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Abstract

Background: Candida albicans is the most common opportunistic human fungal pathogen. The chemokine ligand
CXCL1 plays a protective role in fungal infection through the recruitment of neutrophils. TRAF1 (tumor necrosis
factor-associated factor 1) can be highly induced by proinflammatory stimuli such as LPS and TNF and has been
implicated in septic shock. However, the role of TRAF1 in infection, especially fungal infection, remains elusive.
Herein, we reveal that TRAF1 suppresses the antifungal immune response to Candida albicans intradermal infection
through the regulation of CXCL1 induction and neutrophil recruitment.

Methods: A mouse model of C. albicans intradermal infection was established. The Traf1™~ mice and Traf1™~/~
immortalized human keratinocytes were generated. The p65 inhibitor triptolide, STAT1 inhibitor fludarabine,
neutrophil-depletion antibody Ly6G, and neutralizing antibody for CXCL1 were utilized. The expression of
proinflammatory cytokines and chemokines was assessed by real-time PCR and ELISA, and the activation of
signaling molecules was analyzed by Western blotting. Hematoxylin and eosin staining and periodic acid Schiff
staining were used for histology or fungal detection, respectively. The immunofluorescence and flow cytometry
analyses were employed in the assessment of immune cell infiltration. Bone marrow transplantation and adoptive
transfer experiments were conducted to establish a role for TRAF1 in the macrophage compartment in fungal skin
infection.

Results: TRAF1-deficient mice demonstrated improved control of Candida albicans intradermal infection, and
concomitant increase in neutrophil recruitment and reduction in fungal burden. The chemokine CXCL1 was
upregulated in the TRAF1-deficient macrophages treated with heat-killed C. albicans. Mechanistically, TRAF1-
deficient macrophages showed increased activation of transcription factor NFkB p65. The human CXCL8 was also
highly induced in the TRAF1-deficient human keratinocytes upon TNF stimulation through decreasing the activation
of transcription factor STAT1. TRAF1-deficient macrophages played a critical role in containing the C. albicans skin
infection in vivo.

Conclusion: TRAF1-deficient mice can better control fungal infection in the skin, a process attributable to the
CXCL-neutrophil axis. Mechanistically, TRAF1 likely regulates CXCL1 expression in both macrophages and
keratinocytes through the transcriptional factor NFkB and STATT, respectively. Our finding offers new insight into
the understanding of the immune regulatory mechanisms in host defense against C. albicans infection.
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Highlights

e TRAFI-deficiency protects mice from the
intradermal infection with Candida albicans.

e CXCL1-upregulated by TRAF1-deficiency mediates
the recruitment of neutrophils for fungal clearance.

e TRAFI-deficiency leads to increased NF«B
activation in the macrophages.

e TRAFI-deficiency ablates STAT1 activation in the
keratinocytes.

Background

Candida albicans is the most common human oppor-
tunistic fungal pathogen, which commensally localizes
on the skin and mucous surface of healthy people. Pa-
tients with diabetes mellitus, Acquired Immune Defi-
ciency  Syndrome  (AIDS), chronic  systemic
corticosteroid usage, chemotherapy-induced neutro-
penia, or IL-23/ IL-17A blockade for the treatment of
autoimmune diseases such as rheumatoid arthritis, as
well as patients at ICU or with impaired immunity are
predisposed to chronic mucosal and cutaneous candidia-
sis (CMC) or even systemic candidiasis, leading to sig-
nificant morbidity and greater than 50% mortality [1-9].
The current treatment for fungal infection is very lim-
ited, and there is widespread resistance for the anti-
fungal drugs. However, we have very limited understand-
ing of the immune mechanisms required for anti-fungal
defense, which severely hinders the development of ef-
fective therapeutic approaches to contain the fungal in-
fection. Humans with inherited deficiency of CARD9
(caspase recruitment domain) are susceptible to fungal
infection in the CNS (central nervous system) [10], sug-
gesting the involvement of dectin-1 signaling in anti-
fungal infection.

Immune-related genes complement component 5
(C5)/TRAF1 located on Chromosome 9q33-34 is identi-
fied as a risk factor for rheumatoid arthritis [11], uveitis
in juvenile idiopathic arthritis [12], multiple autoimmune
diseases such as SLE [13]. TRAF1 is associated with sus-
ceptibility to autoimmune thyroid disease [14], IBD [15]
and DMBA/solar UVR-induced skin carcinogenesis [16].
However, the role of TRAF1 in infectious diseases such
as C. albicans infection remains unknown. During C.
albicans skin infection, CD301b* dermal dendritic cells
(dDC) release IL-23, which acts on dermal gamma delta
T lymphocyte cells to produce IL-17. Subsequently, IL-
17 induces the expression of CXCL1 and G-CSF, leading
to the recruitment and activation of neutrophils. Neutro-
phils and macrophages are the principal innate immune
cells required for the phagocytosis and killing of C. albi-
cans [17].

TRAF1 was firstly discovered as an adaptor of the
TNFR2 (Tumor necrosis factor receptor 2) signaling
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complex and TRAF1 negatively regulates TNFR2 signal-
ing [18]. TRAF1 is a unique member of the TRAF family
due to the lacking of the RING finger domain, and thus
the E3 ubiquitin ligase activity. TRAF1 is constitutively
expressed in only limited tissues such as skin, spleen,
lung, and testis, implicating its unique function in these
tissues. TRAF1 can inhibit the linear ubiquitination of
NEMO by binding the three components of the linear
ubiquitin assembly complex (LUBAC), thereby downreg-
ulating the activation of NF-kB (nuclear factor-kappa B)
[19]. Accordingly, TRAF1 plays a negative role in LPS
(lipopolysaccharide)-TLR4-mediated inflammatory re-
sponse. Nevertheless, the role of TRAF1 in the regula-
tion of C. albicans-induced inflammatory signaling
remains unknown.

In the present study, we established a mouse model
of C. albicans intradermal infection and investigated
the role of TRAF1 in antifungal immune response.
Our results indicate that C. albicans-elicited ulcer-
ation and tissue damage were ameliorated in TRAF1-
deficient mice. On the other hand, we observed in-
creased expression of chemokines such as CXCL1 and
prominent recruitment of neutrophils in Trafl~’~ skin
following C. albicans infection. Further, TRAF1-
deficiency led to increased expression of CXCL1 in
the macrophages treated with heat-killed C. albicans,
likely attributing to elevated activation of NF«B p65.
Moreover, TRAF1-deficiency resulted in a lower acti-
vation of STAT1 and more expression of CXCL8 in
the human immortalized keratinocytes in response to
TNFa stimulation. Importantly, neutralization of
CXCL1 or depletion of neutrophils compromised the
immune defense mechanisms against C. albicans in
the TRAF1-deficient mice. Collectively, our data un-
veil TRAF1 as a critical regulator of the immune
defense against C. albicans intradermal infection.

Materials and methods

Mice

The Trafl =/~ mice (C.12954-Trafltm1Tsi/TsiPryh]) were
purchased from Jackson Laboratories (Bar Harbor, ME)
and then backcrossed onto the C57BL/6 background for
eight generations. The Ragl™~ mice (002216- B6.129S7-
Ragl1"™™™°™/ Jackson Laboratories) were bred with
Trafl™’~ mice to generate Ragl™~ Trafl”’~ mice. All the
mice were housed in sterile microisolator cages under
the specific pathogen-free conditions at Institute Pasteur
of Shanghai. The sex- and age- matched female litter-
mates at 6-12 weeks of age were used for all the experi-
ments. The animal studies were conducted in
compliance with a protocol (No. P2019036) approved by
the Institutional Animal Care and Use Committee at
Institut Pasteur of Shanghai.
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C. albicans culture and heat-inactivation

A single colony of C. albicans SC5314 was inoculated
into the yeast peptone dextrose medium and cultured
O/N at 30°C. The Fungal cells from late stationary
phase culture were transferred to fresh yeast peptone
dextrose medium (1:100 dilution), incubated at 30°C
until mid-exponential phase. The fungal culture was
then collected by centrifugation (7000 rpm, 1 min), and
counted for infection. The fungi resuspended in phos-
phate buffer saline were inactivated at 65 °C for 2 h.

C. albicans intradermal infection model

Mice at 8 to 12 weeks of age were shaved one day prior
to infection, allowing better visualization on the infec-
tion site and accurate measurement of the abscess. All
mouse procedures were performed under general
anesthesia by intraperitoneal injection of 70 pg of pento-
barbital sodium/gram mouse weight. Animals were
intradermally injected with 0.1 mL of 1x10 7 live C.
albicans or sterile phosphate buffer saline. The ulcer was
measured by length (L) and width (W) with the caliper
at 1, 3, 5, 7days post-infection. The ulcer length and
width dimensions were used to calculate the ulcer area:
nix(L/2) x (W/2). An objective scoring system was devel-
oped to evaluate the severity of skin infection, based on
the severity of ulceration, scab, erythema, and nodule,
which were scored independently on a scale from O to 4:
0, none; 1, slight; 2, moderate; 3, marked; 4, very
marked. The cumulative score served as a measure of
the severity of the infected skin (scale 0-16), which was
scored at 1, 3, 5, 7 days post-infection. The observer was
blinded to all biopsy specimens.

Histological analysis and PAS staining

After the mice were killed 3 days post-infection, 7 mm
diameter-biopsy specimens of skin were immediately ex-
cised and immediately fixed in phosphate-buffered (pH
7.4) formalin (4%). The formalin-fixed biopsy specimens
were embedded in paraffin and stained by H&E
(hematoxylin and eosin) for histological analysis and
stained by PAS (periodic acid Schiff) for the detection of
fungal pathogens. Otherwise, the formalin-fixed biopsy
specimens were embedded in OCT (optimum cutting
temperature) compound and stained by PAS for fungi.

Fungal burden determination

The mice were injected with 1 x 10" CFU (colony-form-
ing units) C. albicans. On day 3 post-infection, the mice
were sacrificed and the skin tissues were homogenized
in PBS and serially diluted before plating on to yeast
peptone dextrose agar plates supplemented with penicil-
lin/streptomycin  (Invitrogen). The colonies were
counted after incubation for 36 h at 30 °C.
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Immunofluorescence

Skin tissues from C. albicans- infected mice for 3 days
were harvested and immediately fixed in phosphate-
buffered (pH 7.4) formalin (4%). The formalin-fixed bi-
opsy specimens were embedded in OCT medium at -
20°C. The tissues were then cut into 5 pm sections by a
cryostat and mounted on glass slides, which were then
dried for at least 1h before being stored at — 20 °C. The
tissue sections were fixed and permeabilized with ice-
cold acetone, followed by blocking with 1% BSA for 1h.
Ly6G (RB6-8C5; BD) mAb was used as the first anti-
body, and the goat-anti-Rat-CY3 (InvivoGen) mAb was
used as the secondary antibody and DAPI was used to
stain the nucleus. The stained tissues were mounted via
a prolong gold antifade mounting (Beyotime), and the
images were captured using a fluorescence microscope
(Olympus 1X73). The positive cells were counted in 5
fields per tissue section and the mean value represented
the infiltrating neutrophils of each mouse.

Depletion and neutralization of neutrophils

Mice were treated with 40 ug of Ly6G mAb (1A8, BD)
or rat IgG control (R&D Systems) through intraperito-
neal injection 2 h before infection. The skin tissues from
the day 3 post-infected mice were harvested and frozen
in OCT medium for the immunofluorescence and PAS
staining. The mice were also treated with 40 pg of anti-
CXCL1 mAb (R&D Systems) or rat IgG control (R&D
Systems) via intraperitoneal injection 2h prior to infec-
tion. Mice were sacrificed one day after infection and
skin tissues were frozen in OCT medium and stained by
immunofluorescence and PAS, respectively.

Isolation of single cells from skin tissue

Mouse dorsal uninfected or infected skin was harvested,
washed with PBS and then cut into 1-2 mm? pieces, and
digested with 1mg/ml collagenase IV (Invitrogen) in
RPMI 1640 medium containing 10% FBS at 37°C for 1 h
with shaking. Digested cells were grinded and passed
through 40-pm cell strainers (BD Biosciences). Then im-
mune cells were enriched by percoll centrifugation ac-
cording to manufacturer’s instructions (GE).

Flow Cytometry

Fluorochrome-labeled antibodies for Fixable Viability
Dye, CD45.2, CD11b, Ly6G, Ly6C, F4/80, B220 were
from eBioscience. Antibody for CD3 was from BD Bio-
sciences. For cell surface marker staining, skin single
cells and bone marrow cells were incubated with specific
antibodies for 30 mins on ice, followed by washing with
MACS buffer (PBS, 2% FBS, 2.5 mM EDTA) twice. Sub-
sequently, cells were acquired using LSR-Fortessa flow
cytometer (BD), and the data were analyzed by Flow Jo
V10 software.
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Generation of bone marrow-derived macrophages

Bone marrow cells were isolated by flushing femurs and
tibia of 6—8 weeks mice with RPMI 1640 medium (Invi-
trogen). Red blood cells were lysed using ACK lysis buf-
fer (0.15M NH,Cl, 1 mM KHCOj3;, 0.1 mM Na,EDTA,
pH7.3). To generate BMDM (bone marrow-derived
macrophages), bone marrow cells were cultured in RPMI
1640 medium supplemented with 30% L929-conditioned
medium (containing about 20 ng/ml M-CSF), as well as
10% FBS. On day 4, the non-adherent cells were re-
moved and fresh RPMI with 1L929-conditioned medium
was added. The BMDMs were used on day 7.

Generation of TRAF1 deficiency in immortalized human
keratinocytes

Guide RNAs targeting Trafl gene were designed using
the online optimized software (http://crispr.mit.edu).
Three guide RNAs were inserted into LentiCRISPR
(pXPR_001) vector. The recombinant and empty plas-
mids were transiently transfected into 293 T cells, and
the supernatants were collected after 48 h. Immortalized
human keratinocytes (HaCaT cells) were infected by
packaged Lentivirus with puromycin to screen positive
clones, which were further identified by immunoblot
analysis and the sg-TrafI pool with guide RNA oligo se-
quences F: 5'- CACCGAGGAAGCCGTCTTCGAAC
-3, Rt 5'- AAACGAGTTCGAAGACGGCTTCCTC -
3" to knockout TRAF1 was used in this study.

RNA preparation and real-time PCR

RNAs were extracted from the skin tissues with or with-
out C. albicans infection for 3 days, BMDMs stimulated
by heat-killed C. albicans (HK-CA) for 6 h with or with-
out triptolide (20 ng/ml, Selleck) pretreatment for 2 h, or
HaCaT cells stimulated with TNFa (20 pg/ml) plus IL-

Table 1 List of primers used for gPCR
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17A (50 pg/ml) for 9h with or without fludarabine
(100 uM, Selleck; 4 h) by TRIZOL (Invitrogen) according
to the manufacture’s instruction. The cDNAs were re-
versely transcribed from 0.5 pg total RNA by Prime-
Script™ RT-PCR Kit (Takara). The real-time PCR (qPCR)
was carried out with PrimeScript® RT reagent Kit
(Takara) on ABI 7900HT Fast qPCR System. The rela-
tive expression of target genes was presented as fold
change normalized to the expression of B-actin and rela-
tive to the untreated control by using AAct method. All
the qPCR samples were analyzed in triplicate in each ex-
periment, and each experiment was replicated at least
three times. All the qPCR primers used in this study are
described in Table 1.

Elisa
Secreted CXCL1 was measured according to the manu-
facturers’ protocol (Peprotech) in the culture superna-
tants of BMDM stimulated with or without HK-CA for
24 h.

Western blotting analysis

The whole-cell lysates were suspended in lysis buffer
containing protease inhibitor (complete mini, Roche), 1
mM PMSF, 1mM NazVO, and 1 mM NaF. To attain
cytosolic extract and nuclear extract, cells were lysed in
hypotonic buffer (10mM HEPES, PH 7.6, 1.5mM
MgCl,, 10mM KCI, 1 mM EDTA, supplemented with
protease inhibitor, 1 mM PMSF, 1 mM Naz;VO, and 1
mM NaF). Following centrifugation for 5 mins at 3000
rpm, supernatants were continued to centrifugate for 15
mins at 12000 rpm and then supernatants were collected
as cytosolic extract; Nuclei-containing pellets were
washed 3 times with hypotonic buffer and were lysed in
high salt buffer (20 mM HEPES, PH 7.6, 500 mM NaCl,

Gene Forward primer Reverse primer

m-Cxcl1 GCTGGGATTCACCTCAAGAA CTTGGGGACACCTTTTAGCA
m-Cxcl? GCCAAGGGTTGACTTCAAGAAC GCTTCAGGGTCAAGGCAAACT
m-ll6 AGATAAGCTGGAGTCACAGAAGGAG CGCACTAGGTTTGCCGAGTAG
m-I123a CACCAGCGGGACATATGAATCTA CAGAACTGGCTGTTGTCCTTGA
m-Tnfa GTCCCCAAAGGGATGAGAAGTT GTTTGCTACGACGTGGGCTACA
m-iNOS GGCAGCCTGTGAGACCTTTG CATTGGAAGTGAAGCGTTTCG
m-Il18 CAACCAACAAGTGATATTCTCCATG GATCCACACTCTCCAGCTGCA
m-B-actin CCAGCCTTCCTTCTTGGGTAT AGAGGTCTTTACGGATGTCAACG
h-Cxcl8 GCAGCTCTGTGTGAAGGTGC TCTGCACCCAGTTTTCCTTG
h-S100A9 CAAAGAGCTGGTGCGAAAAG CGAAGCTCAGCTTGTCT

h-8D2 GCCATCAGCCATGAGGGTCTTG AATCCGCATCAGCCACAGCAG
h-1118 CCTTGGGCCTCAAGGAAAA CTCCAGCTGTAGAGTGGGCTTA
h-B-actin TACGCCAACACAGTGCTGTCT TCTGCATCCTGTCGGCAA

m: Mus musculus; h: Homo sapiens


http://crispr.mit.edu
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1.5 mM MgCl,, 1 mM EDTA, supplemented with prote-
ase inhibitor, 1 mM PMSF, 1 mM Na3VO, and 1 mM
NaF). Following centrifugation for 15 mins at 12000
rpm, supernatants were collected as a nuclear extract.
Lysates were separated in SDS-PAGE and transferred to
polyvinylidene fluoride membrane (Bio-Rad Laborator-
ies). The membrane was incubated with the following
primary antibodies: p-IKKa/B, p-IkBa, p65, p50, p-
STAT1, STAT1, TRAF1, p-actin, Histone H3 and
GAPDH (Cell Signaling Technology) with a dilution of
1:1000.

Bone marrow chimeric mice generation

Recipient mice (6 weeks old) were fed with enrofloxacin
solution (Bayer, 800 pl enrofloxacin solution /L water) in
drinking water for 2 weeks. Food but not water was re-
moved one day prior to irradiation. Wipe down each
container with 70% ethyl alcohol and put 4 mice into
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each clean container. Mice in container were exposed to
8 Gy total body X-ray irradiation administered in one
dose and received bone marrow cells from donors (1 x
10° cells suspended in 200 ul PBS /mouse) intravenously
in 4 h. Subsequently, food was restored and enrofloxacin
containing water were fed for 2 weeks. Then the regular
water was restored for another 2 weeks.

Macrophage adoptive transfer

BMDMs were resuspended in sterile PBS at a concentra-
tion of 107 cells/ml and injected into the recipient mice
intravenously, with 10° macrophages in a total volume
of 100 ul 4 h prior to C. albicans infection.

Statistics
All the data are presented as mean + SEM. The statistical
analyses were analyzed with the two-tailed, unpaired,
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from WT and Traf1 ™~ mice 3 days post-infection were stained by H&E. Representative micrographs were captured at 50x and 100x magnification.
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scores graded as 0 (none), 1 (slight), 2 (moderate), 3 (marked) and 4 (very marked) for ulceration, scab, erythema and nodule, which were
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Individual points represent different mice. Data are pooled from two independent experiments and shown as mean + SEM, and were analyzed
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Student’s t-test, unless specified. In all cases, values of p
below 0.05 considered statistically significant.

Results

TRAF1-deficiency protects mice from the intradermal
infection with C. albicans

Although TRAF1 has been implicated in the control
of rheumatoid arthritis through its regulation on LPS-
induced proinflammatory response [19], whether
TRAF1 plays a role in Candida albicans infection is
unknown. To test this, we intradermally infected
TRAF1-deficient mice and assessed the pathology in
the skin. TRAF1-deficient mice had a smaller area of
ulcer after infection for 3, 5, or 7 days compared to
WT mice (Fig. 1a). We found that hypodermal areas
enlarged after C. albicans infection in both TRAF1-
deficient and WT mice, whereas TRAF1-deficient
mice exhibited a significant increase in lymphocyte
infiltration to the hypodermal layer after C. albicans
infection for 3 days (Fig. 1b). By assessing the extent
of ulceration, scab, erythema, and nodule, we found
that TRAF1-deficient mice had less severe clinical
symptoms after infection for 3 and 7 days, compared
to WT controls (Fig. 1c). Since TRAF1 also plays a
critical role in B cells and T cells [20, 21], we then
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adaptive immunity [22] to test whether TRAF1’s role
in the adaptive immune compartment contributed to
anti-fungal defense in the skin. Ragl™~ mice were
bred with Trafl™”~ mice to generate Ragl™ Trafl™~
mice. Ragl™ Trafl”’~ mice had a smaller area of
ulcer after infection for 3 and 7 days, compared to
Ragl™~ mice (Fig. 1d), suggesting that TRAF1’s role
in the innate immune cells is pivotal for the immune
defense against C. albicans intradermal infection.
Taken together, TRAF1 has a crucial role in the regu-
lation of innate immune defense against C. albicans
intradermal infection.

TRAF1-regulated immune response controls fungal
burden

Innate immunity contributes to fungal clearance during
mucosal C. albicans infection [23]. Consequently, we de-
termined the impact of TRAF1 on fungal clearance at
the early stage of C. albicans infection. We intradermally
infected WT and TRAF1-deficient mice with C. albicans
and then assessed fungal burden in the skin, through
CFU counting and PAS staining. TRAF1-deficiency led
to a significant reduction in fungal burden after infection
for 3days (Fig. 2a, b), indicating a critical role for
TRAF1-regulated immune response in the eradication of

used RAGI1-deficient mice, which have impaired invaded C. albicans.
a b WT Traf 1+
o WT
6 P=0.025 o Traf1”-

e

CFU (x10° per mouse)
o
’aH "

~ mice (n=5) and WT controls (n = 6) were infected with C. albicans
(1107 CFU) and analyzed for fungal growth within the skin tissue on day 3 post-infection. b. Paraffin-embedded skin sections from Trafl ~~ and
WT mice 3 days post-infection were stained by PAS. Representative micrographs were captured at 50x, 100, 200x and 400x magnification. PBS
group, the control group; CA group, the C. albicans infection group. Data are pooled from two independent experiments and shown as mean +
SEM, and were analyzed using the unpaired, two-tailed, Student's t-test. Values of p below 0.05 represented a statistically significant difference
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TRAF1 regulates neutrophil recruitment to contain fungal
pathogens

Neutrophils are the first responding leukocytes recruited
in large numbers to the infected site to clear fungi [24—
26]. To determine the neutrophils recruitment, we
assessed neutrophils by immunofluorescence staining
after C. albicans challenge for 3 days. Compared to WT
mice, TRAF1-deficient mice had more neutrophils in
their skin tissue after infection (Fig. 3a). To determine
the role of neutrophils in fungal clearance, we depleted
neutrophils in TRAFI-defecient mice with Ly6G anti-
body via intraperitoneal injection (Fig. 3b). After C. albi-
cans challenge for 3days, neutrophil recruitment was
evident in both WT and TRAF1-deficient skins treated
with IgG antibody, and TRAF1-deficient mice had more
neutrophil infiltration than WT mice (Fig. 3c).
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In contrast, following Ly6G antibody treatment, both
WT and TRAF1-deficient mice had reduced neutrophil
infiltration, which became comparable between WT and
TRAF1-deficient mice (Fig. 3c). Meanwhile, while IgG-
treated TRAF1-deficient mice showed a significant re-
duction in fungal burden than the WT controls after in-
fection for 3days, TRAF1-deficient mice treated with
Ly6G antibody exhibited uncontrolled fungal growth 3
days post-infection, just like the control WT mice (Fig.
3d). Therefore, TRAF1-regulated C. albicans clearance
in skin tissue is dependent on neutrophil recruitment.
To further assess the recruitment of neutrophils to the
fungi-infected skin, we also performed flow cytometry.
After challenge with C. albicans for 3 days, TRAF1-
deficient skin had more infiltrated neutrophils than WT
controls, whereas the infiltrated monocytes and
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macrophages were comparable in both genotypes
(Fig. 4a). By examining the neutrophils in the bone mar-
row, we found that both WT and TRAF1-deficient mice
had similar numbers of neutrophils in their bone mar-
rows before or after C. albicans infection (Fig. 4b), hence
ruling out a possible role for TRAF1 in granulopoiesis.
Taken together, TRAF1 plays a critical role in the regu-
lation of neutrophil recruitment for C. albicans
clearance.

TRAF1 regulates chemokine CXCL1 production in C.
albicans infection

Neutrophils are recruited to the infection site by chemo-
kines such as CXCL1 and CXCL2 [27]. To determine
the local cues responsible for the recruitment of neutro-
phils to the infected skin area, we examined the induc-
tion of a subset of chemokines and cytokines during C.
albicans intradermal infection. TRAF1-deficient mice
had more abundant CXCL1 and proinflammatory cyto-
kines such as TNFa and IL-23 in the C. albicans-in-
fected skin tissues (Fig. 5a), suggesting that TRAF1
controls CXCL1 production. Next, we detected CXCL1
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and cytokine expression in macrophages with heat-killed
C. albicans stimulation. In line with our work in vivo,
TRAF1-deficient macrophages had increased mRNA and
protein levels of CXCL1 (Fig. 5b, ¢) and higher amounts
of cytokines such as TNFa and IL-1p (Fig. 5b). Consist-
ent with a synergy of TNF and IL-17 in the induction of
CXCLS8, the human homolog of CXCL1 [28], TRAF1-
deficient keratinocytes also elevated CXCL8 expression
following TNF + IL-17 stimulation (Fig. 5d). Thus, our
data implicate a critical role for TRAF1 in the regulation
of CXCL1 expression in both macrophages and
keratinocytes.

CXCL1 is responsible for the elevation of neutrophil
infiltration in TRAF1-deficient mice

Subsequently, we neutralized CXCL1 with anti-CXCL1
antibody, thereby investigated its role in neutrophil infil-
tration in TRAF1-deficient mice (Fig. 6a). After C. albi-
cans challenge for one day, TRAF1-deficient mice
pretreated with control IgG antibody showed increased
neutrophil recruitment in the skin, whereas TRAF1-
deficient mice with anti-CXCL1 pretreatment had
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infected with C. albicans (1 x 10 CFU) or PBS for 3 days. a. Skin tissue single-cell suspensions were analyzed by flow cytometry. Representative
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represented a statistically significant difference

severely impaired neutrophil recruitment (Fig. 6b). In
contrast to IgG-treated mice, no significant difference in
neutrophil recruitment was observed between WT and
TRAF1-deficient mice with anti-CXCL1 antibody treat-
ment (Fig. 6b). Further, while TRAF1-deficiency led to a
significant reduction in fungal burden after C. albicans
infection for one day, TRAF1-deficient mice treated with
anti-CXCL1 antibody exhibited uncontrolled fungal
growth (Fig. 6¢), suggesting a central role for CXCL1 in
TRAFI1-regulated neutrophil infiltration and fungal
clearance.

TRAF1 regulates NFkB or STAT1 activation in
macrophages or keratinocytes, respectively

Next, we investigated the signaling pathway activated by
heat-killed C. albicans in macrophages. Following stimu-
lation with heat-killed C. albicans, we found that while
the phosphorylation of IkBa was unaltered between WT
and TRAFI1-deficient macrophages, the nuclear trans-
location of NFkB p65 and p50 was increased in TRAF1-

deficient macrophages (Fig. 7a), indicating elevated
NFkB activation. Since NF-«B signaling has been previ-
ously implicated in the induction of CXCL1 in the mac-
rophages [29], we subsequently detected CXCL1
expression in these cells. Upon stimulation with heat-
killed C. albicans, TRAF1-deficient macrophages
expressed much higher CxclI than WT controls (Fig.
7b). Moreover, the induction of proinflammatory media-
tors such as Twufa and iNos was also upregulated in
TRAFI1-deficient macrophages (Fig. 7b). Notably, pre-
treatment with NFkB inhibitor triptolide led to de-
creased Cxcll expression, which became comparable in
both WT and TRAFI1-deficient macrophages (Fig. 7b),
suggesting TRAF1 may temper NF«B activation in the
control of CxclI expression in macrophages.
Interestingly, while TRAF1-deficient keratinocytes ex-
hibited similar levels of IkBa phosphorylation to WT
controls, they had impaired phosphorylation of STAT1
in response to TNF stimulation (Fig. 7c). Consistently,
the nuclear translocation of STAT1 was also markedly
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were analyzed using the unpaired, two-tailed, Student’s t-test. Values of p below 0.05 represented a statistically significant difference

reduced in TRAF1-deficient keratinocytes (Fig. 7c).
Given STAT1 has been reported to be able to negatively
regulate LPS-induced proinflammatory gene expression
[30]; hence we examined the role of STAT1 in TRAF1-
induced CXCL8 expression. To that end, we detected
CXCL8 expression in both WT and TRAF1-deficient
keratinocytes stimulated by TNF« plus IL-17 (to stabilize
CXCL1 mRNA [31]) with pretreatment of fludarabine,
an inhibitor of STAT1. TRAF1-deficient keratinocytes
had increased expression of CXCL8 and IL-1fp than WT
controls, and fludarabine treatment led to more abun-
dant CXCLS8 expression in both WT and TRAF1-
deficient keratinocytes (Fig. 7d). However, the significant
difference between WT and TRAF1-deficient keratino-
cytes in CXCL8 expression disappeared upon fludara-
bine treatment (Fig. 7d), which suggests TRAF1 may
regulate CXCL8 expression through controlling STAT1
activation in the keratinocytes. Taken together, TRAF1
may be able to regulate CXCL1 expression in both mac-
rophages and keratinocytes, via the control of NFkB or
STAT1 activation, respectively.

TRAF1-deficiency in the macrophages plays a critical role
in anti-fungal defense

As TRAF1-deficiency was able to boost CXCL1 produc-
tion in both macrophages and keratinocytes, we next

generated bone marrow chimeric mice to address the
cell type-specific role for TRAF1 in fungal infection. By
transferring WT or TRAF1-deficient bone marrow cells
to lethal irradiated WT or TRAF1-deficient recipients
reciprocally, we generated three type of chimeras
(Fig. 8a). After C. albicans challenge for 3 days, WT re-
cipients reconstituted with TRAF1-deficient bone mar-
rows had significantly ameliorated ulcer and fungal
burden than WT recipients reconstituted with WT bone
marrows (Fig. 8b, c). These data thus suggest a critical
role for the hematopoietic compart-derived TRAF1 in
the regulation of anti-fungal immune defense. On the
other hand, TRAFI-deficient recipients reconstituted
with WT bone marrow cells also had a smaller area of
ulcer and less fungal burden compared to WT mice
reconstituted with WT bone marrow cells (Fig. 8b, c),
hence suggesting that the stromal TRAF1 also played a
significant role in mounting the immune defense against
fungal skin infection. Together, these data demonstrate
that TRAF1 expression in both innate immune compart-
ment and keratinocytes contribute to the regulation of
anti-fungal immune defense.

To further analyze the role of TRAF1-deficiency in
macrophages in vivo, we adoptively transferred TRAF1-
deficient macrophages to WT mice and infected them
with C. albicans (Fig. 8d). After C. albicans challenge for
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3 days, WT mice transferred with TRAF1-deficient mac-
rophages had smaller area of ulcer and less fungal patho-
gen compared to WT mice transferred with WT
macrophages (Fig. 8e, f), suggesting that TRAF1-
deficient macrophages play a critical role in protecting
against C. albicans skin infection in vivo. Together, we
demonstrate that TRAF1 plays a crucial role in the regu-
lation of the immune defense against the intradermal in-
fection with Candida albicans, by controlling the
activation of NFkB and STAT1 in the macrophages or
keratinocytes, respectively, and reveal a central role for
CXCL1-neutrophil axis in the containing of fungal infec-
tion in the skin (Fig. 9).

Discussion

In the present study, we demonstrated a critical contri-
bution of TRAF1l-mediated CXCL1 expression in the
host defense against C. albicans infection in the skin tis-
sue. We demonstrated that TRAF1 negatively regulates
CXCL-1 production likely through the control of NFxB

and STAT1 activation in both macrophages and kerati-
nocytes. Our results suggest TRAF1-regulated CXCL1
production has a crucial role in the recruitment of neu-
trophil and the eradication of invaded fungal pathogens.
Collectively, our study identifies a critical role for
TRAF1 in fungal infection and offers new insights into
the host defense mechanisms in containing C. albicans
intradermal infection.

C. albicans is the most common human fungal patho-
gen, which naturally colonizes the skin, genital, and in-
testinal mucosa of healthy individuals [32, 33]. Pattern
recognition of C. albicans via TLRs and CLRs leads to
the induction of Thl and Thl7 response, which pro-
motes the recruitment and activation of neutrophil and
macrophages in killing C. albicans [9, 34]. Neutropenia
is the major predisposing factor for systemic candidiasis
[35]. CARDY-deficiency causes C. albicans CNS disease
by a brain-specific defect in neutrophil recruitment [25].
The defect in IL-17 production renders patients highly
susceptible to CMC [36]. Therefore, the inherited
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immune deficiency is one of the predominant factors
contributing to C. albicans infection. Although a TRAF1
polymorphism has been linked to rheumatoid arthritis
[37], the role of TRAF1 in C. albicans infection was pre-
viously unknown. Our study firstly revealed that TRAF1-
deficiency can exert a protective role in C. albicans
intradermal infection, thus highlighting the complex
regulation of immune responses through TRAFI.

The adaptive immunity is critical for the control of C.
albicans infection [38]. For example, the Thl cell re-
sponse is critical for the host defense against the sys-
temic infection with C. albicans, whereas the Th17 cell
response has an indispensable role in the immune pro-
tection against C. albicans cutaneous infection [39, 40].
CD4" IL-17-producing TRM cells can mediate long-
term protective immunity against C. albicans skin infec-
tion [41]. Although TRAF1 is well-known for its role in
the regulation of B cell and T cell functions [20, 21], we
found that Ragl™ Trafl™~ mice were still able to mount

a better immune defense against fungal infection than
Ragl™~ mice. Hence, TRAF1’s expression and function
in the lymphocytes seem dispensable in the regulation of
anti-fungal skin immune response. Besides, we also gen-
erated bone marrow chimeric mice, thereby demon-
strated that both innate immune cells such as
neutrophils and macrophages and tissue cells such as
keratinocytes might have contributed to TRAF1-
regulated immune protection against C. albicans infec-
tion. Therefore, our results reveal a complex interaction
and crosstalk between immune cells and non-immune
cells in the induction of concerted host defense against
fungal infection in the skin.

CXCL1 and its human homolog CXCLS8 can be se-
creted by a variety of cell types, including alveolar mac-
rophages, epidermal cells, blood monocytes, fibroblasts
and endothelial cells [42]. In our study, we focused on
CXCL1/CXCL8 expression in macrophages and kerati-
nocytes, respectively. CXCL1/CXCL8 can be induced by
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cytokines such as TNF and IL-1, as well as bacterial
component LPS and fungal-components B-glucan and
mannan [43]. The induction of CXCL1/8 involves two
major mechanisms: transcriptional initiation through
NF-kB and AP-1, and mRNA stabilization through
p38MAPK [44]. IKK complex composed of IKKa/IKKB
and NEMO can directly phosphorylate IkBa, leading to
its degradation and the release and nuclear translocation
of NF-kB p65/p50 heterodimers [45]. Our results
showed that TRAF1-deficiency enhanced the phosphor-
ylation of IKKP and nuclear translocation of p65 in mac-
rophages. This mechanism might have contributed to
the upregulation of CXCL-1 expression in the macro-
phages as blockade of p65 with triptolide abrogated this
effect. One the other hand, STAT1 can inhibit NF-«xB
activity through its interaction with AhR, thereby sup-
pressing LPS-induced response [30] or downregulating
TNFa-mediated NF-kB activation through TNFR1 and
TRADD [46]. Thus these studies suggest that STAT1
can act as a negative regulator of NF-«B in certain cir-
cumstances. Our data demonstrate that TRAF1-
deficiency impairs the phosphorylation and nuclear
translocation of STAT1 in keratinocytes, a phenomenon
that may underlie the upregulation of CXCLS8 in these
cells. Thus, our study implicates a novel mechanism by
which TRAF1 regulates NFkB activation through
STATIL.

CXCL1 and CXCL8 are the key chemokines recruiting
neutrophils to the infected sites under both mucosal and
systemic C. albicans infection [47, 48]. By blocking

CXCL1’s action through neutralizing antibodies, we
demonstrate a crucial role for CXCL1 in the recruitment
of neutrophils to the infected skin. Neutrophils are the
first wave of immune cells migrating to the infected
sites, and impaired neutrophil recruitment often leads to
uncontrolled propagation of pathogens [49]. Granulocyte
transplantation was used to treat invasive fungal infec-
tions in patients with neutropenia or neutrophil dysfunc-
tion [50]. By employing anti-Ly6G mAb to deplete
neutrophils, our results showed that the increased fungal
clearance exhibited in TRAF1-deficient mice is contin-
gent on neutrophil recruitment. Although CXCL1 and
neutrophils have been previously implicated in C. albi-
cans infection, their involvement in the skin infection of
C. albicans was unclear. In this regard, our study pro-
vides new evidence supporting a broad role for the
CXCL1-neutrophil axis in the defense against C. albi-
cans infection.

Conclusions

In summary, we firstly demonstrate a crucial role for
TRAF1 in the regulation of immune defense against
C. albicans infection in the skin. Our data also sug-
gests a scenario that TRAF1 may regulates NFkB and
STAT1 activation, whereby regulating CXCL1 expres-
sion in the macrophages and keratinocytes, respect-
ively. Hence, our work wuncovers the complex
interaction between immune cells and non-immune
cells is imperative of a concerted and effective defense
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against fungal infection, and TRAF1 has a central role
in coordinating this process.
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