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Abstract

Cancer displays high levels of heterogeneity and mutation potential, and curing cancer remains a challenge that
clinicians and researchers are eager to overcome. In recent years, the emergence of cancer immunotherapy has
brought hope to many patients with cancer. Cancer immunotherapy reactivates the immune function of immune
cells by blocking immune checkpoints, thereby restoring the anti-tumor activity of immune cells. However,
immune-related adverse events are a common complication of checkpoint blockade, which might be caused by
the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. In
this context, the intestinal microbiota has shown great potential in the immunotherapy of cancer. The intestinal
microbiota not only regulates the immune function of the body, but also optimizes the therapeutic effect of
immune checkpoint inhibitors, thus reducing the occurrence of complications. Therefore, manipulating the
intestinal microbiota is expected to enhance the effectiveness of immune checkpoint inhibitors and reduce adverse
reactions, which will lead to new breakthroughs in immunotherapy and cancer management.
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Background

Current treatments are unable to cure many cancers,
mainly because of cancer’s ability to evade immune sur-
veillance or anti-tumor disorders caused by impaired im-
mune function [1]. In the last few years, the study of the
regulation of the immune response through immune
checkpoints has led to a breakthrough in therapeutic
strategies in the field of oncology, bringing hope to
many patients with cancer. Cancer immunotherapy reac-
tivates the immune function of immune cells by block-
ing immune checkpoints (e.g, programmed death
receptor 1/programmed death ligand 1 (PD-1/PD-L1),
cytotoxic T lymphocyte antigen 4 (CTLA-4)) and re-
stores the anti-tumor activity of immune cells [2, 3].
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Based on considerable preclinical and clinical evidence,
some immunotherapeutic drugs have been approved by
the Food and Drug Administration (FDA) to treat vari-
ous malignancies [4]. However, as the use of immuno-
therapy drugs in clinics increases, the blockade of
immune checkpoints will cause an imbalance between
autoimmune and immune tolerance, causing immune-
related adverse events [5].

Meanwhile, sequencing technology has developed rap-
idly in recent years. Compared with traditional microbial
culture techniques, molecular techniques using 16S
rRNA or DNA / sequencing / metagenomics methods
have provided more information on the microbiome and
have revealed some potential immune functions of the
intestinal microbiota [6, 7]. Therefore, researchers have
gradually shifted their focus to study the relationship be-
tween the microbiota and cancer immunity. A growing
body of evidence supports the role of microbiota in the
treatment of cancer, particularly the response of the
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microbiota to blockade of cancer immune checkpoints
[8, 9]. In the present review, we discuss the possible
mechanisms of the microbiota’s effects on tumor im-
munotherapy and the advantages of common immuno-
therapies. The intestinal microbiota can improve cancer
immunotherapy and patient prognosis; therefore, ma-
nipulating the microbiota will become a new force to
improve cancer immunotherapy.

Intestinal microbiota regulates immune responses in the
body

The intestines are the main location of the hundreds of
millions of microbes that form the microbiota. The in-
testinal microbiota is essential in metabolism and im-
munity of the host; therefore, it is considered to be an
invisible organ of the human body [10]. The immune
function of the microbiota starts at the intestinal level
and progresses to the systemic level during an immune
response.

The intestinal epithelium is a mucosal tissue, of which
intestinal epithelial cells (IECs) and intraepithelial lym-
phocytes are the major components. Paneth cells and
goblet cells are embedded between IECs, which secrete
antimicrobial peptides (AMPs) and mucus, to form the
first line of defense against invading pathogens. The
lamina propria is located below the mucosal layer, con-
sisting of Peyer’s plaques and immune cells [11]. Pattern
recognition receptors (PRRs) are part of innate immun-
ity and are mainly expressed in immune cells [12]. They
are considered to be the bridge between innate immun-
ity and adaptive immunity. PRRs recognize pathogen-
associated molecular patterns (PAMPs) and damage-
related molecular patterns (DAMPs) that affect the
colonization of the intestinal microbiota. Among the
more typical PRRs associated with microbial homeostasis
are Toll-like receptors (TLRs) and NOD-like receptors
(NLRs) [13, 14]. TLRs bind to cell membranes and effect
signal transduction through myeloid differentiation of
primary response protein 88 (MYD88) and TIR-domain-
containing adapter-inducing interferon-p (TRIF) [15].
Most TLR signals are transmitted through MYDSS,
while the signals of TLR3 and some TLR4s are transmit-
ted through TRIF [16]. TLR1, 2, and 4—6 are expressed
on the cell surface and can recognize extracellular mi-
crobes, while TLR3 and TLR7-9 are thought to detect
and recognize virus particles [17]. TLR2 interacts with li-
gands, including bacterial lipopeptides and lipoprotein
acids, and forms heterodimers with TLR1 or TLR6 [15].
Then, the heterodimer binds to MYD88 and activates
the nuclear factor kappa B (NF-kB) pathway under the
induction of IL-1R-associated kinases 1, 2, and 4
(IRAK1, 2, and 4) [18]. However, TLR4, with lipopoly-
saccharide as its ligand, requires another adapter, namely
the TRIF-related adaptor molecule (TRAM), to bind to
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TRIF [19]. The complex formed by TLR4 and TRIF then
combines with MYD88 to form a common MYD88-
dependent NF-kB pathway [20]. After the MYD88-NF-
KB pathway is activated, pro-inflammatory factors begin
to be released, initiating the inflammatory response [20].
In addition, deletion of the MYD88 signal in epithelial
cells contributes to an increase in the quantity of the
mucus-associated microbiota and its’ translocation to
the mesenteric lymph nodes (mLNs) [21, 22] (Fig. 1). Re-
search also showed that TLRs were strongly expressed in
human colorectal cancer cells, especially TLR2 and
TLR4 [23]. TLR5 is a special TLR that is thought to be
related to the prevention of microbiological diseases, es-
pecially intestinal lesions caused by pathogenic adhesion
of Escherichia coli. When TLR5 is lacking, E. coli flagel-
lin cannot transmit signals through TLR5, which limits
the body’s immune response [24]. TLR5-deficient mice
are prone to overeating and to develop metabolic syn-
drome compared with wild-type mice [25]. The use of
antibiotics could correct this metabolic phenotype.

NOD-like receptors (NLRs) are another class of PRRs
associated with microbial disorders. The NLR family in-
cludes NODs (nucleotide-binding oligomerization
domain-1), NLRPs (NACHT-, LRR- and pyrin-domain-
containing proteins), IPAF (ICE-protease activating fac-
tor), NAIPs (neuronal apoptosis inhibitor factors), and
class II major histocompatibility complex transactivator
(CIITA) [19]. Some NLRs can identify microbial compo-
nents. NOD1 and NOD2 sense the components of pep-
tidoglycan (PGN) in the cell walls of the microbiota [15].
In this process, NOD1 is activated by y-D-glutamyl-
meso-diaminopimelic acid (iE-DAP), while NOD2 is ac-
tivated by muramyl dipeptide (MDP) [26]. iE-DAP is not
as widespread as MDP, only being found in the cell wall
of gram-negative bacteria and a small number of gram-
positive bacteria [27]. Therefore, NOD2 is always used
as a general bacterial sensor to transmit inflammation
signals. NODs are very active in the intestine and can
recognize caspase recruitment domains (CARD-CARD)
[28]. In the presence of CARD-CARD, NODs immedi-
ately form oligomers when stimulated by PGN and com-
pete to recruit receptor interacting protein 2 (RIP2)
kinase [19]. Then, the NOD1-RIP2 or NOD2-RIP2 com-
plex further triggers the activation of transforming
growth factor B-activated kinase 1 (TAK1) and NF-«B,
thus inducing inflammation [29]. TAK1 also phosphory-
lates mitogen activated protein kinase (MAPK), JUN N-
terminal kinase (JNK), and extracellular activated kinase
(ERK), and promotes the expression of transcription fac-
tor activated protein-1 (AP-1), which causes the release
of proinflammatory mediators [30].

Other NLRs, namely NLRP1, NLRP3, NLRP6, and
IPAF, are mainly involved in the assembly of inflam-
masomes [19]. NLRP1 can be activated by the lethal
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Fig. 1 TLRs and NLRs effectively regulate intestinal immune function. The lack of the TLR adapter MYD88 will alter the composition of the
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microbiota, resulting in an increase in the amount of the mucus-associated microbiota. The lack of nucleoside-binding oligomeric domain protein
1 (NOD?1) leads to an increase in the size of the of microbiota, including increased numbers of Clostridium, Bacteroides, segmented filamentous
bacteria (SFB), and Enterobacteriaceae. Lack of NOD2 also leads to an increase in the size of the mucus-associated microbiota, which induces
inflammation and colorectal cancer. The microbiota produce metabolites that activate NOD-, LRR-, and pyrin domain-containing 6 (NLRP6) and
secretes interleukin (IL)-18, which maintains the stability of the mucus, and antimicrobial peptides. Activation of antigen-presenting cells (APCs)
promotes the differentiation of CD4" T cells into T helper (Th) cells and regulatory T cells (Tregs). Th cells regulate the function of the intestinal
microbiota via the expression of immunoglobulin A (IgA). Furthermore, the secretion of IgA is regulated by the specific binding of PD-1 on the

surface of Th cells to PD-L1 on the surface of B cells

anthrax toxin [29]. NLRP3 is activated by ligands
such as MDP and bacterial RNA, and forms a com-
plex with the adapter apoptosis-associated speck-like
protein containing a CARD (ASC) [23]. NLRP6 was
discovered recently and is activated by the toxin re-
leased by Listeria monocytogenes [31]. IPAF is mainly
activated by bacterial flagellin, which transmits the
signal to the cytoplasm [32]. Then, NLRP1, NLRP3,
NLRP6, and IPAF combine with ASC and recruit
caspase-1 after forming inflammasomes in the cyto-
plasm, thereby promoting the release of IL-1f, thus
leading to an inflammatory response [28]. All of these
factors contribute to the innate immune response to
the microbiota, and they have a positive effect on tis-
sue repair and tumor monitoring on the surface of
the intestinal mucosa [23].

However, in the absence of NODI, the size of the
microbiota is increased, including increased numbers of
symbiotic Clostridium, Bacteroides, segmented filament-
ous bacteria (SFB), and Enterobacteriaceae [33]. Simi-
larly, the microbial population of mice lacking NOD2
also changed, characterized by an increase in the burden
of the commensal microbiota and an increase in the pro-
portion of the mucus-associated microbiota, resulting in
intestinal inflammation and colorectal cancer in mice
[34]. Similar to these observations in mice, a human
NOD?2 polymorphism is associated with Crohn’s disease
[35]. Interestingly, the expression of NOD2 depends on
the existence of the commensal microbiota, thus sug-
gesting a negative feedback relationship between the
commensal microbiota and NOD2 [36]. In addition to
NOD1 and NOD2, some NLR proteins assemble into a
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multiprotein complex that activates caspase 1 and fur-
ther releases IL-1p and IL-18 [37]. NLRP6 proteins in-
duce intestinal epithelial inflammatory body formation.
NLRP6 has been shown to be critical in maintaining in-
testinal microbial homeostasis [38]. Mechanistically,
symbiotic  microbial-derived = metabolites  activate
NLRP6-associated inflammatory corpuscle IL-18, which
maintains mucus and antibacterial peptide stability, and
controls the microbial composition [39, 40].

In the adaptive immune process, antigen-presenting
cells (APCs) are activated by PAMPs and then trans-
ferred into mLNs to promote the differentiation of naive
T cells into CD4™ T cells [41]. CD4™ T cells differentiate
into two subsets, T helper (Th) cells and regulatory T
cells (Tregs). Th cells regulate the intestinal microbiota,
especially microbial functions (such as flagella produc-
tion) by selecting an appropriate immunoglobulin A
(IgA) plasma cell bank [42]. IgA is crucial to maintain a
symbiotic balance between the microbiota and the im-
mune system. Interestingly, the most preferentially tar-
geted microbiota for IgA is the one that proximally
colonizes the mucosa and is associated with the potential
pathogenicity of E. coli [43]. Studies on Shigella flexneri
IgA antibodies have shown that IgA can induce the
microbiota to fall into the mucous layer of the intestinal
epithelium [44]. Then, IgA promotes its clearance by ag-
glutination. IgA antibodies produced after oral inocula-
tion with Salmonella typhimurium have been shown to
inhibit and eliminate bacterially dividing daughter cells
[45]. Although the reactivity of multi-reactive IgAs with
flagellin is low, IgA might also limit bacterial movement
by binding to bacterial flagellin [46]. In addition, the se-
cretion of IgA is also regulated by the specific binding of
programmed death receptor 1 (PD-1) expressed by Th
cells to programmed death-ligand 1(PD-L1) on the sur-
face of B cells [47]. IgAs produced in PD-1-deficient
mice showed reduced bacterial binding capacity, leading
to changes in the intestinal microbiota [48]. The
changes’ main feature is that the number of Bifidobac-
teria is reduced and the number of Enterobacteriaceae is
increased [49]. Thus, PD-1 is vital to regulate the diver-
sity of antibodies required to maintain a full mucosal
barrier. Maruya et al. also found that PD-1 affects the
kinetics of B cells in the germinal center (GC) by regu-
lating the quantity and nature of Th cells in Peyer’s
patches [47]. Studies have shown that compared with
wild-type mice, the frequency of clone-related sequences
(with the same VH-DH-JH and ligation) in PD-1-
deficient mice was reduced, resulting in impaired IgA
plasma cell expansion in the GC [47]. Meanwhile, Kawa-
moto et al. found that the quality of IgA depends largely
on the number of Th cells in Peyer’s patches. Too many
Th cells lead to dysregulation of IgA precursor cells in
the GC, and the defect of PD-1 can lead to an increase
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in Th cells [48]. When PD-1-dependent checkpoints are
missing, the intestinal microbiota crosses the mucosal
barrier, inducing systemic GCs to produce autoreactive
antibodies [48]. Therefore, the evidence indicates that
PD-1 regulates the intestinal microbiota by appropriately
selecting the IgA plasma cell sequence [48]. In addition,
SFB can be directly attached to IECs to stimulate the se-
cretion of serum amyloid A [50]. These proteins belong
to the acute phase response protein family and respond
to inflammation. Differentiation of Th17 cells and secre-
tion of IL-17a were achieved under the induction of
serum amyloid A [50, 51]. Th17 cells are the differenti-
ation of CD4" T cells through transforming growth fac-
tor beta (TGF-f) and IL-6 and play an important role in
tumors. The significant feature of Th17 cells is their
ability to produce IL-17. IL-17 has six family members
(IL-17a-IL-17f) [52]. Among them, the expression levels
of IL-17a and IL-17f are related to tumor angiogenesis
[53]. The expression of IL-17a mRNA increases with the
increase of tumor invasion and pathological stage. How-
ever, IL-17a has different promotion effects on tumor
angiogenesis [54]. For example, in non-small cell carcin-
oma, IL-17a increases vascular proliferation by promot-
ing the angiogenic chemokines C-X-C motif chemokine
ligand (CXCL)1, 5, and 8. In human melanoma blood
vessels, IL-17a upregulates the expression of vascular
genes through an IL-6-dependent mechanism [54].
However, IL-17f has an inhibitory effect on tumor angio-
genesis [55]. In colorectal cancer, overexpression of IL-
17f reduces vascular endothelial growth factor (VEGF)
levels, inhibits angiogenesis, thereby playing a protective
role [55]. Therefore, these two cytokines form a balance
in tumor growth, which is conducive to maintaining the
body’s immunity. However, there are conflicting opin-
ions about the function of Th17 cells in tumor immun-
ity, and that the fate of Th17 cells is regulated by many
factors, including regulatory factors and intestinal bac-
terial antigens [56]. Among them, IL-23 can induce the
expression of RUNX family transcription factor
(RUNX)1 and RUNX3, which can maintain Th17 func-
tion for a long time by enhancing retinoic acid receptor-
associated orphan receptor yt (RORyt) activity [57].

The lamina propria of the colon is rich in Tregs, which
can express PD-1 and PD-L1. Moreover, the PD-1/PD-
L1 axis is thought to inhibit the response of CD4" and
CDS8" T cells [58, 59], maintaining immune tolerance to
tumors and microbial antigens [60]. The inhibitory effect
of Tregs on CD4" T cells is mediated by cytokines such
as TGF-B and IL-10 [61, 62] (Fig. 2). TGE-P1 can trigger
the release of IL-10 by Th1 cells and reduce the activity
of effector T cells (Teffs) [63, 64]. The microbial metab-
olites short chain fatty acids (SCFAs) also exhibit a regu-
latory effect on immune factors. SCFAs activate signal
transducer and activator of transcription 3 (STAT3) and



Dai et al. Cell Communication and Signaling (2020) 18:90 Page 5 of 16

Teffs

Clostridium
PD-L1
Bflagllls o ,

CD2< }20
B.fragilis SCEA

@ PSA 'T“‘gs ‘h\/ —

- % PSA
-

F,
M, TGF-B IL-23R Tregs
' ’L~10 —_
g Butyrate —/ J \
ol GPR-Foxp3 0 FOXP3
- 00
naive T cell
RORw

Fig. 2 The regulation of the microbiota in adaptive immunity. Bacteroides fragilis stimulates TLR2 on CD4" T cells by producing polysaccharide A
(PSA), thereby enhancing the expression of Forkhead Box P3 (Foxp3), IL-10, and TGF-{3. Butyrate activates Foxp3 via a G protein-coupled receptor
(GPCR), induces differentiation of Tregs, and inhibits anti-tumor immune responses. Butyrate also indirectly promotes Treg differentiation by
inducing IECs to secrete TGF-f. High concentrations of TGF-{3 inhibit the expression of IL-23R and promote the differentiation of Tregs. TGF-3 also
induces RORyt to be expressed together with Foxp3 in CD4* T cells, which in turn inhibits RORyt, leading to differentiation of Tregs. Microbial
metabolites SCFA and PSA can promote the proliferation of induced regulatory T cells (iTregs); however, too many iTregs infiltrating tumor tissue
will weaken cancer immunity. PD-L1 can also promote the conversion of Tregs to iTregs by increasing the expression of Foxp3 and PTEN, or by

inhibiting the Akt/mTOR pathway

mammalian target of rapamycin (mTOR) in Thl cells,
which in turn upregulate the transcription factor B lym-
phocytes to induce mature protein 1 (BLIMP-1) and in-
duce IL-10 release [65]. Meanwhile, Cottrez et al. found
that IL-10 can induce feedback regulation of TGF recep-
tor expression and enhance the response of activated T
cells to TGE-B1 [66]. Forkhead box P3 (Foxp3) plays a
key role in Treg development and immunosuppressive
activity [67]. Mice with Foxp3 genetic defects have dys-
functional Tregs and develop an autoimmune disease
similar to lupus [67]. TGF-P induces the expression of
Foxp3 in surrounding CD25 cells and converts them
into CD4*CD25" induced Tregs (iTregs) [59]. The ex-
pression of Foxp3 is controlled by the microbiota and
microbial metabolites. B. fragilis promotes immune tol-
erance by producing the symbiotic factor polysaccharide
A (PSA) [68]. PSA directly motivates TLR2 on CD4" T
cells, powerfully enhancing the expression of Foxp3, IL-
10, and TGF-p [69]. Microbial-derived butyrate inhibits
the activity of histone deacetylase, which activates Foxp3
via a G-protein coupled receptor (GPCR) and promotes

differentiation of naive T cells into Tregs, eliminating
anti-tumor immune responses [70, 71]. Furthermore, bu-
tyrate is capable of indirectly promoting the differenti-
ation of Tregs by inducing IECs to secrete TGE-B [72,
73]. High concentrations of TGF-p prevent the expres-
sion of IL-23R and promote the differentiation of Tregs
[74]. TGE-B also induces the co-expression of RORyt
and Foxp3 in CD4" T cells. However, in vitro, a small
proportion of Foxp3 induced by TGF- can have an in-
hibitory effect on RORyt, and finally lead to the differen-
tiation of Tregs [75]. IL-6, IL-21, and IL-23 can relieve
the above inhibition [76]. Inducible regulatory T cells
are a subset of intestinal Tregs that develop from
CD4"Foxp3 naive T cells, depending on microbial anti-
genic stimulation [77]. Research by Atarashi and Round
et al. showed that an increase in symbiotic Clostridium
species and B. fragilis promoted intestinal iTregs [78].
Studies also showed that symbiotic microbiota, including
most Clostridia, can produce SCFAs. Among them, bu-
tyrate is involved in the generation of iTregs by inhibit-
ing pro-inflammatory factors and inducing Foxp3
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transcription [79]. B. fragilis strains expressing PSA can
also mediate the generation of iTregs via TLR2 [79].
Francisco et al. also reported that PD-L1 induces the dif-
ferentiation of iTregs by maintaining and increasing the
expression of Foxp3 in iTregs [80]. PD-L1 inhibits the
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/
protein kinase B (Akt)/mTOR signaling cascade and
upregulates phosphatase and tensin homolog (PTEN) to
promote the transformation of iTregs [81]. However,
iTregs infiltrate tumor tissue in large quantities, inhibit-
ing effective tumor immunity [82]. The latest research
shows that iTregs might be involved in the treatment of
PD-1/PD-L1 blockade, and the PD-1/PD-L1 axis might
also affect the differentiation and function of iTregs [83].
However, the complex relationship between them has
not been fully determined. The above-mentioned
process indicates that the microbiota and their metabo-
lites are involved in the body’s cancer immunity process.

Tumor immunosuppression and immunotherapy

The human immune system has always been the leading
force for tumor suppression. The process requires co-
ordination of cells, tissues, and the microenvironment to
maintain overall immunity. A study found that the ex-
pression of immune checkpoints such as PD-1/PD-L1
and CTLA-4 plays a pivotal role in the balance and es-
cape phase of cancer immunity [84]. In the tumor
microenvironment, activation of the PD-1/PD-L1 path-
way is beneficial to tumor immune escape [2]. PD-1 is
expressed in a series of activated immune cells, including
T cells, B cells, natural killer (NK) cells, and dendritic
cells (DCs). PD-L1/PD-L2 is mainly expressed in APCs
and tumor cells [85]. When PD-L1/PD-L2 on the surface
of tumor cells binds to PD-1 on the surface of T cells, T
cell activation is inhibited, resulting in apoptosis of
tumor-specific T cells [86]. PD-L1 is expressed in vari-
ous types of cancers, especially in non-small cell lung
cancer (NSCLC), melanoma, gastric cancer, liver cancer,
and leukemia tumors [87]. However, unlike PD-1/PD-
L1, CTLA-4 is expressed in specific Tregs and occurs in
the early stages of T cell activation [88]. In contrast, PD-
1 is expressed in the late phase of T cell activation [89,
90]. From the crystal structure of CTLA-4/B7, they both
have higher affinity [91]. Therefore, CTLA-4 recognizes
B7 ligands on the surface of tumor cells and further in-
hibits T cell activation [92]. A large body of evidence in-
dicates that Tregs expressing CTLA-4 have extracellular
inhibition of traditional T cells [93]. Genetic studies have
also shown that Tregs’ expression of CTLA-4 is critical
to control traditional T cell activation. Michella et al.
also pointed out that CTLA-4 is a key effector used by
Tregs to control the GC [93]. Mice lacking CTLA-4 will
spontaneously develop T cell-driven lymphoproliferative
syndrome, leading to early death [94].
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Activation of checkpoint proteins on T lymphocytes
helps tumors to escape immune surveillance. Therefore,
the use of checkpoint inhibitors can reactivate the anti-
cancer effects of T cells. Currently, two types of im-
munological checkpoint inhibitors (ICIs) that have been
approved for clinical use by the FDA: Inhibitors of PD-1
or its ligand PD-L1 and inhibitors of CTLA-4 [95]. Re-
search on ICIs has also made striking progress in deter-
mining the mechanism of checkpoints. Currently,
common ICIs include anti-PD-1 (nivolumab and pem-
brolizumab) [96], anti-PD-L1 (durvalumab and atezoli-
zumab) [97], and anti-CTLA-4 (ipilimumab) antibodies
[98]. Many studies have shown that nivolumab in pa-
tients with solid tumors (including advanced melanoma)
has good anti-tumor activity and safety [99]. Another
clinical study reported the results of a randomized,
double-blind, phase III trial, which showed that nivolu-
mab improves overall survival in patients with advanced
melanoma without B-Raf proto-oncogene, serine/threo-
nine kinase (BRAF) mutations compared with dacarba-
zine [100]. In addition, first-line pembrolizumab
monotherapy could improve overall survival and
progression-free survival in patients with untreated
metastatic NSCLC, with a PD-L1 tumor proportional
score (TPS) of 50% or higher [101]. Although PD-1 ICIs
have achieved unparalleled success among similar drugs,
because of individual differences in drug resistance of
patients, some patients do not gain much benefit from
ICIs [102]. The goal of developing combination therapy
is to help patients with cancer who benefit less from
monotherapy. Hodi et al. showed that first-line nivolu-
mab combined with ipilimumab or nivolumab alone in
patients with advanced melanoma, regardless of BRAF
mutation status, could obtain long-lasting, sustained
clinical benefits [103]. The joint treatment was more
likely to improve survival outcomes than treatment with
nivolumab alone [103]. Rozeman et al. also determined
the optimal dose tolerated in a trial in which ipilimumab
combined with nivolumab was used to treat macroscopic
melanoma (OpACIN-neo) in the naked eye (ipilimumab
1 mg/kg + nivolumab 3 mg/kg, two cycles) [104]. Some
clinical trials have achieved considerable effects, and
many patients are pinning their hopes on IClIs.

The potential of intestinal microbiota in cancer
immunotherapy

Unfortunately, despite patients’ expectations, a large pro-
portion of patients with cancer are resistant to ICIs or
produce only a heterogeneous, transient response [105].
Patients might have multiple complications that could
prevent the safety of ICIs from being guaranteed. A
meta-analysis of the use of ICIs suggested that the com-
bination of nivolumab and ipilimumab might result in a
higher risk of full-scale immune-related endocrine
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disease than ipilimumab or nivolumab alone [106]. An-
other meta-analysis acknowledged that combination
therapy has a high incidence of adverse reactions and
might even lead to treatment interruption [107]. Identi-
fying more valuable immune checkpoints or increasing
the sensitivity and persistence of ICIs to known check-
points is the focus of our future research.

The human microbial community is an organ with
endless potential. It not only regulates the body’s tissue
metabolism, but also participates in the body’s immune
regulation. It plays an important role in diseases such as
gastrointestinal cancer and diabetes [18]. The intestinal
microbiota has gradually emerged as a potent force in
the process of cancer immunotherapy [108]. Initially, re-
searchers were unsure whether the symbiotic microbiota
affected the body’s spontaneous immune response, thus
affecting the therapeutic activity of ICIs interventions.
To investigate this correlation, Sivan et al. selected mice
with melanoma with the same genotypes from different
laboratories (From TAC and JAX), and noted the melan-
oma of TAC mice was more severe than that of JAX
mice [109]. After feeding under the same conditions, the
researchers found that tumors in TAC mice were sup-
pressed. After feeding with a fecal suspension of two
mice, it was confirmed that the commensal microbiota
of JAX mice had an anti-tumor effect [110]. Finally, the
researchers used JAX mouse fecal suspensions in com-
bination with PD-L1 ICIs. Their anti-tumor effect was
significantly better than that of ICIs alone, including sig-
nificantly delayed tumor growth and increased tumor-
specific T cell responses [109]. This experiment clarified
the function of the intestinal microbiota to optimize and
enhance the efficacy of ICIs, suggesting that it could be
used as an adjunct to ICI treatment.

Chaput et al. also predicted the clinical response and
colitis occurrence in patients with metastatic melanoma
treated with ipilimumab via their baseline intestinal
microbiota [111]. Based on the study data, they specu-
lated that the ipilimumab-induced anti-cancer response
and the colitis caused by the formulation might depend
on the patient’s intestinal microbiota [111]. This pro-
spective study facilitated the identification of potentially
beneficial and harmful microbiota, which would allow
control of the adverse risks that patients may face [111].
In fact, depending on the composition of the patient’s
intestinal microbiota, PD-1 blockers (R) and non-
responders (NR) could be stratified using the RECIST
1.1 standard [112]. Derosa et al. performed fecal micro-
bial transplantation (FMT) from the feces of R patients
or NR patients in sterile or antibiotic treated mice, re-
spectively [49]. The fecal immune response of R patients
to tumors was stronger than that of NR patients. Subse-
quently, mice immunized with feces from NR patients
were supplemented with Akkermansia muciniphila to
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restore anti-cancer activity against PD-1 treatment [49,
113]. Increasing numbers of parallel studies have further
confirmed the association of intestinal microbiota with
ICIs [114]. However, the intestinal microbiota is rich in
species, and there remains an urgent to identify a group
that has specific effects on ICIs. In a study using metage-
nomic shotgun sequencing and unbiased metabolomic
profiling to determine the efficacy of intestinal micro-
biota and ICIs in the treatment of patients with melan-
oma, researchers analyzed the patient’s stool to find the
difference between the intestinal metabolites from the
responder and the disease-promoting population [115].
The study found that the composition of the host intes-
tinal microbiota was the main factor determining the re-
sponse to ICIs, which was consistent with the results of
preclinical mouse model studies. In addition, the results
showed that sterile or antibiotic-treated mice did not re-
spond to immunotherapy, and Bacteroides was required
for an anti-CTLA-4 response [115]. Vetizou and col-
leagues also revealed that antibiotic-treated or aseptically
treated mice do not respond to CTLA-4 blockade. The
team revealed that T cells are involved in the specific re-
sponse of Bacteroides thetaiotaomicron or B. fragilis and
the efficacy of CTLA-4 blockers [116]. Further studies
have found that the anti-cancer effect of CTLA-4
blockers depends on different Bacteroides species [116].
In that study, the Bacteroides were divided into three
clusters, A, B, and C, based on the fecal bacteria cluster-
ing algorithm. Then, patients with melanoma were
treated with ipilimumab and found to be more likely to
fall into cluster C [117, 118]. Sequencing of the 16S ribo-
somal RNA (rRNA) gene amplicon in feces showed that
the therapeutic effect of CTLA-4 ICIs was dependent on
cluster C, but not clusters A and B [119]. This was
mainly because the microbiota of cluster C mainly com-
prises immunogenic Bacteroides, which can restore anti-
CTLA-4 monoclonal antibody (mAb) efficacy. Clusters
A and B comprise tolerant Bacteroides, which can pro-
duce complete resistance to treatment [119, 120]. This
finding indicated that patients showing resistance or no
response might benefit from FMT treatment.

During the same period, Sivan discovered that the
control effect of oral Bifidobacterium on tumors was the
same as that of PD-L1 ICIs using 16S rRNA sequencing,
and determined the anti-tumor effects of Bifidobacter-
ium, especially Bifidobacterium breve, Bifidobacterium
longum, and Bifidobacterium adolescentis [109, 121].
Oral administration of Bifidobacterium increased the in-
filtration of CD8" T cells and enhanced the production
of interferon gamma (IFN-y). In addition, Bifidobacter-
ium promoted intratumoral DC activation to improve
the underlying tumor environment and anti-PD-L1 effi-
cacy [109]. Interestingly, a recent study by Matson et al.
examined fecal samples collected from patients with
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metastatic melanoma before immunotherapy [122]. They
found that members of the microbiota such as, Bifido-
bacteria longum and Collinsella aerofaciens were
enriched in response to anti-PD-1 immunotherapy
[122]. Another study showed that Enterococcus faecium
is abundant in the microbiota and has a synergistic effect
with Bifidobacteria in the anti-cancer process [122]. Sev-
eral other studies have confirmed that the intestinal
microbiota could be a new force in anti-immunization
checkpoint therapy [122, 123]. Based on the consensus
of these studies, we concluded see that patients with
good intestinal microbiota have an enhanced anti-tumor
immune response by improving their effector T cell
function in the tumor microenvironment. In contrast,
patients with poor intestinal microbiota have poorer
anti-tumor immune responses because of limited mye-
loid infiltration and reduced antigen presentation. It
could be said that the microbiota controls the cancer
immune setting of individuals with cancer, and it may be
feasible to manipulate the intestinal ecosystem to bypass
resistance to ICIs [113].

A powerful auxiliary role of microbiota in cancer
immunotherapy

It has become clear that the intestinal microbiota plays a
vital role in the process of cancer immunotherapy. The
intestinal microbiota mainly promotes cancer immuno-
therapy and optimizes the use of ICIs from the following
aspects.

When PRRs such as TLRs and NODs recognize
PAMPs from the microbiota, a local intestinal immune
response is initiated. PAMPs promote the maturation of
DCs through interaction with PRRs. Bifidobacteria are
capable of inducing transcription of DC genes and pro-
moting their maturation [109]. This process facilitates
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the recruitment and activation of lymphocytes and en-
hances the efficiency of antigen presentation. In
addition, the threshold for the activation of DCs by Bifi-
dobacteria is downregulated, meaning that the concen-
tration of antigen required to initiate T cells is reduced,
and sensitivity is increased. Studies have shown that at
lower antigen concentrations, DCs upregulate IFN-y
levels, initiate the proliferation of tumor-specific CD8" T
cells, and produce synergistic anti-tumor effects with
ICIs [124, 125] (Table 1). This process promotes activa-
tion of DCs in the spleen and tumors, improving basal
tumor control and anti-PD-L1 efficacy (Fig. 3). APCs
can also detect the intestinal microbiota without micro-
biota translocation [126, 127]. The microbiota-mediated
immune response not only activates an inflammatory re-
sponse in the mucosa, but also induces the differenti-
ation of pathogenic Th17 (pTh17) and Thl cells in the
secondary immune organs [128].

B. fragilis activates Thl cells to cross-react with bac-
terial antigens and new tumor antigens, enhancing the
efficacy of anti-CTLA-4 [129]. At the same time,
colonization of germ free mice with B. fragilis and B.
cepacia reduced the toxicity induced by anti-CTLA-4
mAb [116]. This might be related to the ability of B. fra-
gilis to promote Treg proliferation. Monoclonalization
by B. fragilis and Bifidobacteria also promotes the con-
version of CD4" T cells to Tregs [130]. When the IL-10
signal is blocked, the disturbance of the intestinal muco-
sal barrier is further increased. This might be caused by
intestinal toxicity caused by pTh17 cells, such as colitis
[131]. It is worth noting that the efficacy of oral B. fragi-
lis is associated with Thl immune responses induced in
lymph nodes and DC maturation in the tumor bed
[132]. Among them, plasma cell-like DCs (pDCs) acti-
vate lamina propria DCs, which can promote the

Table 1 Regulation of intestinal microbiota in cancer immunotherapy

Microbiota
(or products)

Immune regulation

Impact on cancer immunotherapy

Enhancing PD-1 blockade

Bifidobacteria Promoting maturation of DCs
Activating lymphocytes
Upregulating IFN-y and increasing pro-inflammatory cytokine
Initiating the proliferation of tumor-specific CD8" T cells

B. fragilis Activating Th1 cells

Promoting Tregs proliferation

Promoting maturation of DCs
A. muciniphila Increasing CXCR3*CCR9*CD4™ T cells

Escherichia
Clostridium

Faecalibacterium

Bacteroides

inflammatory pathway

microbial-derived SCFAs Promoting the differentiation of Tregs

Inducing the differentiation of Tregs and inhibiting inflammation

Promoting the proliferation of CD4* or CD8" T cells
Promoting the production of Tregs and upregulating the expression of ICOS

Upregulating the system’s MDSC and Tregs
Causing a systemic inflammatory response through the TLR-NF

Enhancing CTLA-4 blockade

Enhancing PD-1 blockade
Enhancing CTLA-4 blockade

Enhancing PD-1 blockade
Enhancing CTLA-4 blockade

Impeding PD-1 blockade
Impeding CTLA-4 blockade

Enhancing CTLA-4 blockade
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Fig. 3 The mechanism of multiple intestinal microbiota in cancer immunotherapy. Bifidobacteria activates and causes DCs to secrete IFN-y, which
initiates the anti-tumor effect of CD8" T cells. B. fragilis promotes Th1 recognition of tumor antigens and is capable of inducing DC maturation. In
addition, B. fragilis can promote the differentiation of CD4" T cells into Tregs, which further participate in anti-tumor immunity. Faecalibacterium

induces DC maturation and promotes CD4" T cell proliferation. A. muciniphila promotes activation of the CXCR3/CCR9 axis and participates in the

migration of CD4" T cells. Escherichia and Clostridium enhance the expression of CTLA-4 in Tregs, which is beneficial to tumor immunity

absorption of B. fragilis [133]. Alternatively, absorption
of soluble bacterial products by DCs promotes DC mat-
uration and the production of IL-12, which in turn al-
lows for the initiation of T cells (such as Th1) [134]. IL-
12 might be produced as a result of B. fragilis mobilizing
the lamina propria of CD11b* DC [135]. These pro-
cesses might be involved in the anti-tumor immune re-
sponses by T cells homologous to tumor antigens or
cross-reactive bacterial antigens.

Colonization by the acidophilic Akkermansia mucini-
phila and Enterococcus hirae is associated with the ap-
pearance of CD4" central memory T cells (Tcpg) in
tumors and the coding of mLNs [113]. C-X-C motif che-
mokine receptor 3 (CXCR3)/ C-C motif chemokine re-
ceptor 9 (CCRY) are chemokine receptors expressed by
Tems [136]. The CXCR3 and CCR9/CCL25 axes are as-
sociated with progression free survival (PFS) and overall
survival (OS) prolongation in some patients with

advanced cancer [137]. CXCR3 is also involved in enlist-
ing Thl cells to inflammatory lesions. The CCRY/
CCL25 axis is involved in T cell chemotactic migra-
tion, and Th cells expressing CCR9 exhibit site speci-
ficity during inflammation [138, 139]. Some data
suggest that T cell epitopes are shared between the
microbiota and tumor cells [113]. Under this model,
T cells might exert anti-tumor effects through CD4"
T cell CD8" T cells in response to cross-reactivity of
bacterial antigens [140]. Balachandran et al. found
that T cell clones around and within tumors are spe-
cific for both new antigens and predict their cross-
reactivity with microbial epitopes [141]. Therefore,
microbiota has a certain promotion effect on the
blocking effect of PD-1.

In addition, immune cell detection showed that in-
testinal Faecalibacterium increased the role of DC
and other APCs to promote the proliferation of CD4"
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or CD8" T cells, which is conducive to enhancing the
blocking effect of PD-1 [142]. Furthermore, Faecalibacter-
ium enhances the blocking effect of CTLA-4 by promot-
ing the production of Tregs and upregulating the
expression of inducible T cell costimulatory (ICOS) [143].
However, some members of the microbiota have antagon-
istic effects on IClIs. Bacteroides blocked PD-1 blockade by
upregulating the system’s myeloid-derived suppressor cells
(MDSCs) and Tregs [144]. Bacteroides can also cause a
systemic inflammatory response through the TLR-NF in-
flammatory pathway, hindering the blocking effect of
CTLA-4 [145].

The intestinal microbiota and its metabolites are
beneficial to activate Tregs [146]. SCFAs are micro-
bial metabolites that affect many characteristics of
host immunity [147]. Intestinal microbial-derived
SCFAs, such as butyrate and propionate, promote the
differentiation of Tregs and increase the size of the
Tregs pool by increasing the acetylation level of his-
tone H3 in the Foxp3 promoter region and the con-
served non-coding region [148-150]. The high
expression of CTLA-4 in Tregs means that the status
of Tregs at baseline is critical to determine CTLA-4
blockade [151]. Some members of the microbiota,
such as Escherichia and Clostridium, can induce dif-
ferentiation of Tregs and inhibit the occurrence of in-
flammation. It is speculated that anti-inflammatory
microbiota and SCFAs induce proliferation and differ-
entiation of Tregs, resulting in higher levels of
CTLA-4 [150]. Although elevated CTLA-4 levels are
beneficial for tumors to evade immune surveillance,
they can increase sensitivity to CTLA-4 blockade by
relieving immunosuppression of the gut and tumor
tissues [152]. The involvement of Tregs is more pro-
nounced in the blocking of CTLA-4 than in PD-1
blockade. Therefore, theoretically, patients receiving
CTLA-4 blockade are more likely to benefit from en-
hanced T cells.

These underlying mechanisms might contribute to mi-
crobial mediation of anti-tumor immune regulation in
the context of intestinal inflammation, such as chemo-
therapy drugs that cause mucositis, or anti-CTLA-4
treatment [153, 154]. Thus, the intestinal microbiota has
been recognized as a major force in the process of can-
cer immunity.

The future of the intestinal microbiota in cancer
immunotherapy

As a result of ongoing research, we predict that the
intestinal microbiota will gradually occupy an in-
creasingly prominent position in cancer immunother-
apy. Currently, the mechanism of the effects of the
intestinal microbiota in cancer immunotherapy is not
well understood; however, some ongoing clinical

Page 10 of 16

trials will help to reveal the potential of the intes-
tinal microbiota in tumor development and cancer
immunotherapy. We have summarized the clinical
trials investigating the intestinal microbiota involve-
ment in cancer immunotherapy in recent years
(Table 2). Meanwhile, we also compiled a schematic
diagram showing the enrichment of the intestinal
microbiota in the process of cancer immunotherapy
(Fig. 4). This evidence will provide a good reference
for the effectiveness of the intestinal microbiota in
the immunotherapy process.

The development of these clinical trials will re-
move obstacles for the use of the intestinal micro-
biota to optimize and assist immunotherapy using
ICIs. First, the intestinal microbiota can reduce com-
plications during cancer immunotherapy. Currently,
there are some complications associated with the use
of ICIs. The most common toxic response when
using ICIs is associated colitis. The cause of the dis-
ease is obscure. Interestingly, the lactic acid bacteria
Lactobacillus reuteri can completely eliminate ICIs-
associated colitis, and improve weight loss and in-
flammation [157]. The protective effect of L. reuteri
might be related to the decrease in lymphocyte dis-
tribution [158]. Second, the intestinal microbiota en-
hances the nutritional absorption capacity of patients
with cancer and enhances their anti-tumor ability.
The emergence of tumor micro-ecological immune
nutrition has further paved the way for the develop-
ment of the microbiota as tool in cancer immuno-
therapy [159]. The main function of the intestinal
microbiota is to help the host to digest and
metabolize food [160]. However, in patients with
cancer, their intestinal function is often destroyed,
and they find it difficult to utilize the nutrition in
the diet. The addition of micro-ecological prepara-
tions to parenteral nutrition could effectively inter-
fere with the environment of intestinal disorders, re-
establish a good tumor microenvironment, and play
a role in anti-tumor immunity [161]. Third, micro-
biota research is expected to lead to the design of a
vaccine against tumors. A recent microbial-based
cancer vaccine has shown its utility [162]. This can-
cer vaccine prevents the growth of squamous cell
carcinoma expressing epidermal growth factor recep-
tor (EGFR) vIII and induces EGFR vIII-specific cellu-
lar immunity [162]. This work is exciting for the
study of anti-tumor immunity, and represents a new
breakthrough in the design of the microbiota.
Fourth, FMT is expected to be the most direct
biooptimization tool for cancer immunotherapy.
FMT is a popular and significant technology that has
been used clinically to treat recurrent Clostridium
difficile infections [163].
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Table 2 FDA-approved trials of microbial-related immunotherapy
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NCT Number  Title Status Conditions Interventions Phases
NCT02960282 Gut Microbiome in Fecal Recruiting Metastatic Carcinoma Procedure: Biospecimen
Samples From Patients Stage IV/IVA/IVB Collection
With Metastatic Cancer Colorectal Cancer Other: Laboratory
Undergoing Chemotherapy Biomarker Analysis
or Immunotherapy
NCT03341143 Fecal Microbiota Transplant Recruiting Melanoma FMT with Pembrolizumab Phase 2
(FMT) in Melanoma Patients
NCT03353402 Fecal Microbiota Transplantation Recruiting Melanoma Stage IV FMT Phase 1
(FMT) in Metastatic Melanoma Unresectable Stage Ill Melanoma
Patients Who Failed
Immunotherapy
NCT03370861 How Microbes and Metabolism  Recruiting Skin Cancer|Melanoma Immunotherapy
May Predict Skin Cancer Merkel Cell Carcinoma
Immunotherapy Outcomes Squamous Cell Carcinoma
of the Skin Basal Cell
Carcinoma
NCT03383107 Effect of Radiotherapy Recruiting Breast Cancer|Prostate Cancer
Variables on Circulating
Effectors of Immune
Response and Local
Microbiome
NCT03557749 Monitoring of Immune and Recruiting Immune and Microbial Diagnostic Test: Blood Sample/
Microbial Reconstitution Reconstitution Recurrent Stool Sample Gastrointestinal
in (HCT) and Novel Malignant Cell Therapy/ biopsy x 2-4/ Apheresis
Immunotherapies Immunotherapy Patients Product/Final cellular product
NCT03595683  Pembrolizumab and EDP1503 Recruiting Melanoma (Skin)|Melanoma Pembrolizumab Phase 2
in Advanced Melanoma Biological: EDP1503
NCT03643289 Predicting Response to Recruiting Melanoma (Skin)
Immunotherapy for Melanoma
With Gut Microbiome and
Metabolomics
NCT03686202 Feasibility Study of Microbial Recruiting All Solid Tumors Biological: MET-4 Early Phase 1
Ecosystem Therapeutics (MET-4)
to Evaluate Effects of Fecal
Microbiome in Patients on
Immunotherapy
NCT03772899 Fecal Microbial Transplantation  Recruiting Melanoma FMT Phase 1
in Combination With
Immunotherapy in Melanoma
Patients (MIMic)
NCT03797170 Design of New Personalized Recruiting Diffuse Large B Cell Gut microbiota samples
Therapeutic Approaches for Lymphoma
Diffuse Large B-cell Lymphoma
NCT03817125 Melanoma Checkpoint and Recruiting Metastatic Melanoma Placebo for antibiotic Phase 1
Gut Microbiome Alteration Vancomycin pretreatment
With Microbiome Intervention Nivolumab/SER-401/SER-401
NCT03891979 Gut Microbiome Modulation to  Not yet recruiting Pancreatic Cancer Antibiotics and Phase 4

Enable Efficacy of Checkpoint-
based Immunotherapy in
Pancreatic Adenocarcinoma

Pembrolizumab

As microbiota research shifts from correlation studies to
mechanistic studies, the activity of specific microorgan-
isms and their products will be validated in areas such as
inflammatory bowel disease and cancer. Although FMT is
still in its infancy in clinical trials of cancer, it still repre-
sents a milestone in cancer therapy research. For example,
clinical trial NCT03353402 proposes to change the intes-
tinal microbiota of patients with melanoma who have

failed immunotherapy using FMT. Another clinical trial
(NCT03341143) is investigating the feasibility of FMT in
patients with melanoma who are resistant to PD-1 ICls.
Furthermore, safety studies using FMT in combination
with immunotherapy (pembrolizumab or nivolumab) are
also being tested in a clinical trial (NCT03772899). These
clinical trials will further examine the position of FMT in
cancer immunotherapy.
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Conclusion
The intestinal microbiota has shown its potential as a

major force in cancer immunotherapy. It not only
participates in regulating the body’s immunity, but
also assists in optimizing the therapeutic effects of
ICIs. At the same time, as a tool for adjuvant therapy
and the comprehensive evaluation of patients’ bene-
fits, the targeted benefits of microbiota will gradually
become clear, which could be considered in combin-
ation with FMT. Although the mechanisms of the

effects of the microbiota are unclear, emerging tech-
nologies such as microbiome-wide association study
(MWAS) and 16S rRNA sequencing will provide clar-
ity in the near future. Not only do we need to fully
understand how the microbiota regulates cancer im-
munotherapy in the context of preclinical models and
clinical trials, but more importantly, we need to use
these data to develop immunotherapeutic probiotics
to help improve the efficacy of immunotherapy in

patients.
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