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Abstract

Background: Heat shot protein 90 (HSP90) AAT1 functions as an onco-protein to regulate the assembly, manipulation,
folding and degradation of its client proteins, including c-MYC. However, little is known about the mechanism of
HSP9OAAT regulation.

Methods: Transcriptome RNA-sequencing data of hepatocellular carcinoma (HCC) samples were used to detect the
mMRNA expression of FBXL6. Immunoprecipitation/Mass Spectrum (IP/MS) method was used to identify the interacting
proteins of FBXL6. The co-immunoprecipitation assay was used to determine the interaction between FBXL6 and
HSPOOAAT. The in vivo ubiquitination assay was performed to determine the regulation of HSPOOAAT by FBXLE.
Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to determine the transcriptional
regulation of FBXL6 by c-MYC. Immunohistochemical (IHC) staining was performed to study the correlation of FBXL6
and HSP90AAT protein expression in 87 HCC samples. Cell counting and colony formation assays were implemented
to detect the biological effects of FBXL6 on the growth of HCC cells in vitro. The effect of FBXL6 on HCC tumor growth
in vivo was studied in a tumor xenograft model in mice.

Results: Here, we identified the orphan F-box protein FBXL6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-
box protein) complex, as the ubiquitin ligase for HSP90AAT. FBXL6 promoted K63-dependent ubiquitination of
HSPOOAAT to stabilize it. Through analysis of the TCGA dataset, we found that FBXL6 was significantly increased in HCC
tissues and positively correlated with c--MYC pathway. FBXL6 accumulation in HCC causes the stabilization and
activation of c-MYC by preventing HSP90OAAT degradation. The activated c-MYC directly binds to the promoter region
of FBXL6 to induce its mRNA expression.
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Conclusion: Collectively, our data revealed an unknown FBXL6-HSP9OAA1-c-MYC axis which might contribute to the
oncogenesis of HCC, and we propose that inhibition of FBXL6 might represent an effective therapeutic strategy for
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Background

Hepatocellular carcinoma (HCC) is one of the most
common cancer in the world and the second malignant
tumor of global cancer mortality, and its morbidity and
mortality are gradually increasing [1]. The pathogenesis
of HCC is extremely complicate and the discovery of
new molecular drug targets will benefit HCC treatment
[2].

The ubiquitin (Ub)-proteasome system (UPS) plays a
prominent role in a variety of cellular activities, includ-
ing cell cycle control, apoptosis, DNA damage repair,
immune response and tumorigenesis [3]. Ubiquitination
is catalyzed by a three-enzyme cascade consisting of the
E1 Ub-activating enzyme, the E2 Ub-conjugating en-
zyme, and the E3 Ub-protein ligase [4]. In UPS, Ub
modifies protein substrates mostly in the form of a K48-
or K11-linked polyUb chain, which serves as a signal for
proteasome-dependent degradation [5]. However, K63-
linked polyUb chain is not associated with proteasome
degradation of the substrate protein [6].

The selectivity of Ub-mediated proteolysis is deter-
mined by the E3 ligases which could be grouped into
two classes based on their structural features: the RING
(really interesting new gene) E3s and the HECT (hom-
ologous to the E6AP carboxyl terminus) E3s. The RING
E3s constitute the largest E3 ligases family with more
than 600 documented members, which directly catalyze
the transfer of ubiquitin from an E2 to a substrate [7].
The substrates-recruiting and catalytic modules could be
found in a single polypeptide or in different subunits of
a E3 complex, such as the anaphase-promoting complex
(APC) and the Cullin—-RING ligases (CRLs) [8]. In mam-
mals, there are approximately 200 CRLs has been re-
ported. Each of CRLs contains a different Cullin subunit
that using its carboxyl terminus to bind to the E2 en-
zyme and N terminus to bind to the substrate recogni-
tion factors. The CRL1 ligases, better known the SCF
(Skp1-Cull-F-box protein) complex, are the best charac-
terized. SCF is a four-protein complex consisting of the
constant Cullinl, RBX1, SKP1 and one of ~ 70 various
F-box proteins [9]. Early studies have demonstrated that
F-box proteins play indispensable roles in cell cycle
regulation [10-12], and in recent years more and more
F-box proteins have been reported to be closely related
to tumorigenesis [13, 14]. However, given the larger

number of F-box proteins, only a few F-box proteins
have identified substrates and functions.

Heat shock proteins (HSPs) are a class of highly con-
served proteins during biological evolution and widely
found in prokaryotic and eukaryotic organisms [15]. HSPs
could be induced under diverse stress conditions (virus in-
fection, hypoxia, ultraviolet radiation, etc.). HSPs are both
biomarkers of cellular stress response and also important
molecular chaperone proteins in cells [15]. HSPs partici-
pate in maintaining the correct folding of the client’s pro-
tein, enabling the protein to form the conformation
required for physiological functions, thereby playing an
important role in regulating the balance of protein synthe-
sis/degradation and protein localization [16]. HSPs are
mainly divided into five families: HSP90 family (83-90
kD), HSP70 family (66—78 kD), HSP60 family, small mol-
ecule smHSP family (15-30 kD), and macromolecular
HSPs with molecular weights ranging from 100 to 110 kD.
Among them, HSP90 is abundant in cells, accounting for
1 to 2% of total cellular protein [17]. In humans, there are
four Hsp90 isoforms including the cytoplasmic Hsp90a
and Hsp90p, as well as the endoplasmic reticulum isoform
Grp94 and mitochondrial isoform TRAPI, respectively
[18]. Hsp90a (Hsp90AAl), encoded by the HSP90aal
gene, is composed of three major domains: the N-terminal
domain, the intermediate domain, and the C-terminal do-
main. These three domains work together to play the mo-
lecular chaperone function of HSP90AA1, which is
dependent on the binding of ATP to the ATPase domain
at the N-terminus [19]. The binding and hydrolysis of
ATP produces a conformational transition that regulates
the assembly of the multi-subunit complexes involved.
HSP90AA1 plays an important role in the assembly, ma-
nipulation, folding and degradation of its client proteins.
Numerous studies have shown that inhibition of
HSP90AAL1 function can lead to degradation of its client
protein through the ubiquitin-protease pathway [20].
Many of the client proteins regulated by HSP90AA1 are
proto-oncogene products (such as c-MYC) or important
signal transduction factors during tumor pathogenesis,
which are closely related to the occurrence and develop-
ment of tumors [21, 22]. Thus, inhibition of HSP90AA1
might affect cancer cells growth and survival from mul-
tiple pathways, making HSP90AA1l a promising anti-
tumor drug target.
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Here, through analysis of the TCGA dataset, we found
that the mRNA expression of an orphan F-box protein
FBXL6 was significantly increased in HCC compared
with normal tissues and positively correlated with c-
MYC expression. We further showed that FBXL6 forms
a classical SCF E3 ligase complex to exert its oncogenic
roles by stabilizing HSP90AAL1 to activate c-MYC, which
in turn directly bound to the promoter region of FBXL6
to induce its expression. Thus, our data revealed an un-
known positive feedback axis of FBXL6-HSP90AA1-c-
MYC, whose abnormal activation might contribute to
the oncogenesis of HCC.

Material and methods

Clinical samples and data acquisition

Transcriptome RNA-sequencing data of hepatocellular
carcinoma (HCC) samples were downloaded from the
TCGA data portal (https://cancergenome.nih.gov/), which
contained data from 374 primary HCC and 50 non-tumor
tissues. Raw count data was downloaded for further ana-
lyses. To selected genes involved in the onset of HCC, dif-
ferentially expressed genes between HCC and non-tumor
tissues were screened via the R software Linear Models for
Microarray and RNA-Seq Data (Limma) package (http://
bioconductor.org/packages/Limma/). We performed dif-
ferential gene analysis of all transcriptional data, setting a
log2 |fold change| >1 and a false discovery rate (FDR) <
0.05 as the cutoff values. The Wilcox-test was used for
analyses.

Immunohistochemical (IHC) staining

The HCC cancer tissues and matched adjacent tissues
(at least 2cm from the surgical incision) were col-
lected from 87 patients with hepatocellular carcinoma
who were surgically resected at Fudan University
Shanghai Cancer Center from January 2016 to De-
cember 2018. All specimens were confirmed by
pathological diagnosis. No patients received radiother-
apy or chemotherapy before surgery. These tissues
were placed in liquid nitrogen and then transported
to —80°C refrigerator for storage. Written informed
consent was obtained from each patient before sample
collection, and the study protocol was approved by
the Medical Ethics Committee of Fudan University
Shanghai Cancer Center. These 87 HCC clinical sam-
ples were fixed in 4% paraformaldehyde (PFA), em-
bedded in paraffin, sectioned and stained with
haematoxylin and eosin. IHC staining of the paraffin-
embedded tumor tissues was performed using anti-
FBXL6 and anti-HSP90AA1l antibodies. We have
added these information in the revised manuscript.
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Cell culture and reagents

HEK293T cells and hepatocellular carcinoma cell lines
SMMC-7721 and Hep3B cells were purchased from
American Type Culture Collection (ATCC). Cells were
cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Invitrogen), supplemented with 10% FBS
(Gibco), 100 units/mL  penicillin, and 100 mg/mL
streptomycin  (Gibco). MGI132 and Cycloheximide
(CHX) were purchased from Sigma.

Plasmids

F-box protein genes were amplified from 293T or
SMMC-7721 cells by polymerase chain reaction and
cloned into pbabe-Flag vector. pCherry.90 alpha was a
gift from Didier Picard (Addgene plasmid # 108222;
http://n2t.net/addgene:108222; RRID:Addgene_108,222).
c-myc-PT3EFla was a gift from Xin Chen (Addgene
plasmid # 92046; http://n2t.net/addgene:92046; RRID:
Addgene_92,046). pRK5-HA-Ubiquitin-K63 was a gift
from Ted Dawson (Addgene plasmid # 17606; http://n2
t.net/addgene:17606; RRID:Addgene_17,606). All plas-
mids were completely sequenced and transfected into
cells by using Lipofectamine 2000 (Invitrogen) according
to manufacturer’s instructions.

RNA interference, RNA isolation and real-time PCR

The Lentiviral Human FBXL6 shRNA was purchased
from Merck and the target sequences for short hairpin
RNA (sh-RNA)-expressing plasmids were the following:
FBXL6-shRNA1l: CACCGGCATCAACCGTAATAG; FB
XL6-shRNA2: TGGAGTGGCTTATGCCCAATC. Total
RNA of cell lysate was extracted by using TRIzol reagent
(Invitrogen, Shanghai). Oligo dT was used to prime cDNA
synthesis. Real-time PCR was then performed by using a
SYBR Green Premix Ex Taq (TaKaRa) on Light Cycler480
(Roche, Switzerland). GAPDH was used as internal con-
trol. Differences in gene expression were calculated using
2-AACt method. Primers used for qPCR analysis were list
as follows: FBXL6 forward, 5'- GGAGACCGCATTCC
CTTGG-3'; reverse, 5- AAAACCGATTGGGCATAA
GCC-3". HSP90AA1 forward, 5'- AGGAGGTTGAGACG
TTCGC-3'; reverse, 5'- AGAGTTCGATCTITGTTTG
TTCGG-3'. GAPDH forward, 5'- TGTGGGCATCAATG
GATTTGG - 3’; reverse, 5'- ACACCATGTATTCCGG
GTCAAT -3".

CRISPR/Cas9 knock out (KO) cell lines

SMMC-7721 cells were transfected with FBXL6
CRISPR/Cas9 KO (h) KO plasmid (sc-408,853, Santa
Cruz Biotechnology) using Lipofectamine2000 following
the manufacturer’s instructions. Cells were selected with
1 pg/ml puromycin 2 weeks. Single clones were then se-
lected and the knockout efficiency was verified by west-
ern blot assay.


https://cancergenome.nih.gov/
http://bioconductor.org/packages/Limma/
http://bioconductor.org/packages/Limma/
http://n2t.net/addgene:108222
http://n2t.net/addgene:92046
http://n2t.net/addgene:17606
http://n2t.net/addgene:17606

Shi et al. Cell Communication and Signaling (2020) 18:100

Western blotting and antibodies

Cells were lysed with lysis buffer (100 mM Tris-HCI, pH
6.8, 100 mM DTT, 1% SDS, 10% glycerol). Proteins were
separated by 10-12% SDS-PAGE, and transferred to NC
membrane. Membranes were blocked in 5% non-fat milk
in phosphate-buffered saline (PBS) for 1 h before incuba-
tion with primary antibody overnight at 4°C. Mem-
branes were washed with and incubated with secondary
antibody for 1h. Primary antibodies used as indicated:
anti-Flag M2 (1:4000 dilution, F1804, Sigma), anti-
HSP90AA1 (1:1000 dilution, 13,171-1-AP, Protein tech),
anti-FBXL6 (1:1000 dilution, SAB1407299, Sigma), anti-
Cull (1:1000 dilution, sc-17,775, Santa cruz, U.S.A),
anti-SKP1 (1:2000 dilution, #12248, Cell Signaling
Technology, U.S.A), anti-c-Myc (1:1000 dilution,
#18583, Cell Signaling Technology, U.S.A), and anti-
GAPDH (1:5000 dilution, #5174, Cell Signaling Technol-
ogy, U.S.A).

Immunoprecipitation (IP) and mass spectrometry (MS)
Cells were lysed with IP buffer (100 mM NaCl, 20 mM
Tris-cl PH8.0, 0.5 mM EDTA, 0.5% (v/v) Nonidet P-40)
with protease inhibitor cocktail and phosphorylate in-
hibitor for 30 min on ice. Cells were sonicated and the
lysates were centrifuged. The supernatant was incubated
with appropriate antibodies and protein A/G beads over-
night at 4°C in a rotating wheel. Immunoprecipitates
were washed with IP buffer. SDS loading buffer was then
added and proteins were eluted by boiling at 95°Cfor 5
min. For mass spectrometry assay, lysates from 293 T
cells transfected with Flag-con or Flag-FBXL6 were
cleared by centrifugation at 15,000 g for 20 min at 4°C
to remove cell debris. The resulting lysates were sub-
jected to IP with Flag M2 beads overnight at 4 °C. Bound
proteins were eluted by boiling, resolved by SDS-PAGE
and stained with coomassie blue staining, followed by
mass spectrometry analysis.

In vivo Ubiquitination assay

Cells co-transfected His-K63-Ubiquitin with EV or Flag-
FBXL6 plasmids were sonicated in IP buffer containing
8 M urea and 10 mM imidazole. His-K63-Ubiquitin-con-
jugated proteins were recovered with Ni-NTA resin
(Qiagen), washed eight times in urea lysis buffer contain-
ing 20 mM imidazole, and eluted with IP buffer contain-
ing 5% SDS and 200 mM imidazole. The boiled samples
were separated by 10% SDS-PAGE and subjected to
western blot with antibodies as indicated. For endogen-
ous ubiquitinated protein accumulation, Tandem
Ubiquitin Binding Entity 2 (TUBE2) resin (LifeSensors)
was used. Cells were lysed with IP buffer with protease
inhibitor cocktail and phosphorylate inhibitor for 30 min
on ice. Cells were sonicated and the lysates were centri-
fuged. The supernatant was incubated with TUBE2 resin
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overnight at 4 °C in a rotating wheel. The resin was then
washed with IP buffer and boiled in SDS loading buffer.
Boiled samples were separated by 10% SDS—-PAGE and
subjected to western blot with antibodies as indicated.

Colony formation analysis
Cells were seeded in a six-well plate at a density of
1000/well and then cultured for 2 weeks. The numbers
of colonies containing more than 50 cells were counted
by crystal purple staining.

Apoptosis analysis

Cells were seeded into 6 well plates. Apoptosis cells were
determined using Annexin V-fluorescein isothiocyanate
(FITC) and propidium iodide (PI) apoptosis detection kit
according to the manufacturer’s instruction. Cell apoptosis
was then analyzed using a FACS Calibur flow cytometer
(BD Biosciences, San Jose, CA, USA). Apoptosis was also
determined by measuring the activity of the caspases 3
and 7 using a luminescent substrate (Caspase-Glo 3/7;
Promega) according to manufacturer’s instructions.

Luciferase reporter and chromatin immunoprecipitation
assays

The promoter region of FBXL6 gene was amplified from
the human genomic DNA and inserted into pGL4.15
vector (Promega, Madison, Wisconsin, USA). For the lu-
ciferase reporter assays, HEK293T cells were seeded in
24-well plates and transfected with the indicated plas-
mids using Lipofectamine 2000 (Invitrogen) for 36 h. Lu-
ciferase activity was measured using the Dual Luciferase
Reporter Assay System (Promega). The firefly luciferase
luminescence data were normalized by the Renilla lucif-
erase luminescence data. A chromatin immunoprecipita-
tion (ChIP) assay kit (Upstate, Billerica, MA) was used
according to manufacturer instructions. Briefly, cells
were fixed with formaldehyde and DNA was sheared to
fragments at 200—1000 bp by repeated sonication. Chro-
matin was then incubated and precipitated with anti-
bodies against c-Myc or IgG. Primers for GAPDH were
used as negative control.

Xenograft assays

Animal study was approved by Animal Care and Use
Committee of Fudan University Shanghai Cancer Center.
8-week-old male BALB/cA nude mice were purchased
from National Rodent Laboratory Animal Resources
(Shanghai, China). All mice were kept in a specific
pathogen-free facility and housed at 21°C+1°C with
humidity of 55 + 10%, fed with sterilized food and water,
and kept on a 12h light/dark cycle. FBXL6"*and
FBXL6 '~ SMMC-7721 cells at a density of 1 x 107 were
suspended in 50 pl of DMEM medium, mixed 1:1 with
Matrigel (Corning) and injected into the flanks of male
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nude mice. Tumor sizes were measured by a caliper and
calculated using the formula length x width 2x1/2.
Tumor weights were measured after mice were
sacrificed.

Statistical analyses

All experiments were at least repeated three times. Data
are presented as mean + standard deviation (SD). Statis-
tical analysis was performed with GraphPad Prism 7.0
software. The differences between groups were calcu-
lated using the Student’s t-test or one-way ANOVA
using a Tukey post-hoc test. P values of < 0.05 were con-
sidered statistically significant. Statistical significance is
displayed as * P<0.05, * P<0.01, and *** P<0.001,
respectively.

Results

FBXL6 is highly expressed in HCC and associated with the
¢-MYC pathway

To identify key genes involved in the tumorigenesis of
HCC, transcriptome RNA-sequencing data of 374 pri-
mary HCC samples and 50 non-tumor tissues were
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cancergenome.nih.gov/). The Limma R package identi-
fied 7667 differentially expressed genes, 7273 up-
regulated and 394 down-regulated (Fig. 1a-b). The out-
put of the whole differentially expressed genes was pro-
vide in the supplementary Table 1. Among those up-
regulated genes, we are particularly interested in F-box
proteins, which are usually involved in the development
of diverse cancers [23]. For example, the most famous F-
box proteins are SKP2, 3-TrcP and FBXW7, which are
known oncogenes or tumor suppressors [24—26]. We
found that the mRNA levels of some F-box proteins
were significantly increased in HCC samples when com-
pared with non-tumor tissues, including FBXLIS,
FBXL16 and FBXL6. FBXL18 has been reported to play
an oncogenic role in glioma through promoting K63-
linked ubiquitination of Akt [27]. However, the bio-
logical function of FBXL16 and FBXL6 proteins are
poorly reported. It has been reported that FBXL16 could
not interact with Cullinl to form a SCF complex, indi-
cating an E3 ligase independent function of FBXL16
[28]. Thus, in the current study, we focused on FBXL6,
an orphan F-box protein, the expression of which was
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dots represent down-regulated genes and red dots represent up-regulated genes. ¢ The mRNA expression of FBXL6 between 374 HCC and 50 non-
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In 374 HCC samples, the expression correlation coeffi-
cients of FBXL6 and all other genes were calculated
using R (Supplementary Table S2), and the Gene Set En-
richment Analysis (GSEA) enrichment analysis was per-
formed using the GSEABase package. We identified
many pathways that were significantly enriched, such as
MYC-targets, bile acid metabolism, fatty acid metabol-
ism and UV response (Fig. 1d), suggesting that FBXL6
might play a role in these pathways. Notably, given the
critical role of c-MYC oncogene in the tumorigenesis of
HCC, the enrichment of MYC-target signature suggested
a potential regulation of FBXL6 by c-MYC in HCC (Fig.
le, Supplementary Figure 1). In supporting with this no-
tion, we found that the ¢-MYC and FBXL6 mRNAs have
a notable correlation in liver cancer samples (R =0.27,
P =1.3e-0.7) (Fig. 1f) [29]. Moreover, the expression of
FBXL6 was also correlated with many c¢-MYC target
genes including 56.1% MYC activating genes (73/130)
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and 41.9% MYC repressed genes (13/31) (Supplementary
Table S2). Together, these data suggested FBXL6 was
highly expressed in HCC samples and associated with
the c-MYC pathway.

FBXL6 exhibits tumor-promoting ability in HCC

To examine the roles of FBXL6 in growth control, we
firstly used two small hairpin RNA (shRNA) constructs
to reduce the expression of FBXL6 in Hep3B cells
(Fig. 2a). Silencing the expression of FBXL6 caused de-
layed cell growth and reduced colony formation ability
(Fig. 2b-c). Flow cytometry assay showed that the spon-
taneous apoptosis rate of FBXL6-depelted Hep3B cells
was higher than that of control cells (Fig. 2d), and the
activities of caspase3 and caspase7 were also enhanced
in the absence of FBXL6 (Fig. 2e). To avoid selection of
HCC lines that may not accurately reflect the effects of
FBXL6 deletion, we also constructed FBXL6 knock out
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Fig. 2 FBXL6 exhibits tumor-promoting ability in HCC. a Western blot analysis of the whole cell lysate (WCL) derived from Hep3B cells infected
with the indicated shRNA lentiviruses. b The cell growth curve of Hep3B cells in (a). ¢ Clonogenic assay of Hep3B cells in (a). d Hep3B cells
infected with the indicated shRNA lentiviruses were analyzed by FACS with Annexin V-PI assay. The graph represents the percentage of Annexin
V positive cells. e Caspase3 and Caspase? activity was measured in Hep3B cells infected with the indicated shRNA lentiviruses. The y axis indicates
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(KO) SMMC-7721 cell line using CRISPR-Cas9 technol-
ogy, and found that FBXL6 deficiency decreased prolifer-
ation and colony formation compared with the control
wild type (WT) cells (Fig. 2f-h). Furthermore, we also
used nude mice model to investigate whether FBXL6 af-
fected HCC cells proliferation in vivo. Four weeks old
BALB/c nude mice were subcutaneously injected with
1x10” WT or FBXL6 KO SMMC-7721 cells. We found
that knock out of FBXL6 significantly decreased tumor
volume and tumor weight compared with WT cells (Fig.
2i-k). Thus, these data indicated that FBXL6 played a
critical role in liver cancer cells proliferation both
in vitro and in vivo.

HSP90AAT1 is associated with FBXL6

To investigate the molecule mechanism underline the
tumor-promoting role of FBXL6, we used the immuno-
precipitation/Mass Spectrum (IP/MS) method to identify
the interacting proteins of FBXL6. Flag-FBXL6 or Flag-
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Con plasmids were transfected into 293 T cells and the
cell lysates of these cells were subjected to MS analysis
after purification by Flag M2 beads. As expected, our
MS data analysis identified the known FBXL6 interacting
proteins such as Cullinl and SKP1, suggesting FBXL6
forms a classical SCF E3 ligase complex with both pro-
teins. Importantly, we also identified several unknown
new interacting proteins such as HSP90AA1 (Fig. 3a).
We then performed western blot assay to confirm our
MS data. We found that Cullinl, SKP1 and HSP90AA1
could only be detected in Flag-FBXL6 immunoprecipi-
tate (Fig. 3b). To demonstrate the specificity of this
binding, we screened 9 human F-box protein family
members. Flag-tagged F-box proteins were expressed
into 293 T cells and then immunoprecipitated to evalu-
ate their interaction with endogenous HSP90AA1 pro-
tein. Although each F-box protein binds to SKP1, the
only F-box protein that binds to HSP90AA1 is FBXL6
(Fig. 3c). The endogenous interaction between FBXL6
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and HSP90AA1 was also verified in both Hep3B and
SMMC-7721 cells (Fig. 3d-e). FBXL6 is composed of an
N-terminal F-box domain and multiple leucine-rich re-
peat sequences. By protein interaction domain mapping
assay, we found that FBXL6 bound to HSP90AAL via its
leucine-rich repeat sequences at its C-terminus (Fig. 3f).
Taken together, these data indicated that FBXL6 specif-
ically interacted with HSP9OAA1.

FBXL6 stabilizes HSP90AA1 protein by promoting its K63-
ubiquitination

Typically, F-box proteins usually ubiquitinate substrate
proteins and promote their proteasomal degradation
[30]. In order to investigate whether FBXL6 can promote
the degradation of HSP90AA1, we first overexpressed
FBXL6 into SMMC-7721 cells. Interestingly, overexpres-
sion of FBXL6 did not reduce HSP9OAA1 expression.
Instead, it significantly induced the expression of
HSP90AA1 protein, without affecting its mRNA level
(Fig. 4a). The similar phenomenon was also observed in
Hep3B cells (Fig. 4b). On the contrary, silencing the
expression of FBXL6 by shRNAs significantly reduced
HSP90AAT1 expression (Fig. 4c). In agreement, the pro-
tein level, but not the mRNA level, of HSP90AA1 was
significantly decreased in FBXL6 KO cells compared
with WT cells (Fig. 4d). Furthermore, overexpression of
an F-box domain-deleted FBXL6 (FBXL6AF-box) mu-
tant failed to regulate HSP90OAA1 expression (Fig. 4e),
suggesting that FBXL6-induced HSP90AAlexpression
required its E3 ligase activity. To test this possibility, we
compared the half-life of HSP90OAA1 in HCC cells with
or without FBXL6 expression and found that the half-
life of HSP90AA1 in FBXL6 KO cells was significantly
reduced relative to the WT counterpart (Fig. 4f). Con-
sistently, treatment with the protease inhibitor MG132
restored HSP90OAA1 expression in FBXL6 KO cells. (Fig.
4g). However, overexpression of FBXL6 increased the
global ubiquitination form of HSP90AAI1, suggesting
that FBXL6 might promote HSP90AA1 ubiquitination to
prevent its degradation (Fig. 4h). Indeed, co-transfected
with a His-ubiquitin-K63 plasmid, which coding ubiqui-
tin with only K63 and other lysines were mutated to ar-
ginines, showed that FBXL6 significantly promoted
HSP90AA1 K63-dependent ubiquitination (Fig. 4i).
Since K63-dependent ubiquitination modifications usu-
ally do not participate in protein degradation, our data
suggest that FBXL6 may promote K63-dependent
ubiquitination of HSP90AA1 to stabilize it. In addition,
we conducted an IHC analysis to evaluate the potential
association between FBXL6 and HSP90AA1 protein in
87 human HCC specimens using anti-FBXL6 and anti-
HSP90AA1 antibodies (Fig. 4j). We found that FBXL6
was positively correlated with HSP90OAA1 protein in
these samples (Fig. 4k, X* = 19.24, P < 0.001).
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FBXL6 stabilizes c-MYC via HSP90AA1

HSP90AA1 can exert its tumor-promoting effect by sta-
bilizing ¢-MYC protein in several cancer types [22, 31].
We found that overexpression of HSP90AA1 in SMMC-
7721 and Hep3B also up-regulated c-MYC protein, sug-
gesting ¢-MYC might be a critical client protein of
HSP90AA1 in HCC (Fig. 5a). Moreover, overexpression
of FBXL6 promoted the expression of c-MYC in a dose-
dependent manner in Hep3B cells (Fig. 5b). However,
overexpression of FBXL6AF-box mutant could not affect
¢-MYC expression, suggesting this regulation required
the E3 ligase activity of FBXL6 (Fig. 5c). Consistent with
this, the expression of ¢-MYC in FBXL6 KO cells was
significantly reduced (Fig. 5d), the half-life of c-MYC
protein was shortened (Fig. 5e), and the ubiquitinated
form was increased (Fig. 5f). Unsurprisingly, there is no
evidence to support the direct binding between FBXL6
and ¢c-MYC protein, suggesting that FBXL6 may regulate
¢-MYC indirectly. Indeed, overexpression of HSP90AA1
in FBXL6 KO cells partially reversed the FBXL6-induced
¢-MYC expression (Fig. 5g). Therefore, these data indi-
cated that FBXL6 stabilized c-MYC protein via
HSP90AAL.

C-MYC transcriptional activates FBXL6 in HCC

Bioinformatics analysis reveals that c-MYC and FBXL6
mRNAs have significant correlation in HCC samples
(Fig. 1d). Since FBXL6 is an ubiquitin E3 ligase and c-
MYC is a classical transcription factor, we hypothesized
that ¢-MYC may regulate the transcription of FBXL6 in
HCC. Indeed, overexpression of ¢-MYC induced the
mRNA expression of FBXL6 in both SMMC-7721 and
Hep3B cells (Fig. 6a). On the contrast, knockdown of c-
MYC by siRNAs inhibited the mRNA expression of
FBXL6 (Fig. 6b). The C terminus of c-MYC contains a
HLH-LZ domain, which is known to bind to the canon-
ical E-box (CACGTG) to regulate downstream genes
expression [32]. We next performed Chromatin immu-
noprecipitation (ChIP) experiments in Hep3B cells to
determine whether c-MYC directly binds to the genomic
locus of FBXL6. 3 KB of sequence of the FBXL6 pro-
moter region was then examined for putative c-MYC-
binding sites. We used the Jaspar website to locate the
exact position of the E box in the promoter of FBXL6
(http://jaspar.genereg.net/). The -3000bp region from
the TSS of FBXL6 was used to scan the potential bind-
ing sites of c-MYC. The top one sequence of the soft-
ware provided was CACGTG, started at 551 and ended
at 556 (input 3000bp), and the score of which was
10.53. Thus, we identified one potential E-box in the
FBXL6 promoter region (Fig. 6¢). ChIP assay revealed
that anti-c-MYC antibody efficiently immunoprecipi-
tated —2500bp to -2300bp upstream from the tran-
scription start site (TSS) of FBXL6 gene in Hep3B cells
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(Fig. 6d), suggesting ¢-MYC directly binds to the pro- MYC increased the promoter activity in cells transfected
moter region of FBXL6. We also constructed a luciferase ~ with E-box WT vectors but not in cells with E-box mu-
reporter vector containing the FBXL6 promoter region tant vectors (Fig. 6e). Therefore, our data indicate that
of this E-box. The luciferase reporter assay found that c-  FBXL6 is a downstream target gene of c-MYC.
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indicated antibodies

Discussion

Here, we report that FBXL6 stabilizes HSP90AA1 ex-
pression in HCC cells and that FBXL6 expression is cor-
related with ¢-MYC expression in HCC tissues, of which
a great ratio expresses higher mRNA levels of FBXL6. In
line with these observations, we show that genetic inhib-
ition of FBXL6 eliminates HCC cells proliferation
in vitro, and thus tumor progression in subcutaneously
transplanted HCC mice, indicating a critical role of
FBXL6 in the pathogenesis of HCC.

By using IP/MS assay, HSP90AA1 was identified as a
putative FBXL6-interacting protein. We further showed
that FBXL6 directly interacted with HSP90AAL via its
C-terminus leucine-rich repeat sequences. During the
preparation of this manuscript, another group also found
that HSP90OAA1 was an interacting protein of FBXL6 by
high throughput assay [33]. However, the relationship
between FBXL6 and HSP90AA1 was still undetermined.
Interestingly, unlike the canonical degradation-
promoting function of most F-box proteins, we found
that FBXL6 ubiquitinates HSP90OAA1 to counteract its
degradation. Our data further indicate that FBXL6

promotes K63-dependent ubiquitination of HSP90AAI,
although we cannot rule out the possibility that FBXL6
may also stimulate other types of ubiquitination, which
may help explain this discrepancy. It is possible that
FBXL6-mediated HSP90AA1 K63-dependent ubiquitina-
tion may antagonize HSP90AA1 K48-dependent ubiqui-
tination promoted by other E3 ligases. Indeed, another
F-box protein, FBXL21, has been shown to ubiquitinate
cryptochromes to stabilize these proteins [34, 35], sug-
gesting the shared common underline mechanisms of
FBXL6 and FBXL21 However, whether FBXL21 also
promotes K63-dependent ubiquitination of crypto-
chromes is still unknown. Therefore, further research is
still needed to understand the detailed mechanism of
how FBXL6 stabilizes HSP90OAA1 protein. The correl-
ation expression of the mRNA levels of FBXL6 and c-
MYC promotes us to determine whether FBXL6 is
transcriptional regulated by ¢c-MYC. By using ChIP and
luciferase assays, we found that c-MYC directly bound
to the E-box of FBXL6 promoter region to promote its
mRNA expression, suggesting FBXL6 is a downstream
target gene of c-MYC in HCC.



Shi et al. Cell Communication and Signaling (2020) 18:100 Page 11 of 12

>
o]

Bl Con-siRNA

SMMC-7721 Hep3B

6 2
.;. = o , ¥ BV ¢-MYC EV ¢-MYC s e El c-MYC-siRNA SMMC-7721 Hep3B
§ B e % Con ¢MYC Con c¢c-MYC siRNAs
- e D v ¢-MYC
« “
> :
E . ———— e E W — o
z g TR e
2 A APDL
SMMC-7721  Hep3B SMMC-7721  Hep3B
C D in E
Potential c-MYC binding site g — HEIG - B Con
EY B -MYC ' Bl c-Myc
]
E-box CACGTG FBXL6 5 ]
o WT
2449--- £
2449---2444 bp  TSS WT 3 I - - - . .
P1— “« P2 n: 0 1 2 3 4 5

Luciferase activity

—_———————— Mt

Fig. 6 c-MYC transcriptional activates FBXL6 in HCC. a The mRNA and protein levels of FBXL6 in SMMC-7721 cells or Hep3B cells transfected with
EV or c-Myc plasmid were detected by real-time quantitative PCR and immunoblotting, respectively. b The mRNA and protein levels of FBXL6 in
SMMC-7721 cells or Hep3B cells infected with the indicated shRNA lentiviruses were detected by real-time quantitative PCR and immunoblotting,
respectively. ¢ Proximal promoter region of human FBXL6 gene contains a potential binding site of c-Myc. The -3000 bp region from the TSS of
FBXL6 was used to scan the potential binding sites of c-MYC. The top one sequence of the software provided was CACGTG, started at 551 and
ended at 556. d Chromatin immunoprecipitation (ChIP) assays showing representative c-Myc binding to the FBXL6 promoter in Hep3B Cells. Cells
were subjected to ChIP assays with anti-lgG or c-Myc antibodies. The promoter of GAPDH was used as negative control. e Luciferase reporter
assays. HEK293T cells were co-transfected EV or c-Myc plasmids with luciferase reporter plasmids containing wild-type (WT-Luc) or mutant (Mut-

FBXL6 promoter GAPDH promoter

Luc) binding site of c-Myc

Conclusions

Therefore, our data reveals an unknown positive feed-
back loop of FBXL6-HSP90AA1-c-MYC axis, and its ab-
normal regulation may contribute to the occurrence of
HCC, and suggests that agents targeting FBXL6 will be
beneficial to inhibit HCC.
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