [196].

Additionally, EVs transport single-stranded DNA
(ssDNA), which summarises genomic eccentricities such
as oncogene amplifications (such as MYC) in the pri-
mary tumour [197]. In the metastatic environment, a
higher level of double-stranded DNA (dsDNA) was dis-
covered in T-EVs in aggressive melanoma compared to
melanoma with reduced metastatic capacity or in non-
metastatic melanoma [198]. T-EV dsDNA reflects the
oncogenic mutational condition of the particular paren-
tal malignant tumour cell [193, 198, 199]. This empha-
sises the utility of T-EV dsDNA as a biomarker for
diagnosing oncogenic mutations in a clinical setting.

Tumour-specific mRNA isolated from T-EVs from the
serum and tissue of glioblastoma patients reflects the
mutational condition of EGFRVIII [200, 201]. MiRNAs
within circulating T-EVs possess prognostic and/or diag-
nostic value for many types of malignant tumours. T-
EVs carrying miR-373 are primarily enhanced and over-
all greater in triple-negative breast cancer patients,
highlighting the potential role of miR-373 as a plasma-
based biomarker for more hostile tumours [202]. Serum
EVs carrying numerous miRNAs are considerably higher
in individuals with primary malignant tumours com-
pared to normal controls, including miR-21 and miR-
125b [203, 204]. In patient serum, EV miR-17-92a clus-
ter expression levels are associated with recurrence of
colon cancer, while EV miR-19a is associated with poor
prognosis [205]. EV miR-141 and miR-375 have been
connected with metastatic prostate cancer [206, 207].
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An additional study determined the association between
higher levels of miR-1290 and miR-375 in serum EVs
and reduced survival in patients with castration-resistant
tumours [208]. When comparing EVs from metastatic
sporadic melanoma patients to those in familial melan-
oma patients or unaffected control subjects, miR-17,
miR-19a, miR-149, miR-21, and miR-126 were expressed
at greater levels in the former [209].

LncRNAs associated with T-EVs are also appealing as
prospective biomarkers. Nevertheless, LncRNAs in EVs
may work as biomarkers in various other malignant tu-
mours, such as LncRNA-p21 in prostate cancer and
LncRNA-HOTAIR in bladder cancer [210]. In colorectal
cancer (CRC), LncRNA-MAGEA3 has been determined
to be a colorectal cancer-related serological biomarker.
EVs carrying LncRNA-CRNDE-h are increased in the
serum of CRC individuals, and have been associated with
factors connected to poor CRC prognosis [211]. Add-
itionally, high levels of LncRNA-CRNDE-p and reduced
miR-217 on serum EVs are associated with enhanced
medical stages (III/IV), tumour classification (T3/T4),
and lymph node or remote metastasis [212]. Blood
LncRNA-LINC00152 is substantially higher in gastric
cancer (GC) patients compared to healthy controls
[213]. A similar study illustrated that ZFAS1 is highly
expressed in the serum EVs of GC patients. ZFAS1 up-
regulation is also connected with the TNM stage and
lymphatic system metastasis. This demonstrated that
EVs carrying ZFAS1 may act as a prospective diagnostic
biomarker for GC [214].

Nonetheless, the features of circRNAs mark these mole-
cules as a better option for detecting disorders due to their
closed conformation and resistance to RNase. Compared
to the 48-h half-life of the majority of circRNAs, the or-
dinary half-life of miRNAs is normally less than 10h
[215]. Scientists extracted circulating T-EVs originating
from PDAC patients and determined that higher EV-
circPDEBA expression was closely related to duodenal in-
filtration, vascular infiltration, and the TNM stage [70].

With recent technological improvements, microfluidic
technology has been introduced into the field of EV
study. Compared with traditional methods, microfluidic
technology can carry out EV-based diagnosis more eas-
ily, efficiently, and economically [216].

EVs and therapy

Elimination of detrimental EVs

EV biogenesis is a major target for EV-targeting therapy
in malignant tumour treatment [217-219]. A number of
Rab proteins have been revealed to be associated with
the selective packing and generation of EVs in both nor-
mal cells and tumour cells [28, 119, 220]. Rab27a KD in
metastatic melanoma and malignant breast tumour cells
resulted in a significant decline in EV generation,
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primary tumour sizing, and metastasis [86, 218]. There-
fore, identifying the profile of Rab proteins responsible
for EV release in malignant tumour cells could result in
novel therapeutic options.

Federici et al. carried out therapy with a proton pump in-
hibitor to observe the effects of both cisplatin uptake and EV
release in vitro and in vivo. In a mouse xenograft model of
melanoma, they demonstrated that therapy with a proton
pump inhibitor reduces the release of EVs and enhances
tumour cell sensitivity to cisplatin [163]. Numerous inhibi-
tors of EV release, such as a calpain inhibitor [221], prevent
EV release in response to calcium mobilisation. This was ob-
served in prostate cancer cell lines in vitro, and enhanced
sensitivity of cells to chemotherapy was observed in vivo
[222]. Inhibition of EV release by avoiding the activation of
ERK via a MEK inhibitor led to enhanced sensitivity of pan-
creatic cancer cell lines to gemcitabine in vitro, and in a
tumour graft model in vivo [223].

While many of the agents specifically blocking T-EV re-
lease from malignant tumours lack specificity, some inhibi-
tors target tumour-specific enzyme isoforms. This is the case
for peptidylarginine deiminase (PAD)2 and PAD4 inhibitors,
which are overexpressed in prostate and ovarian malignant
tumour cells. Their inhibition by chloramidine minimises T-
EV production, thus increasing the sensitivity of malignant
tumour cells to chemotherapy drugs [224]. In a more meth-
odical in vitro study, Kosgodage et al. disturbed T-EV bio-
genesis in prostate and breast cancer cell lines. They
determined that amongst a collection of 11 inhibitors target-
ing different steps of T-EV biogenesis, PAD inhibitors and
PKC (bisindolylmaleimide-I) inhibitors were the most effect-
ive [225]. The same group recently demonstrated the im-
pressive role of cannabinol (CBD) as an inhibitor of T-EV
release in prostate, hepatocellular carcinoma, and breast can-
cer cell lines. The CBD-induced inhibition of T-EVs signifi-
cantly escalated cell sensitivity to anti-cancer drugs including
doxorubicin and pixantrone [226].

Although these treatments have had success in vitro
and sometimes in vivo, their lack of selectivity for malig-
nant tumour cells restricts their therapeutic usage. This
is not the case for the specific elimination of circulating
T-EVs from plasma.

In a technique quite similar to haemodialysis, extracor-
poreal hemofiltration with cartridges composed of hol-
low fibres (with a size cut-off of 200 nm) combined with
an affinity matrix allows specific elimination of ultra-
filtered EVs. This procedure is known as Adaptive
Dialysis-like Affinity Platform Technology (ADAPT™),
and was first developed by Aethlon Medical Inc. for
eliminating Hepatitis C virus (HCV) particles from the
bloodstream of contaminated patients [227]. The expan-
sion of this approach to the specific elimination of EVs
with a hollow fibre size cut-off lower than 200 nm, has
been discussed by Marleau and colleagues [228].
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Use of EVs

Activation of anti-tumour T cell reactions by DC-derived
EVs (DC-EVs) has been determined to be critical in reducing
the expansion of well-established tumours [229]. Loading
DC-EVs with MHC/tumour antigen has been carried out for
phase I clinical trials in patients with advanced melanoma
[230] and non-small-cell lung carcinomas [231]. EVs from B
lymphoma cells have been confirmed to have high amounts
of HSP70 as well as HSP90, therefore enhancing the anti-
tumour immune response [217].

EVs may be therapeutically targeted to supply anti-
tumour cargos to malignant cells [232]. Based on their
combination of surface proteins, EVs can be routed to
specific tissues [87, 194]. These characteristics make
them efficient nano-vehicles for the biodelivery of thera-
peutic RNAs, proteins, and other agents.

Capitalising on EVs, researchers have the ability to tar-
get medications to tumour cells. EVs may raise the
therapeutic index of doxorubicin (DOX). EVs carrying
doxorubicin (EV-DOX) avoid cardiac toxicity by partly
restricting the crossing of DOX via myocardial ECs
[233]. Another study demonstrated that bovine milk
may be a scalable resource for EVs that can easily func-
tion as transporters for chemotherapeutic/chemopreven-
tive agents. Comparing the use of soluble drugs, drug-
loaded EVs had considerably greater efficiency compared
to lung tumour xenografts in vivo [234].

An in vivo study revealed that neuron-targeted EVs
packed with Bacel siRNAs specifically and significantly
decreased Bacel mRNA (60%) and protein (62%) in
nerve cells [235]. Similarly, EVs loaded with artificial
siRNA targeting MAPK could efficiently knock down
the MAPK1 gene at the time of their transmission into
lymphocytes and monocytes in vitro [236]. The level of
RAD51 transcript significantly decreased in HEK293 and
HCT116 colon cancer cell lines when incubated with
EVs transporting siRNA targeting RAD51 by electropor-
ation [237]. EVs with si-HGF-1 substantially reduced
HGF and VEGF expression, thereby preventing gastric
cancer progression [48].

These results suggest that EVs may indeed be benefi-
cial as drug delivery tools. Although several anti-tumour
therapies have been investigated/tested in preclinical
models and phase I clinical trials, these studies have
reinvigorated the desire for novel anti-cancer therapies.

Discussion and outlook

In the previous sections, we introduced the role of EVs
in the TME, including the role of T-EVs and EVs from
non-malignant cells. Some representative contents of
EVs, their functions and mechanism are shown in
Table 1. We also discussed the application of EVs in the
diagnosis and treatment of various cancers. Increasing
amounts of research have been conducted on this topic,
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and many interesting findings and perspectives have
been presented, in addition to the emergence of new
diagnostic and therapeutic techniques. However, there
are still gaps in our knowledge and questions that must
be addressed.

The physiological and pathological study of tumours
can be mainly categorised into two levels: (1) single mol-
ecule studies, which study a specific molecule in EVs and
its role; and (2) functional observational studies, which de-
termine the changes and possible roles of EVs and their
cargo in the TME. There is a very large gap between the
functional observational studies and the single molecule
studies, as well as between in vivo and in vitro studies.

EVs through their cargo play a variety of different roles,
but it is important to determine which of these play pri-
mary or secondary roles, to what percentage this function
is carried out, and whether there is synergy or antagonism
between these molecules or EVs. Current research is not
sufficient to provide satisfactory answers. There is also a
gap between molecules or single source EVs and the
TME. This is because the TME is complex, containing
many cells and molecules carrying out different functions.
Rather than a single molecule or single source of EVs con-
tributing to their functions, there is an interplay between
various molecules and all sources of EVs.

Moreover, cellular communication has not been well
studied. The interaction between cells is bidirectional,
and tumour cells and non-malignant cells in the body
continuously interact with each other in dynamic equi-
librium to form the TME. Many in vitro experiments are
carried out using EVs from one type of cell to stimulate
another type of cell. The effect of EVs on cells in the
TME is not a simple and direct effect, but rather an ef-
fect similar to the “iterative effect”, such that the influ-
ence of T-EVs on non-malignant cells can also affect the
content of nm-EVs; and the influence of affected nm-
EVs on tumours and T-EVs is changed. When this
process is continuously repeated, the features of EVs will
completely deviate from the simple in vitro model. Al-
though it is not clear what kind of new model will be
most appropriate, organ-on-a-chip may be a more ap-
propriate option for future research [238].

Minimal Information for Studies of Extracellular Vesi-
cles 2018 (MISEV2018) endorses EVs as the standard
terminology for vesicles which are released naturally by
the cell and enclosed within a lipid bilayer without repli-
cation capacity (without a functional nucleus) [239].
Over the years, many enlightening studies have been car-
ried out in this field of EVs, but there are still fundamental
questions that need to be resolved in future. One of the
biggest problems is around the “EV subtypes”. Since con-
sensus has not yet been reached on specific markers of EV
subtypes (for instance, endosome-origin “exosomes”, and
plasma membrane-origin “MVs”) [239-242], there are still
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great difficulties in attributing a specific EV to a specific
biogenic mechanism, unless an EV is observed in the
process of release by a live imaging system [239]. There-
fore, although many authors have classified EVs into sub-
types based on particle size and density, as long as a set
identification system/principle, with reliable specific
markers of subcellular origin, cannot be established, the
terminology of EV subtypes should be avoided [239].
Thus, establishment of reliable specific markers of subcel-
lular origin is an important scientific issue, to which re-
searchers in the EV field should pay attention.

Finding discriminating markers for T-EVs versus nor-
mal stromal EVs has been an important research direction
in this field for a long time. Although a number of
markers on EVs have been identified for a particular type
of tumour (for example: EpCAM for ovarian cancer; VLA-
4, TYRP2 and MET for melanoma; MIF for PDAC), so
far, no universal markers have been found. If one or more
universal/general markers, which can cover various kinds
of tumours not just one or a few, can be found on T-EVs,
then the use of T-EVs for tumour diagnosis will become
even more meaningful. If no universal markers can be
found, then compromise tactics will need to be used. EVs
from various tumour sources can be analysed, and the
data can be uploaded to a database. Through bioinformat-
ics technology, a minimal set of genes could be found,
which can cover as many tumours as possible, and the
database should be updated as often as possible.

New evidence shows that EV-circRNAs could possess
important biological functions in different pathological
and physiological procedures. EV-circRNAs are con-
firmed to be extremely stable [243]. Furthermore,
genome-wide studies have determined that the quantity
and proportion of circular-to-linear splicing is a mini-
mum of two to six times greater in EVs than in producer
cells. There are also over 1000 distinctive circRNA can-
didates available in individual serum EVs [12]. However,
too few studies have investigated the specific mechanism
of EV-circRNAs in the TME. Moreover, the stability of
EV-circRNAs gives them excellent potential for carrying
out EV-based liquid biopsy. This could be a good avenue
for follow-up research, and could generate new ideas to
advance the understanding of diseases, as well as new
diagnosis and treatment methods.

Liquid biopsy is based on the detection and analysis of
biomarkers (for instance, circulating tumour cells
(CTCs), cell-free nucleic acids (cfNAs), and EVs) in
readily-available body fluids such as peripheral blood
[244-246]. The first step of major liquid biopsy ap-
proaches is isolation and enrichment of targets [246],
and it is important to establish a reliable system.

Analysis of EVs is a promising potential new star in
the field of liquid biopsy, and an approach that has
attracted more and more attention in recent years is
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Table 1 Some representative contents of EVs, their functions and mechanism

Disease EV Contents Pathways/Mechanism Function
Glioma EGFRvIII MAPK, Akt tumour development
LncRNA-HOTAIR upregulating VEGF-A expression angiogenesis
Glioblastoma VEGF-A - vascular leakiness, angiogenesis
Melanoma Met - resistance lung metastasis
PDGFR-3 PI3K/AKT resistance
- upregulation of $100a8, S100a9, and TNF-a vascular leakiness
miR-191 and let-7a - EMT
PD-L1 competitive inhibition Anti-PD-1 therapy resistance
HCC HGF HGF/c-MET/PI3K/AKT resistance
LncRNA-ROR TGF-3 resistance
Osteosarcoma  P-gp/MDR-1 mRNA - resistance
TGF-B secreting IL-6 tumour metastasis
RCC Lnc-ARSR STAT3, AKT, ERK resistance
Breast cancer LncRNA-UCA1 - resistance

- upregulating a subset of S100 proteins and triggering Src kinase

signalling

miR-23a, miR-105 targeting ZO-1

miR-9 -
HER2 competitive inhibition
PDAC circ-PDESA miR-338/MACC1/MET

Lung cancer miR-23a, miR-105 targeting ZO-1

Myeloma syndecan-1, VEGF, -

HGF

EGFR MAPK, AKT
UBC LncRNA-HOTAIR -

circPRMT5 miR-30c “sponge”
Gastric cancer  LncRNA-ZFAST -
Pancreatic SELPLG -
cancer
HNSCC PD-L1 competitive inhibition
Prostate cancer  PD-L1 competitive inhibition
B-cell CD20 competitive inhibition
lymphoma

vascular leakiness

vascular leakiness

shift of normal FBs into tFBs
Trastuzumab resistance
tumour invasion

vascular leakiness

angiogenesis

angiogenesis
EMT
EMT
EMT

coagulation and metastasis

immunosuppression, tumour
progression

immunosuppression

rituximab resistance

single-EV analysis, which is of crucial significance for
the precise analysis and diagnosis of diseases [246]. A
multiplexed fluorescent imaging system has been introduced
by Lee and colleagues for the detection and analysis of multi-
plex markers on a single EV, and this technology can analyse
up to 11 different markers [247]. Microfluidic technology
has also played an important role in promoting the develop-
ment of this field. A nano-interfaced microfluidic EV (nano-
IMEX) platform was reported by Zhang and colleagues, and
this platform has the capacity to distinguish ovarian cancer
patients from controls by detecting un-processed minimal
volume (2 uL) plasma samples [248]. Consequently, when
combined with nanotechnology and microfluidic technology,

liquid biopsy is likely to bring many new advances in the
field of EVs, although the problem that needs to be solved to
enable these future developments remains identification of
discriminating markers and stable and reliable methods of
separation, extraction and purification.

EVs are involved in various pathophysiological condi-
tions such as development and progression of disease
[35, 249]. Several recent studies have identified specific
inhibitors which block the predominant EV subpopula-
tions (for example, GW4869 for Exos, or Y27632 for
MVs) [250]. However, even if some of these inhibitors,
which have already been formulated and used as thera-
peutic agents, have proven to be reliable and robust and
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have reproducible inhibitory effects on the release of
EVs, the side-effects must also be considered, for in-
stance, the side-effects of imipramine include immune
suppression and infections, nausea, vomiting, dizziness,
tiredness, disorientation and low blood pressure, while
the side-effects of pantetheine include impaired blood
clotting, nausea, and diarrhoea [250]. The ultimate goal
would be to selectively and effectively influence EVs in-
volved in pathological processes but not those perform-
ing necessary physiological roles, but so far this goal has
not been achieved [250]. Based on what has been
achieved so far, tactics to selectively target delivery of
these drugs to malignant tumours but not normal tissues
may be a straightforward and feasible solution.

Although many of the EV-based therapeutic ap-
proaches performed well in pre-clinical models and
phase I clinical trials, they exhibited many notable issues
in subsequent phase II clinical trials. In patients with ad-
vanced non-small cell lung carcinomas, interferon-y
(IEN-y)-DC-EV treatment ceased to be effective, re-
vealed by long-term clinical observation [251]. There-
fore, ways in which basic research can be progressed
towards clinical application is also an issue to be ad-
dressed in future research.

On account of their good stability, long circulating
half-life and relatively good bio-safety, EVs are consid-
ered to be potential drug delivery systems with high de-
livery efficiency and low toxicity [252]. Moreover,
studies have also shown that EVs have a unique “hom-
ing” ability (the capability to target the cell type similar
to their source cells) [252, 253]. Studies have shown that
EVs actively target a specific cell type through a variety
of mechanisms especially receptor—ligand recognition
[254], and thus, by engineering EVs loaded with specific
ligands (including antibodies, peptides, and aptamers)
onto their surfaces, the targeting ability of EVs can be
changed so that they target the cells that need them for
functional intervention on specific cells [255, 256].

Aptamers are RNAs or single-stranded DNAs (ssDNAs)
folded into particular 3D structures with high specificity and
affinity through a similar mechanism to antigen—antibody
binding [257]. Aptamers are a new favourite due to their
relatively high stability, minimal toxicity, lack of immunogen-
icity, and superb tissue penetration [258]. Systematic evolu-
tion of ligands by exponential enrichment (SELEX), an
in vitro aptamer selection and screening process, comes with
a very powerful tool to select and isolate organ-specific apta-
mers [259]. Combining engineered EVs and aptamers can
enable development of better EV-based targeted drug deliv-
ery systems. In a similar way to the use of viruses and lipo-
somes for transfection, as are commonly used in biological
research, “click chemistry” could be used to assemble ligands
onto the surface of EVs [260, 261]. There are also many
techniques for loading small molecule compounds, nucleic
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acids and proteins into EVs [36]. Taken together, these ad-
vances in bio-engineering of EVs will bring very promising
new treatment tactics to advance the treatment of malignant
tumours.

CRISPR/Cas9 treatment through EVs is also a very prom-
ising research prospect. At present, this technology is mainly
used as a research tool. The most typical application of this
treatment is to confirm the spread of EVs as reporters. It
would be interesting to compare EV-based CRISPR/Cas9
with known methods using CRISPR/Cas9 for gene therapy,
in addition to determining the differences in the scope of ap-
plication, treatment effects, and the advantages and disadvan-
tages of this approach.

Conclusion

EVs function as a transport medium for various molecules
in the TME, and therefore have a variety of potential uses
in the diagnosis and treatment of cancer. EVs also partici-
pate in the progression of various processes involved in
malignant tumour development. Tumour cells and non-
malignant cells typically communicate with each other, to-
gether determining the progress of the disease. Although
T-EVs are known for orchestrating tumour advancement
via systemic pathways, nmEVs also contribute substan-
tially to malignant tumour development.

In this review, we have summarised the features of
both T-EVs and nmEVs, and their roles in tumour pro-
gression, metastasis, and EV-mediated chemoresistance
in the TME. This review discusses recent and current re-
search regarding the clinical applications of EVs, the
findings of these studies, and how this information can
be used to repurpose EVs as a therapeutic tool. This
sound and current overview of the present research,
questions to be addressed, and potential directions for
future research in the field makes a significant contribu-
tion to the literature.
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