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Abstract

Adiponectin, an adipokine produced and secreted by adipocytes, is involved in regulating the development and
progression of insulin resistance, diabetes, and diabetic complications. Heat shock protein 60 (HSP60) is a molecular
chaperone, most commonly presenting in mitochondria and participating in the maintenance of protein homeostasis.
Accumulating studies have demonstrated that the elevated circulating HSP60 and the decreased intracellular HSP60 are
closely associated with diabetic complications such as diabetic cardiomyopathy. However, the underlying mechanism
remains poorly understood. In the present study, we reported that HSP60 interacted directly with adiponectin receptors.
Its abundance was positively associated with adiponectin action. Furthermore, HSP60 depletion markedly mitigated the
protective impacts of adiponectin on high glucose-induced oxidative stress and cell apoptosis in rat cardiac H9c2 cells. In
addition, HSP60 knockdown significantly enhanced proteasome activity leading to the degradation of adiponectin
receptor 1. Taken together, we showed for the first time that HSP60 interacted with adiponectin receptors and mediated
adiponectin signaling through stabilizing adiponectin receptor. This in vitro study also provides an alternative explanation
for mechanism by which adiponectin exerts its action.
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Background
Adiponectin is the most abundant adipokine produced and
secreted by adipocytes. Through binding with its specific
receptors adiponectin receptor 1 (AdipoR1) and AdipoR2,
adiponectin initiates intracellular signaling pathways and
exerts promising effects in the prevention or treatment of
diabetes and metabolic syndrome, cardiovascular diseases,
cancers, central nervous system disorders and so on [1–4].
Previous researches have confirmed that adiponectin signal-
ing could be mediated by adaptor protein APPLs (adaptor

protein, phosphotyrosine interacting with PH domain and
leucine zipper) including APPL1 and APPL2 [5, 6]. APPL1
associates with the intracellular domain of AdipoRs and
positively regulates adiponectin’s actions in some type of
cells such as sensitizing insulin signaling in skeletal muscle
cells [5, 6]. APPL1-deficiencies in mice impair adiponectin
signaling and therefore cause systemic insulin resistance
[7]. In contrast, APPL2 negatively regulates adiponectin sig-
naling by competitively interacting with AdipoRs or hetero-
dimerizing with APPL1 [6]. The “Yin and Yang” balance
between APPL1 and APPL2 orchestrates adiponectin sig-
naling and maintains normal adiponectin function [6, 8].
Heat shock protein 60 (HSP60) is classically described as

a molecular chaperone, most commonly presenting in
mitochondria and involving in the maintenance of protein
homeostasis. Under stress condition, HSP60 can translocate
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to the cytosol and cell membrane, and also secrete into
blood to form serum (or circulating) HSP60 [9]. The ability
of HSP60 in response to different stress greatly dependents
on its localization [10]. It is noteworthy that there is an
interaction between HSP60 and inflammation. HSP60 ex-
pression and secretion can be promoted in viable cells such
as cardiomyocytes, adipocytes, astrocytes, and peripheral
blood mononuclear cells, in response to proinflammatory
cytokines as diverse as IL-1β and TNF-α [11–14]. On the
other hand, serum HSP60 has been recognized as a potent
inductor of proinflammatory mediators in various cells in-
dulging innate immune cells, skeletal muscle, cardiomyo-
cytes, and adipocytes [11, 15–17]. Furthermore, the high
levels of serum HSP60 have been found in the individuals
with adjuvant arthritis and atherosclerosis [18, 19].
Currently, accumulating evidences have linked HSP60

with diabetes mellitus and diabetic complications, al-
though the molecular mechanisms are poorly understood
[18–20]. For instance, serum HSP60 levels have been
found to be significantly elevated in the patients with type
2 diabetes and morbid obesity, due to enhanced mito-
chondrial stress and responsible for inflammation [20–
22]. A modified form of highly reactive HSP60 peptide
p277 (DiaPep277) has been testing to treat type 1 diabetes
[23]. In addition, the elevated serum HSP60 levels also in-
creases cardiovascular risk in obesity individuals [22].
Therefore, HSP60 may represent a potential therapeutic
target for diabetes and its complications.
Interestingly, type 2 diabetic subjects exhibit the de-

creased expression of intracellular HSP60 in some tissues
such as brain, heart, and subcutaneous adipose tissue [24–
26]. Importantly, the decrease in intracellular HSP60 levels
is closely associated with inflammation, mitochondrial dys-
function, formation of reactive oxygen species (ROS), and
insulin resistance, which are usually observed in diabetic
individuals and prevented by adiponectin administration
[4, 24–27]. However, the status of HSP60 in adiponectin
signaling is unclear.
Here, we experimentally demonstrated that HSP60 medi-

ated adiponectin signaling in vitro by stabilizing adiponec-
tin receptor. This finding will undoubtedly help us to
deepen our understanding of adiponectin action and ex-
plore a novel therapy strategy for diabetes and diabetic
complications.

Materials and methods
Antibodies and reagents
Antibodies against to AMPKα (#5831), phospho-AMPKα
(Thr172) (#2535), p38 MAPK (#8690), phospho-p38 MAPK
(Thr180/Tyr182) (#9216), caspase-3 (#9662), cleaved
caspase-3 (#9661), Myc-tag (#2276), ubiquitin (#3936), β-
tubulin (#2146) were from Cell Signaling Technology (Biller-
ica, MA, USA). Antibodies against to AdipoR1 (ab70362),
AdipoR2 (ab77612), and HSP60 (ab46798) were obtained

from Abcam (Cambridge, MA, USA). Normal IgG (sc-2025)
and secondary antibodies conjugated to horseradish perox-
idase or alkaline phosphatase were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA) or Abbiotec
(San Diego, CA, USA), respectively. Recombinant mouse
adiponectin (ALX-522-059) and recombinant rat adiponec-
tin globular form (Catalog#: SRP4593) were acquired from
Enzo Life Sciences (Farmingdale, NY, USA) and Sigma-
Aldrich (St. Louis, MO, USA), respectively. MG132 (HY-
13259) was obtained from MedChemExpress (Monmouth
Junction, NJ, USA).

Cell culture and treatment
Rat cardiac H9c2 cell (ATCC, CRL-1446) were cultured
in DMEM containing 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin. Mouse liver HepIR cells
(kind gifts from Drs. Feng Liu and Lily Q. Dong,
UTHSCSA, USA) were cultured in MEM-alpha contain-
ing 10% FBS and 0.8 μM dexamethasone [6, 28]. All cells
were maintained in a humidified incubator with 5% CO2

and 95% air at 37 °C.
High glucose treatment was performed as our de-

scribed previously [29, 30]. The control group received
the treatment of 5.5 mM glucose and the identical con-
centration of mannitol which act as osmotic control to
remove a hyperosmolar effect.

Plasmid construction
The cDNAs of full-length of mouse HSP60, mouse AdipoR1,
and mouse AdipoR2 were generated by PCR and subcloned
into the mammalian expression vectors pcDNA3.1 (Myc-
tagged), or pGEX, respectively, as described previously [6].

Small interfering RNAs and transfection
The small interfering RNAs (siRNAs) targeting rat HSP60
(NM_022229.2) and mouse HSP60 (NM_010477.4) were
synthesized by Genechem Co., LTD (Shanghai, China).
Transfection was performed with 120 pM of siRNA using
Lipofectamine® RNAiMAX Transfection Reagent (Life
Technologies Corporation, Gaitherburg, MD, USA) accord-
ing to the manufacturer’s protocol. The most effective se-
quences of siRNAs and its paired control used in the
experiments were as follows: rat HSP60, 5′- GAGAGG
TGTGATGTTGGCTGTTGAT-3′ and 5′- GAGTGTGGT
AGGGTTTGTCTGAGAT − 3′; mouse HSP60, 5′-CAAA
TGGAGACAAAGACATTGGGAA-3′ and 5′-CAAAGG
CAGAAACAGTTAGGATGAA-3′. Knockdown efficiency
was assessed by western blot.

Cell immunofluorescence
Immunofluorescence staining was performed as our de-
scribed previously [6, 30]. Images were acquired on an
Olympus IX83 laser scanning confocal microscope and
analyzed by Olympus FV1200 software.
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DHE staining
The real-time formation of ROS in cells was detected by
dihydroergotamine (DHE) staining as described previ-
ously [30]. Briefly, the cells were plated on the coverslips
within a 24-well plate at a density of 2 × 104 cells/well,
starved serum for 6 h, and then treated with or without
high glucose and/or other compound for the desired
time. DHE (at a final concentration of 10 mM) was used
to stain the cells at 37 °C for 30 min in the dark. Cells
were then rinsed once with pre-warmed PBS. DHE
fluorescence was captured with fluorescence microscopy
and quantified by automated image analysis.

Apoptosis determination
Terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick end labeling (TUNEL) was performed to detect
cells undergoing apoptosis as described by the manufac-
turer’s protocol (Roche Applied Science, Indianapolis, IN,
USA).

GST pull-down, immunoprecipitation and western blot
The pull-down assay, immunoprecipitation experiments, and
western blot were performed as described previously [6].

Statistical analyses
The data are presented as the means ± SD. Differences
between the groups were examined using one-way ana-
lysis of variance (ANOVA), followed by a Newman-
Keuls post hoc test. The values of p < 0.05 were consid-
ered statistically significant.

Results and discussion
HSP60 associated with adiponectin receptors
Adiponectin receptors, AdipoR1 and AdipoR2, are import-
ant members in a new family of cell surface receptor, called
Progestin and AdipoQ Receptor (PAQR) family [31]. Adi-
poR1 is expressed ubiquitously and constitutively in most
tissues and cells including adult cardiomyocytes and rat car-
diac H9c2 cells [32, 33], while AdipoR2 is mainly expressed
in the liver [34]. To demonstrate the association between
AdipoRs with HSP60, we firstly detected the localization of
AdipoRs and HSP60 in H9c2 cells and mouse liver HepIR
cells [28]. Immunofluorescence staining revealed that en-
dogenous HSP60 co-localized with endogenous AdipoR1 in
H9c2 cells (Fig. 1a). Similar observation was also made
when HSP60 was overexpressed in HepIR cells (Fig. 1b). To
investigate whether HSP60 and AdipoRs associate directly,
GST pull-down and co-immunoprecipitation assays were
performed. As shown in Fig. 1c and d, endogenous AdipoR1
in H9c2 cells and AdipoR2 in HepIR cells interacted with
GST-HSP60 but not with GST control proteins. Co-
immunoprecipitation experiments revealed that overex-
pressed HSP60 interacted specifically with endogenous Adi-
poR1 in H9c2 cells (Fig. 1e) and endogenous AdipoR2 in

HepIR cells (Fig. 1f). These findings indicate that HSP60 in-
teracts directly with adiponectin receptors.

HSP60 mediated adiponectin action
To understand the functional role of HSP60 in regulating
adiponectin action, intracellular HSP60 protein levels were
increased by overexpression (OE) or decreased by siRNA
knockdown (KD), respectively. The cells were then starved
serum for 6 h, followed by stimulation with 1 μg/ml adipo-
nectin for 30min. It has been reported that AdipoR1-
mediated adiponectin signaling could be activated by
globular adiponectin (gADPN) whereas AdipoR2 only bind
with full-length adiponectin (fADPN) [31, 34]. Therefore,
H9c2 cells and HepIR cells were treated with gADPN and
fADPN, respectively. We found that phosphorylation of
AMPK and p38 MAPK in response to adiponectin stimula-
tion were greatly suppressed in HSP60-KD H9c2 cells (Fig.
2a and b) and HepIR cells (Fig. 2c and d) but obviously en-
hanced in HSP60-OE H9c2 cells (Additional file 1: Figure
S1a and S1b) and HepIR cells (Additional file 1: Figure S1c
and S1d), respectively. Since phosphorylation of AMPK in
cardiomyocytes and p38 MAPK in hepatocytes are the
markers of their activities [35, 36], our results demonstrate
that HSP60 positively modulates adiponectin signaling.
In the present study, we also found that knocking down

of HSP60 induced reductions of p38 MAPK and AMPK
phosphorylation at basal levels (Fig. 2). Although the under-
lying mechanism is unclear, HSP60 has been proven to
positively regulate p38 MAPK pathway in various cells [37,
38], suggesting that HSP60 plays a role in controlling p38
MAPK activity in both adiponectin-dependent and -inde-
pendent mechanism. The impacts of HSP60 on AMPK ac-
tivity is controversial. In cancer cells, HSP60 silencing can
activate AMPK through triggering the excessive ROS pro-
duction, which is beneficial for tumor progression [39, 40].
In adipose tissues, however, high-fat diet feeding induces a
reduction of HSP60 protein levels and this change is not as-
sociated with any changes in AMPK activity [41]. Our find-
ing indicates that HSP60 deficiency reduced basal AMPK
phosphorylation, suggesting that adiponectin-independent
mechanism is also involved in HSP60 controlled AMPK ac-
tivation. Future studies are needed to dissect the specific
role of HSP60 in variety of the cells residing in fat tissues in
regulating AMPK activity.

HSP60 knockdown mitigated the protective effects of
adiponectin on high glucose-induced oxidative stress and
cell apoptosis in H9c2 cells
Hyperglycemia is a hallmark feature of both type 1 and
type 2 diabetes. Previous study has evidenced that high
levels of glucose induce oxidative stress and cell apop-
tosis in cardiomyocytes [30, 42], which can be protected
by adiponectin administration [43]. Using this model, we
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wanted to further confirm the role of HSP60 in mediat-
ing adiponectin signaling.
H9c2 cells were starved serum for 6 h, and then incu-

bated with 5.5mM (normal glucose control) or 33mM
glucose (high glucose, HG) in the presence or absence of
1 μg/ml of gADPN for another 48 h. TUNEL and DHE
staining assays were carried out to detect cell apoptosis
and real-time formation of ROS, respectively. The cleaved
caspase-3 was detected by western blot to confirm the
progression of apoptosis.
We found that HSP60 depletion significantly increased

cell apoptosis, even on normal glucose (Fig. 2a, Additional

file 2: Figure S2a, and Fig. 3b). This finding is consistent
with previous study showing that the deletion of HSP60 in
adult cardiomyocytes results in the impairment of struc-
ture and function of cardiac muscle cells [44]. Further-
more, adiponectin administration markedly inhibited HG-
induced apoptosis in siRNA control cells (Fig. 3a, Add-
itional file 2: Figure S2a, and Fig. 3b). However, these pro-
tective effects were almost completely diminished in
HSP60-KD cells (Fig. 3a, Additional file 2: Figure S2a, and
Fig. 3b). The similar effects on ROS formation were found
in siRNA control or HSP60-KD cells treated with or with-
out adiponectin (Fig. 3c and Additional file 2: Figure S2b).

Fig. 1 HSP60 interacted with adiponectin receptors. a Colocalization of HSP60 and AdipoR1 in H9c2 cells. b Colocalization of HSP60 and AdipoR2
in HepIR cells. c Left: Pull-down of endogenous AdipoR1 with GST-HSP60 in H9c2 cells; Right: Western blot analysis of GST or GST-HSP60. d Pull-
down of endogenous AdipoR2 with GST-HSP60 in HepIR cells. e Coimmunoprecipitation of AdipoR1 with HSP60 in H9c2 cells. f
Coimmunoprecipitation of AdipoR2 with HSP60 in HepIR cells
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These findings further confirm the HSP60 regulation on
adiponectin signaling.

HSP60 stabilized adiponectin receptor through a
proteasome-dependent mechanism
HSP60 has been found to positively regulate insulin-like
growth factor-1 (IGF-1) signaling, through maintaining
the abundance of IGF-1 receptor in cardiac muscle cells
[45]. To figure out whether the similar mechanism exists
in adiponectin receptors, we observed the effects of
HSP60 KD on the protein levels of AdipoR1 in cardiac
H9c2 cells. The cells were starved serum for 6 h, followed
by stimulation with 1 μg/ml of gADPN for 18 h. We found

that AdipoR1 expression was significantly reduced by
HSP60 depletion but not affected by adiponectin treat-
ment (Fig.4a and Fig. 4b), suggesting that HSP60 depletion
induced AdipoR1 degradation.
It is well-known that intracellular protein degradation

is mainly induced by two cellular routes: the ubiquitin-
proteasome system (UPS) and the autophagy-lysosome
system [46]. HSP60 has been reported to modulate pro-
teasome activity and protein ubiquitination [45, 47]. We
thus investigated the potential effects of HSP60 on the
UPS. Indeed, HSP60 depletion markedly decreased the
ubiquitination of total proteins (Fig. 4c). In addition, 20S
proteasome activity was also greatly enhanced in HSP60-

Fig. 2 HSP60 knockdown attenuated adiponectin action. a Effects of HSP60 knockdown on adiponectin-stimulated phosphorylation of AMPK in
H9c2 cells. b Quantification of phosphor-AMPK/AMPK in (a). c Effects of HSP60 knockdown on adiponectin-stimulated phosphorylation of p38
MAPK in HepIR cells. d Quantification of phosphor-p38 MAPK/p38 MAPK in (c). Results are mean ± SD. n = 4. *P < 0.05, **P < 0.01 compared with
the indicated group (one-way ANOVA)
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Fig. 3 HSP60 knockdown abolished the protective effects of adiponectin on high glucose-induced apoptosis and ROS formation in cardiac H9c2
cells. a Quantification of cell apoptosis. b Effects of HSP60 knockdown on cleaved caspase-3 levels. c Quantification of DHE staining. Results are
mean ± SD. n = 4. ***P < 0.001 compared with the indicated group (one-way ANOVA). ns: no statistical significance

Fig. 4 HSP60 knockdown reduced AdipoR1 levels in cardiac H9c2 cells. a Effects of HSP60 knockdown on AdipoR1 expression. b Quantification of
AdipoR1 protein levels in (a). c Effects of HSP60 knockdown on the ubiquitination of total proteins. d Effects of proteasome inhibitor MG132 on
HSP60 knockdown-induced reduction of AdipoR1 expression. e Quantification of AdipoR1 protein levels in (d). F Effects of MG132 on the
ubiquitination of total proteins. Results are mean ± SD. n = 4. *P < 0.05, **P < 0.01 compared with the indicated group (one-way ANOVA). ns: no
statistical significance
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KD H9c2 cells (Additional file 3: Figure S3). Consistent
with study performed in yeast [47], these findings dem-
onstrate that HSP60 can inhibit proteasome activity in
the mammalian cells.
When H9c2 cells were starved serum for 6 h, followed

by incubation with 0.1 μM of MG132, a specific prote-
asome inhibitor for 18 h, we found that proteasome in-
hibition significantly restored HSP60 depletion-reduced
protein levels of AdipoR1 (Fig. 4d and e). Proteasome in-
hibition also significantly increased the ubiquitination of
total proteins when compared with HSP60-KD cells (Fig.
4f). These findings further suggested that HSP60
depletion-induced AdiopR1 degradation is mediated by a
proteasome-dependent mechanism.

Conclusion
Adiponectin resistance, namely reduced biologic re-
sponse to adiponectin in adiponectin-sensitizing tissues
or cells, such as adipocytes, skeletal muscle, liver, the
vasculature, and the heart [48–50], is closely associated
with the development and progression of obesity, dia-
betes, inflammation, atherosclerosis, and cardiovascular
diseases [51]. Accumulating studies have demonstrated
that adiponectin resistance is related to decreased adipo-
nectin receptor expression, reduced receptor sensitivity,
and dysfunctional downstream signaling [48–50]. How-
ever, the mechanism underlying adiponectin receptor
downregulation remains elusive. In the present study, we
showed for the first time that HSP60 interacted with adi-
ponectin receptors and mediated adiponectin signaling.
It is highly notable that HSP60 could stabilize AdipoR1
expression through suppressing proteasome activity.
This in vitro study provided an alternative explanation
for the mechanism underlying adiponectin action. Given
that the alteration of HSP60 protein levels have been
demonstrated in diabetic complications and functionally
related to hyperglycemia-induced cell injury [19], our
findings will also advance our insights into basic mecha-
nisms of HSP60 function.
In addition, our results suggest that HSP60 might rep-

resent a promising therapeutic opportunity in the dia-
betic complications such as diabetic cardiomyopathy.
However, more in vitro and in vivo studies are necessary
to further confirm our findings and to gain a full under-
standing of HSP60 relevance. It also needs to evaluate
the impacts of HSP60 on AdipoR2 expression and figure
out its clinical significance.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12964-020-00546-5.

Additional file 1 Figure S1. HSP60 overexpression enhanced
adiponectin action. A Effects of HSP60 overexpression on adiponectin-

stimulated phosphorylation of AMPK in H9c2 cells. B Quantification of
phosphor-AMPK/AMPK in (A). C Effects of HSP60 overexpression on
adiponectin-stimulated phosphorylation of p38 MAPK in HepIR cells. D
Quantification of phosphor-p38 MAPK/p38 MAPK in (C). Results are
mean ± SD. n = 4. **P < 0.01, ***P < 0.001 compared with the indicated
group (one-way ANOVA).

Additional file 2: Figure S2. Effects of HSP60 knockdown on cell
apoptosis and ROS formation in cardiac H9c2 cells. A Representative
images showing the effects of HSP60 knockdown on apoptosis. B
Representative images showing the effects of HSP60 knockdown on ROS
formation.

Additional file 3: Figure S3. Effects of HSP60 knockdown on 20S
proteasome activity in cardiac H9c2 cells. siRNA control and HSP60 KD
cells were starved serum for 6 h. The chymotrypsin-like activity of 20S
proteasome was determined using synthetic fluorogenic peptide sub-
strate Suc-LLVY-AMC as described previously [52]. Results are mean ± SD.
n = 4. ***P < 0.001 compared with the siRNA control group (one-way
ANOVA).
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