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Background: Gliomas are the most common and malignant brain tumors. The standard therapy is surgery
combined with radiotherapy, chemotherapy, and/or other comprehensive methods. However, the emergence of
chemoresistance is the main obstacle in treatment and its mechanism is still unclear.

Methods: We firstly developed a multi-gene signature by integrated analysis of cancer stem cell and drug
resistance related genes. The Chinese Glioma Genome Atlas (CGGA, 325 samples) and The Cancer Genome Atlas
(TCGA, 699 samples) datasets were then employed to verify the efficacy of the risk signature and investigate its
significance in glioma prognosis. GraphPad Prism, SPSS and R language were used for statistical analysis and

Results: This signature could distinguish the prognosis of patients, and patients with high risk score exhibited short
survival time. The Cox regression and Nomogram model indicated the independent prognostic performance and
high prognostic accuracy of the signature for survival. Combined with a well-known chemotherapy impact factor-
MGMT promoter methylation status, this risk signature could further subdivide patients with distinct survival.
Functional analysis of associated genes revealed signature-related biological process of cell proliferation, immune
response and cell stemness. These mechanisms were confirmed in patient samples.

Conclusions: The signature was an independent and powerful prognostic biomarker in glioma, which would
improve risk stratification and provide a more accurate assessment of personalized treatment.
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Background

Glioma is the most common primary malignant tumors
of the central nervous system, accounting for 30% of all
brain tumors and 80% of all malignant brain tumors [1].
It is one of the representative malignant tumors with the
characteristics of strong genetic heterogeneity, high mor-
tality and chemotherapy resistance. According to the
2016 WHO classification of central nervous system
(CNS) tumors, the diffuse gliomas are mainly divided
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into five subtypes based on the mutation status of isoci-
trate dehydrogenase (IDH) and Chromosome 1p/19q
status, namely low-grade gliomas (LGG) with IDH-
mutant and 1p/19q-intact subtype, IDH-mutant and 1p/
19q-codeleted subtype, LGG with IDH-wildtype subtype,
glioblastoma (GBM) with IDH-mutant subtype, and
GBM with IDH-wildtype subtype [2]. This classification
breaks the principle of diagnosis based entirely on histo-
logical features and incorporates genetic parameters into
the classification of CNS tumors. Therefore, the further
exploration of novel and reliable biomarkers for the pre-
diction of glioma may help to elucidate the molecular
mechanism of glioma development and progression.
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Temozolomide (TMZ), the most commonly used drug
for standard clinical chemotherapy, has improved both
the overall survival (OS) and the progression-free sur-
vival of patients in glioma. However, the patients usually
suffer drug resistance and the underlying mechanism is
still elusive. Recently, researchers have found the rela-
tionship between cancer stem cells (CSCs) and drug re-
sistance. The CSCs represent a rare population of cancer
cells with the capacity to self-renew and initiate tumors.
Several biomarkers or relevant molecular markers have
been reported differentially expressed in CSCs, suggest-
ing the stemness and unfavorable prognosis [3, 4]. Even
therapies that cause complete regression of tumors
might spare enough CSCs to allow regrowth of the tu-
mors [5, 6]. Currently, the research on CSC-associated
drug resistance is limited, and no method has been
established to predict drug resistance through the ex-
pression of CSC-related genes, and ultimately predict
the prognosis of patients. Therefore, we focused on
TMZ therapy, CSCs and diverse related oncogenic
drivers within patients by high throughput sequencing
method and established gene signature, a statistical
model including several biomarkers, to predict the prog-
nosis and chemoresistance of glioma patients [7-9].

In this study, we developed and validated a multigene
signature including CSCs and TMZ drug resistant
(TMZ-DR)-associated genes to predict patients’ progno-
sis in glioma. Multivariate analysis revealed the correl-
ation between gene signature and malignant progression
of cancer and further clarified the potential biological
mechanisms. Combined with the methylation state of
O°-methylguanine-DNA  methyltransferase (MGMT)
promoter, this gene signature could more comprehen-
sively predict the prognosis of patients, exhibiting im-
pressive clinical application value. In addition, we
validated the signature in GBM patients that only treated
with TMZ in the Chinese Glioma Genome Atlas Net-
work (CGGA) dataset and elucidated the mechanism of
TMZ drug resistance to some extent. Our result sug-
gested that the signature integrating comprehensive
transcript information would improve risk stratification
and provide a more accurate assessment of personalized
clinical management in patients with glioma. These re-
sults might provide new view for glioma malignancy and
individual treatment.

Materials and methods

Patients and databases

A total of 325 glioma samples from the Chinese Glioma
Genome Atlas Network (CGGA, http://www.cgga.org.
cn) were included in this study [10]. All these samples
and clinicopathological information were collected with
informed consent. The study was approved by the Tian-
tan Hospital Institutional Review Board and kept
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consistent with the principles of the Helsinki Declar-
ation. An independent cohort of 699 patients with clin-
ical and molecular profiling was obtained from TCGA
(http://cancergenome.nih.gov) and used as external val-
idation. The GSE23806 dataset from GEO website
(https://www.ncbi.nlm.nih.gov/geo/) was downloaded,
including 27 glioma stem-like cell lines and 36 conven-
tional glioma cell lines, and used to discover the CSC-
associated genes. Besides, a drug screening profile (COS-
MIC dataset) was obtained from the public website
(https://cancer.sanger.ac.uk/cell_lines/) to do the drug
sensibility analysis.

Development of signature and analytical approach

The student’s t-test was first performed to identify dif-
ferentially expressed genes in cancer stem cells
(GSE23806 dataset) and TMZ-resistant cells (COSMIC
dataset) respectively. The common differential genes
were then dimensionally reduced by the least absolute
shrinkage and selection operator (LASSO) method.
These obtained genes finally formed a risk signature that
was determined by a linear combination of their expres-
sion levels weighted with regression coefficients from
univariate Cox regression analyses. The hazard ratio
(HR) of each gene figured out in CGGA dataset was
used to develop the signature:

. . n
Signature risk score = E izlﬁixi

where pi indicates the HR for each gene, and x; indi-
cates the z score transformed relative expression value of
each gene.

The Kaplan-Meier survival curves were used to estimate
survival distributions. Cox regression was performed to as-
sess the prognostic value of the risk score. The DAVID
software (http://david.ncifcrf.gov/) was applied to elucidate
the Gene Ontology (GO) biological functions and KEGG
pathway. The Gene Set Enrichment Analysis (GSEA, http://
www.broadinstitute.org/gsea/index.jsp) was performed to
identify gene sets of statistical difference between two
groups (high risk score vs. low risk score). Figures were
generated by several packages of R software (version 3.2.5),
such as ‘pheatmap’, ‘pROC’, and ‘circlize’ [11, 12].

Immunohistochemistry

To verify the significance and potential mechanism of the
risk signature, we analyzed immunohistochemical (IHC)
protein staining data of CD133, P4HB, IBA1 and CD163
in the glioma samples from CGGA dataset. The IHC ex-
pression levels were compared in the low-, medium- and
high-risk score groups with a nonparametric test. Briefly,
five-micrometer-thick sections were deparaffinized, boiled
with EDTA antigen retrieval buffer, and then incubated
with the primary antibodies overnight at 4 °C (anti-CD133
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antibody, 1:1000 dilution, Proteintech Group; anti-P4HB,
1:1000, Abcam; anti-IBA1, 1:2000, Abcam; anti-CD163, 1:
200, Abcam). Then, the sections were incubated with ap-
propriate secondary antibodies (1:100, ZSGB-Bio, Beijing,
China) at room temperature for 1h. Finally, the stained
slides were individually reviewed and evaluated by two in-
vestigators. The expression levels of each protein in tumor
tissues were defined as the portion of positively stained
cells against total counted cells. The difference was
assessed by Student-t test.

Construction of an individualized prediction model

A nomogram was established as an individualized pre-
diction model to predict patient’s overall survival using
the ‘rms’ package in R language software [13]. The final
model was constructed using a backward step-down se-
lection process based on the Akaike information criter-
ion. Concordance index (C-index) and calibration curves
were performed to assess predictive accuracy and dis-
criminative ability of the nomogram. The prognostic
nomogram model was estimated in the training cohort
and then tested in the validation cohort.

Statistical analysis

All statistical analyses were conducted using R language
(version 3.4.1), GraphPad Prism (version 7.0) and SPSS
(version 16.0). The Student’s t-test was used to compare
the differences in variables between groups. P < 0.05 was
regarded as statistically significant.

Results

Gene selection and signature building

CSCs are subpopulations of cancer cells with unlimited
self-renewal potential that drive tumorigenesis and exhibit
resistance to chemotherapeutics [14, 15]. Elimination of
CSCs is the key step to overcome drug resistance. There-
fore, our study starts with the analysis of CSCs. The stu-
dent’s t-test was carried out in GSE23806 dataset to
identify the different expression genes between glioma
stem-like cell lines (7 =27) and conventional glioma cell
lines (n = 36) (P <0.05). A total of 6752 genes were highly
expressed in glioma stem-like cell lines and were selected
for further analysis (Fig. 1a). The same analysis was ap-
plied in COSMIC dataset to reveal the TMZ-DR genes ac-
cording to the half maximal inhibitory concentration
(ICsp). A total of 447 genes were identified highly
expressed in the high ICs, group (Fig. 1b). To select bona
fide drug-resistant associated genes, 138 genes were iden-
tified using intersections of above two gene sets. Lastly,
the LASSO Cox regression model was conducted to select
the most useful predictive features and identified only
seven genes (ATLI, GRIA3, HPX, IL17D, KLHDCI,
NCAM?2, TRIM67) with non-zero regression coefficients
(Fig. 1c and d) in CGGA datasets.
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We then established a signature for glioma patients based
on the gene expression levels as follows: signature risk
score = (- 0.143 x ATL1 expression) + (— 0.094 x GRIA3
expression) + (0.171 x HPX expression) + (- 0.305 x IL17D
expression) + (- 0.132 x KLHDC1 expression) + (- 0.096 x
NCAM2 expression) + (— 0.124 x TRIM67 expression). The
coefficients of each gene indicate the HR. The coefficient of
HPX is greater than 1, implying its tumor driving character-
istic, while the coefficients of the other four genes are less
than 1, revealing their protecting effect.

Molecular characteristics of the risk signature

The novel risk signature were further evaluated and vali-
dated in CGGA and TCGA datasets and the clinical in-
formation of patients were summarized in Table S1
(Additional file 1). We calculated the risk score of each
patient by the formula and further detected its value in
patients stratified by grade, subtype, MGMT promoter,
IDH and 1p/19q status. As shown in Fig. 2, the risk
score was up-regulated along with histological grades,
and the increased expression was also observed in Mes-
enchymal, MGMT promoter unmethylated, LGG IDH-
wildtype or GBM IDH-wildtype stratified patients. Simi-
lar observations were obtained in TCGA database (Add-
itional file 2: Figure S1). Additionally, the receiving
operator characteristic (ROC) curves for risk score and
Mesenchymal subtype were performed and the area
under the curve (AUC) were up to 89.6% (CGGA, Fig. 2)
and 87.7% (TCGA, Additional file 2: Figure S1), respect-
ively. This result suggested that the risk score may serve
as a predictor for Mesenchymal subtype in glioma.

Survival analysis and prognostic validity of the risk
signature

To comprehensively investigate the risk signature, we
evaluated the association of risk score and patient sur-
vival. Figure 3a showed the survival overview of each gli-
oma patient in CGGA dataset and patients with high-
risk score had poor prognosis. We further analyzed the
high and low risk groups separately to clarify the rela-
tionship between risk score and molecular characteris-
tics. Results revealed the enrichment of higher grades,
wild type-IDH and Mesenchymal subtype in high risk
groups, which indicated the consistency between high
risk score and malignant molecular characteristics in gli-
oma (Additional file 3: Table S2). Applying to the
Kaplan-Meier survival analysis, we found that high risk
score conferred reduced overall survival among diffuse
glioma patients (P < 0.001, Fig. 3b-d). In particular, this
risk signature could also be a good predictor of patient
survival in GBM, an aggressive glioma subtype. Subse-
quently, we investigated the predictive accuracy of risk
score in predication of 3- and 5-years OS by analyzing
the ROC curves. Compared with traditional “age” and
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Fig. 1 Identification and establishment of gene signature. a The differentially expressed genes between CSCs and conventional glioma cell lines.
b The differentially expressed genes between TMZ sensitive cell lines and TMZ resistant cell lines. ¢ Ten-time cross-validation for tuning
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“grade” predictors, the risk signature showed favorable
prognostic validity, with higher AUC up to 81.6 and
81.3% for 3- and 5-year survival, respectively, indicating
its superior predictive value (Fig. 3e and f). The same re-
sults were validated in TCGA dataset (Additional file 3:
Table S2 and Additional file 4: Figure S2).

To evaluate the prognostic value of risk signature across
diffuse gliomas, we further performed univariate and
multivariate Cox regression analysis. As shown in the re-
sults, risk score, age, WHO grade, IDH mutation status,
MGMT promoter methylation status, 1p/19q deletion sta-
tus and radiotherapy were significantly associated with pa-
tients’ survival in CGGA dataset (Fig. 3g). After further
multivariable adjustment, the risk score remained an inde-
pendent factor (P < 0.001), implying its powerful ability for
predicting OS of glioma patients (Fig. 3h). Similar results
were found in TCGA dataset (Additional file 4: Figure S2).

Construction of an individualized prediction model

Using a backward stepwise method based on the smallest
Akaike information criterion, the prognostic nomograms
that integrated independent prognostic parameters were
constructed. The results showed that signature risk score
contributed the most risk points (range, 0-100), whereas the
other clinical variables including grade and radiotherapy ex-
hibited smaller contributions. The C-indices were 0.83 in
the CGGA dataset and 0.85 in the TCGA cohort, indicating
satisfactory concordance. The calibration curve also demon-
strated excellent agreement between prediction and observa-
tion in the probabilities of 1-, 3-, and 5-year overall survival
in both datasets (Fig. 4 and Additional file 5: Figure S3).

Significant functions and pathway enrichment analysis
To investigate the potential functions related to the gene
signature, Pearson correlation analysis was performed to
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find out the genes that strongly correlated with risk
score (Pearson |R|>0.5) in CGGA and TCGA datasets.
Afterwards the significant related genes were chosen for
Gene Ontology analysis with online methods (DAVID,
https://david.ncifcrf.gov/). As shown in the figures, the
positive related genes were enriched in cell adhesion,
proliferation, immune response, etc (Fig. 5a, Add-
itional file 6: Figure S4). Both cell adhesion and prolifer-
ation can affect the drug resistance and stemness of
cancer cells [16, 17]. The negatively related genes were
more involved in normal neural development and
physiological activity, such as neuron development,
neuron differentiation, synaptic transmission, etc (Fig. 5a,
Additional file 6: Figure S4). Additionally, we found that
risk score positive related genes were mainly involved in
the biological pathways, such as focal adhesion, regula-
tion of actin cytoskeleton, cell cycle and Jak-STAT sig-
naling pathway (Fig. 5b, Additional file 6: Figure S4).

To further validate the reliability, we investigate the re-
lationships between risk signature and CSCs-related
genes [18]. As shown in Fig. 5¢, the significant associ-
ation between risk score and CSCs-related genes were
constructed using ‘ggcorrplot’ in R language. Results
showed that the risk score was positively correlated with
CSCs-related genes, suggesting that the higher the risk
score, the higher the cancer cell stemness or/and drug
resistance, which may indicate poor prognosis of glioma
patients. The same results were obtained in the TCGA
database (Additional file 6: Figure S4). To validate the
results of bioinformatics analyses, we conducted IHC
protein staining experiments to investigate the associ-
ation of risk score and cancer cell stemness (CD133) and
drug resistance (P4HB) in CGGA cohort. Representative
IHC images were displayed in Fig. 5d. As expected, the
expression levels of CD133 and P4HB increased in paral-
lel with the risk score (Fig. 5e). Those results showed


https://david.ncifcrf.gov/

Zeng et al. Cell Communication and Signaling (2020) 18:2

Page 6 of 13

>
w

Risk type
“1e o
o High
@
3 * Low 2
& 2" 1)
% 8
€, g
T osod
H
2500 a
@ 2000~
Iy
T 1500= o
@
O 1000~

CGGA Dataset, All grade

Moy

., I i o]
=0 Censor p <0.0001
5
I R
25002\ J0 e h— ok ool -

2000 2%0 G £

. . 2
500- o o %° .-,\.", [ FB Ao it 1 L %
B o Foe gy Ve L ® Number at risk
o 160 200 300 oo
Sample ) 50
D CGGA Dataset, GBM E

3-years survival, CGGA dataset, All grade

CGGA Dataset, LGG

g

==
L

Risk score o

= High

w Low 2
S ol
8 Risk score
g = High
= - Low
2
2
5
17}

100 1%0 1000 1500 2%0
OS(days) Number at risk OS(days)

87 48 18 0 86 3 7 68 41 15 0

1000 1500 200 %0 o 1000 150 600 7%0
OS(days) 0OS(days)

5-years survival, CGGA dataset, All grade

oo oms 020 0% 1 200 4@

analyses of risk score and several other clinical pathologic features

8 S 4 7
£ e
B o Risk score °
E = High & 8 4
5 = Low
T o] gg g
s = 1 < o
s z° >3
@ 2 5
0284 2 o | B
= o.oooa?‘HLA_‘_l ST é <
S
i . . o ,// AUC for Age: 64.8 % & 1 / AUC for Age: 63.5 %
130 200 / /
0S(d . /
Number atrisk (days} o AUC for Risk score: 81.6 % 1/ AUC for Risk score: 81.3 %
/ o 4
24 7 3 i v 4 y g T £ T T T T T T
T % 100 80 60 40 20 0 100 8 60 40 20
Specificity (%) Specificity (%)
Univariate cox analysis, CGGA H
Risk factors HR (95%Cl) P value Multivariate cox analysis, CGGA
Age 1.038 (1.023-1.054)  <0.001 h
i o
Gender 0.847 (0600-1.195)  0.345 —al Risktactors HR{(95%C) P value
Grade 3.477(2.716-4.452)  <0.001 —— Age 0.997 (0.978-1.017) 0.536
TCGA subtype 1.115 (0.931-1.335) 0.236 - Grade 1.593 (1.076-2.358) 0.02 —a
IDH mutation status 0.228 (0.158-0.329)  <0.001 — IDH mutation status 1.351 (0.690-2.643) 0.38 —_—
1p/19q codeletion status  0.133 (0.049-0.363) <0.001 —8— 1p/19q codeletion status  0.646 (0.224-1.857) 0.417 ————f———
MGMT promoter status ~ 0.526 (0.371-0.745)  <0.001 — MGMT promoter status  0.885 (0.562-1.393) 0.598 —
Radiotherapy 0.429 (0.296-0.622)  <0.001 — Radiotherapy 0.330(0.211-0.518)  <0.001 ——&——
Chemotherapy 1.378 (0.963-1.971) 0.079 —o— Risk score 5.071(2.969-8.662)  <0.001 —
oz ok w0 i
Risk score 5.416 (4.100-7.155)  <0.001 ——

Fig. 3 Survival analysis and prognostic validity of the risk signature in CGGA dataset. a The risk score distribution and survival overview of glioma
patients. b-d Kaplan-Meier analyses of risk score for patient survival. @ ROC analysis of age, grade and risk score for predicting 3-year survival of
patients. f ROC analysis of age, grade and risk score for predicting 5-year survival of patients. g-h Univariate and multivariate Cox regression

that high risk scores suggested high cell stemness and
drug resistance of cancer cells.

Application of the signature across diffuse gliomas

In the clinical treatment of glioma, the MGMT pro-
moter methylation status is an important prognostic in-
dicator, because patients with MGMT promoter
methylation are prone to benefit from TMZ treatment.
Therefore, we combined the methylation status of
MGMT promoter to analyze the survival status of pa-
tients. As shown in Fig. 6a-c and Additional file 7: Figure
S5, the survival analysis based on risk signature and
MGMT promoter methylation status demonstrated re-
markable stratification of the clinical courses into four

subgroups. Patients with MGMT promoter unmethyla-
tion and high risk score had the worst prognosis, while
patients with MGMT promoter methylation and low risk
score had the best prognosis.

Especially, we subsequently focused on the GBM pa-
tients that treated with TMZ from CGGA dataset. Ac-
cording to the risk score and MGMT promoter
methylation status, patients were divided into four sub-
groups. The risk score and overall survival distribution
are shown in Fig. 6d. As shown, the risk score could well
distinguish the prognosis of patients and a significant re-
duction in survival was observed in the high-risk group
(Fig. 6€). We next conducted univariate and multivariate
Cox analysis and revealed the independent correlation
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with OS and risk score, confirming its power for inde-
pendently predicting prognosis (Table 1). The GSEA re-
sult showed the enrichment of epithelial mesenchymal
transition, IL6-JAK-STAT3 pathway and TNFA signal-
ing via NF-kB in the high-risk group (Fig. 6f), suggesting
a potential mechanism of TMZ resistance. These find-
ings were in accordance with the previous studies that
the inhibition of NF-kB pathway or activated Stat3 could
re-sensitize the resistant cells to therapeutic drugs [19,
20]. Collectively, we proved that this risk signature had a
strong predictive effect on the prognosis of patients and
could guide the individual treatment.

Potential mechanisms of drug resistance in glioma

In the previous studies on the biological mechanism of
this risk signature (Fig. 5a, Additional file 6: Figure S4)
and patients after temozolomide treatment (Fig. 6f), it was
suggested that drug resistance was related to immune re-
sponse in glioma patients. It has also been reported that
immune response and immune genes like B7H3 and
Tim3 can contribute to the stemness and drug resistance
[21, 22]. Then, the relationship between risk signature and
immune checkpoints, including B7H3, B7H4, Tim3, PD1,
and PDL1 were analyzed [23, 24]. Our results demon-
strated a tight connection between the risk score and
Tim3/B7H3 (Fig. 7a-b), which may partly explain the poor
prognosis of patients and provide some clues for potential
immunotherapy. We further estimated the abundance of

various types of immune cell with CIBERSORT for CGGA
and TCGA database (Fig. 7c-d). Samples with higher risk
score exhibited apparent concordance with encirclement
of macrophages in MO phase, which have been reported
to secrete immunosuppressive factors like tumor-
supportive M2 macrophages in glioblastoma [25]. The re-
sults are consistent with the previously mentioned analysis
that the enriched pathway containing immune factors
after treatment with temozolomide (Fig. 6f). To further
confirm these initial findings, we next studied the intratu-
moral immune cell infiltrates from glioma patients with
IHC analysis and compared their immune cell profiles
relative to the risk signature. As shown in the results, the
expression levels of CD163 and IBA1 increased in parallel
with the risk score (Fig. 7e-f). These results may explain
the mechanism of drug resistance to some extent and pro-
vide new ideas for clinical treatment.

Discussion

The origination and development of glioma is a complex
biological process of multiple factors and steps. Due to the
heterogeneity of glioma cells, the therapeutic efficacy of
conventional treatment including surgery, chemotherapy
and radiotherapy is limited [26]. After chemotherapy with
temozolomide, the residual cancer stem cells and changes
in gene expression of cancer cells may lead to drug resist-
ance, thus leading to the failure of chemotherapy. In the
present study, we developed a seven-gene-based signature
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J

to predict patients’ prognosis by integration analysis of
TMZ-DR genes and CSC-related genes, and further reveal
the potential mechanism of drug resistance. The risk sig-
nature is proved to be associated with poor prognosis of
patients and its role as an independent prognosis predictor
and individual survival estimation have been revealed.

The Gene Ontology analysis in our study have re-
vealed that the positive genes associated with risk score
were involved in cell proliferation, adhesion, chemotaxis
and immune response, which have been demonstrated
to induce the relapse of cancers [27, 28]. Moreover, the
KEGG analysis has showed that Jak-stat signaling



Zeng et al. Cell Communication and Signaling

(2020) 18:2

Page 9 of 13

Survival analysis according to the methylation
status of MGMT promoter, All grade

Survival analysis according to the methylation

status of MGMT promoter, LGG

10 [ (sstn

Rank n Ordered Dataset

[Eemicmentprotis —rs —— Ronkngmevi scoes]

o8 05
04 04
02 03
02 02
o1 o1
o0 00
IQW‘M 1 W |°W‘NJ M
08 o5
00 o cros 12340 00 Zow s 12080
o5 P
0 C reaately consinted) 10 T argateety consited)
O 260 5000 7400 1000 1220 18000 1700 200 24 0 2%0 6000 740 1000 1240 15000 17200 M0 2K

Rarkin Ordered Dataset

o

Zorwerns 12000 % Ty eros 12040
os
 aegatiely conintes) 10 " (egatiely coneisesd)
2000 600 740 10000 12200 1500 1720 20000 24 O 240 6000 740 1000 1220 15000 1700 20 2

Survival analysis according to the methylation
status of MGMT promoter, GBM

100~ i . 100+ 100+
—_— mzwggg;h?wfsﬁ =a=  Methylated/Low risk
== Unmethylated/Low risk == Methylated/High risk
- == Unmethylated/High risk o 95 L. 754 =a=  Unmethylated/Low risk
&3 &3 ! - S Unmethylated/High risk
% g L =s  Methylated/Low risk f_é
' === Methylated/High risk
2 501 73 %0 = == UnmethylatediLow risk @ 90
‘§ ‘g Unmethylated/High risk § P =0.0073
1
g 254 & 25 $ 254 L
P < 0.0001
— P <0.0001
. L . . : 0 T T T v ) o
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
0S (days) OS (days) OS (days)
o Methylated/High risk Survival analysis in CGGA dataset
o . GBM patients with chemothera
-1 V3 o Methylated/Low risk 10 P Py
e Unmethylated/High risk =+ Methylated/Low risk
== Methylated/High risk
2. - e Unmethylated/Low risk < 754 == Unmethylated/Low risk
x < - Unmethylated/High risk
' ¢ g
N 3
2 o alive 50
2000- Q
. Q dead
1500,
" 254
1000 .
500 O PO
e o g . . 0 - - - T )
0 CLINCHCIE ok My 0 500 1000 1500 2000 2500
o, . . 0 e . o
J OS (days)
1 1 1 1 1
0 30 60 90 120
Sample
Enrichment plot: Enrichment plot: Enrichment plot: Enrichment plot: HALLMARK_IL2_STAT5_SIGNALING
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION HALLMARK_TNFA_SIGNALING_VIA_NFKB HALLMARK_IL6_JAK_STAT3_SIGNALING os

MALLALAEY O 1) L

Rankn Ordered Dataset

[Cemnmentorote —s —— Ranvingmevic seoss]

[Cememmentproie —rss

Ranving i scoes]

WA R

110 [ (pssaely coneined)

Rankin Ordered Dataset

[ =
[ Hs

Fig. 6 Application of the signature across diffuse gliomas in CGGA database. a-c Survival analysis of the four subgroups stratified according to risk
signature and MGMT promoter methylation status across diffuse gliomas. d-e Survival distribution and Kaplan-Meier plots for OS of GBM patients
with chemotherapy. f GSEA analysis based on the median value of risk score in GBM patients with chemotherapy

Table 1 Univariate and multivariate analysis of OS in CGGA RNA sequencing dataset, GBM patients wtith chemotherapy

Variables Univariate analysis Multivariate analysis

HR (95% Cl) p value HR (95% Cl) p value
Risk score 2.533 (1.348-4.760) 0.004 2.578 (1.217-5.462) 0.013
Age at diagnosis 1.001 (0.974-1.028) 0.954 - -
Gender 0675 (0.353-1.293) 0236 - -
TCGA subtype 1.014 (0.789-1.304) 0912 - -
MGMT promoter status 0.539 (0.295-0.985) 0.045 0.759 (0.393-1.463) 0410
IDH mutation status 0.657 (0.325-1.328) 0.242 - -
Radiotherapy 0.303 (0.157-0.584) <0.001 0.759 (0.393-1.463) <0.001
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pathway and high risk score are closely related. The high
level of stat activation is associated with Pan-cancers, es-
pecially for Stat3 and Stat5, which is mostly related to
more dangerous tumors [29, 30]. The interaction net-
work of risk signature and CSC-related genes indicated

the relationship between cancer cell stemness and drug
resistance. The hyperactivation of IL6/STAT3 pathway
was reported to be essential for CSC self-renewal and
tumorigenic [31, 32]. While other biomarkers, such as
CD44 and Nestin, were correlated with tumor staging,
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tumor size and lymph node metastasis [33, 34]. The cor-
relations between risk signature and cancer cell stemness
and drug resistance have been confirmed by IHC assay.
These findings may explain the poor prognosis of pa-
tients with high risk score to some extent. In addition,
the further GSEA analysis in GBM patients with chemo-
therapy have found the enrichment of epithelial mesen-
chymal transition, IL6-JAK-STAT3 pathway and IL2-
STATS5 pathway in high-risk group, indicating the im-
portant role of immune factors in tumor drug resistance.
Further studies have shown the relationship between
drug resistance and immune response, including im-
mune checkpoints and immune cell infiltration in glioma
[35—37]. Our findings have been validated in patient tis-
sues and provide alternative therapeutic options for drug
resistant patients in clinical application. These results
are consistent with previous studies that drug resistance
in glioma is associated with mesenchymal characteristics
and immune responses [38—41].

The seven selected genes in signature have been studied
and reported previously [42—44]. For instance, TRIM67,
the most evolutionarily conserved member of tripartite
motif (TRIM) family, was reported to function as a Ras in-
hibitor. The down regulation of TRIM67 may contribute
to the over-activation of Ras signal pathway and over-
growth of non-small cell lung cancer cells, leading to the
malignant progression of tumor [45]. Moreover, TRIM67
has been proved to play a necessary role in appropriate
brain development and behavior [46]. In addition, Heyde
et al. have investigated the resistance mechanism of
monoclonal antibody drug trastuzumab in HER2-positive
breast cancer. NCAM?2 and five other genes were signifi-
cantly lower expressed in HCC1954 (drug resistance) than
in BT474 (drug sensitivity) cell lines [47]. Other risk fac-
tors, such as HPX and GRIA3, have been reported in many
cancers, including glioma, breast cancer and pancreatic
cancer [48, 49]. These findings reported previously are
consistent with our results in biological function analysis,
implying the potential role of gene signature in brain func-
tions and tumor progression.

The methylation status of MGMT promoter is an im-
portant factor in the clinical treatment of glioma patients.
Combined with MGMT promoter methylation status, the
signature can further divide patients into four subtypes.
This classification is more conducive to clinical treatment.
Additionally, this risk signature exhibited a good predict-
ive value for the prognosis of GBM patients with chemo-
therapy. These results may provide some ideas for the
follow-up treatment of patients. The current classification
of gliomas is mainly based on grade, subtype, IDH muta-
tion status and 1p/19q status. In this study, the signature
could provide a perpendicular look on molecular charac-
teristics to some extent, which means that high risk score
implies malignant phenotypes, including higher grade,
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wild type-IDH and Mesenchymal subtype. Thus it might
be reasonable to assume that we could reclassify gliomas
based on the signature solely, where previous molecular
characteristics have been taken into account in fact. How-
ever, our study is limited because it is retrospective, and
should be further validated by prospective studies.

Conclusions

In conclusion, we successfully built a novel gene signa-
ture using seven genes relevant to CSCs and TMZ resist-
ance and reliably validated its molecular characteristics
and clinical significance in two large sample-sized gli-
oma datasets. The signature was proved to be an inde-
pendent predictor in prognosis as the high risk scores
always accompanied with shorter survival and more ma-
lignant phenotypes. Further functional analysis provided
a clue for the underlying mechanisms in tumor progres-
sion and drug resistance. Our study revealed that the
signature might be a potential prognostic biomarker
and/or be used as therapeutic target in personalized clin-
ical treatment in glioma patients.
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