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Abstract

Background: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep
process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer
cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have
previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation
increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been
reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the
effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved.

Methods: We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their
functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATCT.
We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and
migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to
identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico
in clinical prostate cancer data sets.

Results: Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their
phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive
effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and
identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially
expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with
PIM1 and NFATCT in clinical prostate cancer specimens.

Conclusions: Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its
ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM
kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.
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Background

Prostate cancer is globally one of the most prevalent
cancers in men. Locally restricted prostate cancer is
usually not fatal, but there is a clear need for effective
therapies to prevent or stop progression of local tumors
to a metastatic state spreading to bones and other vital
organs. Formation of metastases is a multistep process,
which includes detachment of cancer cells from the pri-
mary tumor, migration, adhesion and invasion of cancer
cells into blood or lymph vessels, and infiltration of the
cells to secondary sites. Thus, improved understanding
of the proteins and signaling pathways that regulate the
metastatic growth of cancer cells is essential when devel-
oping therapies to treat prostate cancer patients.

NFAT (Nuclear Factor of Activated T cells) transcrip-
tion factors are ubiquitously expressed in human tissues,
where they control cellular processes, such as immune
responses [1]. However, one of the family members,
NFATC1, has also been shown to act as an oncogene
that promotes cancer cell proliferation and transform-
ation [2]. Accordingly, elevated levels as well as in-
creased transcriptional activity of NFATC1 have been
detected in both solid cancers and hematological malig-
nancies. NFATC1 has been shown to support cell migra-
tion or invasion in multiple types of cancer, such as
ovarian, breast and prostate cancer as well as glioblast-
oma [3-7]. Furthermore, it has been reported to support
metastatic behavior of prostate or breast cancer cells via
increased osteoclastogenesis [8, 9].

Both the subcellular localization and transcriptional
activity of NFAT proteins are post-translationally regu-
lated. Most previously identified phosphorylation sites in
NFATC1 have been located to the serine-rich regions
(SRRs) and SPXX motifs within the NFAT homology re-
gion [10, 11]. Phosphorylation of these sites by kinases
such as PKA and GSK3 results in nuclear exit and in-
activation of NFATCI. By contrast, dephosphorylation
of these sites by the calcium-dependent phosphatase
calcineurin leads to nuclear translocation and transcrip-
tional activation.

We have previously shown that the oncogenic PIM1
kinase directly interacts with NFATC1 and phosphory-
lates it in vitro [12]. However, in contrast to other ki-
nases, PIM1 does not affect the subcellular localization
of NFATC1, but stimulates its transcriptional activity in
both immune and neuronal cells [12, 13]. PIM1 belongs
to a family of three serine/threonine-specific kinases,
which have partially overlapping expression patterns, but
share several functions to support cell proliferation and
survival [14-16]. Increased expression of PIM family
members has been detected both in hematological ma-
lignancies and in solid tumors. In prostate cancer, over-
expression of either PIM1 or PIM3 positively correlates
with tumor size, aggressiveness and/or poor patient
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survival [17-21]. Furthermore, PIM kinases have been
linked to regulation of prostate cancer cell motility in
several cell-based and animal models, where they have
supported cell migration, invasion, tumor angiogenesis
and the formation of metastases [4, 16, 22]. As also
NFATC1 promotes motility of prostate cancer cells and
as PIM-selective inhibitors can block this [4], we now
wanted to investigate whether or not PIM-dependent
phosphorylation of NFATCI is important for migration
and invasion of prostate cancer cells. Therefore, we
identified and mutated the PIM targets sites from
NFATC1 and analysed the impact of these mutations in
three prostate cancer cell lines, the hormone-insensitive
PC-3 and DU-145 cells and the hormone-sensitive
LNCaP cells. We also performed a microarray analysis
to identify putative phosphorylation-dependent target
genes for NFATC1.

Methods

Cell culture

The cell culture conditions for prostate epithelial adeno-
carcinoma cell line PC-3 and the stable cell lines overex-
pressing human PIM1 have been previously described
[22]. DU145 and LNCaP prostate cancer cell lines
were obtained from American Type Culture Collection
(Manassas, VA) and cultured under recommended condi-
tions. For transient transfections, Fugene 6 or HD re-
agents (Promega, Fitchburg, WI, USA) were used in 1:2 or
1:3 ratio to DNA according to manufacturer’s instructions.
All the cell lines were frequently tested for mycoplasma
contamination. Viability of cells was analysed by the MTT
assay [4] or the AlamarBlue® cell viability assay (Thermo
Fisher Scientific, Waltham, MA, USA).

DNA constructs and cloning

The pcDNA3.1/V5-HisC, pGEX-6P-1 and pTag-RFP
vectors expressing wild-type (WT) or kinase-deficient
(KD) human PIM1, 2 or 3 or mouse PIM3 have been
previously described [23]. The NFAT-luciferase reporter
plasmids as well as wild-type (WT), N-terminally trun-
cated (amino acids 1-418), dominant negative (DN,
amino acids 410-680) and constitutively active SRR mu-
tant (mSRR) human NFATCI1 expression vectors based
on pGEX-3X or pBJ5-Flag were kindly provided by the
group of G.R. Crabtree (Stanford University, CA, USA)
[10, 24]. Truncated NFATC1 was digested from pGEX-
3X with PfIMI and ligated to pEYFP-C2 (Clontech La-
boratories, Mountain View, CA, USA). Full-length
NFATC1 was multiplied by PCR from pBJ5-NFATCI1-
Flag by using a forward primer (5° GCG GTA CCG
CCA CCA TGG ACT ACA AGG CA 3’) and a reverse
primer (5 CCC GGA TCC CTG CGT CTT TAG 3’),
digested with Kpnl and BamHI, and ligated into pFlag-
CMV-2 (Sigma-Aldrich), from where it was further
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transfered to pEGFP-C3 (Clontech) by Bgll and BamHI
digestion, followed by ligation.

NFATC1 mutagenesis

The QuikChange™ site-directed mutagenesis kit (Strata-
gene, Agilent Technologies, Santa Clara, CA, USA) was
used to prepare phosphodeficient mutants of NFATCI.
Mutations to replace serines or threonines with alanine
residues were introduced into ten PIM1 target sites with
the help of five different primer pairs (Additional file 1:
Table S1), resulting in production of double mutant
(DM, two primer pairs, 1-2), triple mutant (TM, three
primer pairs, 3-5) or multi mutant (MM, all primer
pairs) NFATCI.

In vitro kinase assays

GST fusion proteins were produced in the E. coli BL21
strain as previously described [25] with minor modifica-
tions. Protein production was induced with 0,5mM
IPTG and protease activity was inhibited by Aprotinin
(1:200; Sigma-Aldrich) during cell lysis. Proteins were
either eluted as fusion proteins or cleaved by the Pre-
Scission protease according to manufacturer’s protocol
(GE Healthcare Life Sciences, Little Chalfont, UK). For
in vitro kinase assays, cleaved PIM kinase (0.5 pug) and
GST-tagged NFATC1 (amino acids 1-418) fusion pro-
tein (1 pg) were mixed prior to addition of the 2x kinase
buffer (20 mM Pipes, pH 7.0, 5mM MnCl,, 0.25 mM -
glycerophophate, 0.4 mM spermine, 10 uM ATP) with
0.5 MBq of [**P] adenosine triphosphate. To inhibit PIM
kinase activity, samples were pre-treated for 15 min with
10 uM DHPCC-9, a pan-PIM inhibitor, which was kindly
provided by P. Moreau (University of Clermont Au-
vergne, France) and dissolved in 0,1% DMSO. This
ATP-competitive pyrrolocarbazole compound selectively
inhibits catalytic activities of all PIM family members
in vitro [26], in cell-based assays [4] and in mice xeno-
grafted with PIM-expressing prostate cancer cells [22].
After 15 to 30 min kinase reactions at 30°C, samples
were heated in 2x Laemmli sample buffer (LSB) for 5
min at 95 °C. Phosphorylated proteins were resolved in
SDS-PAGE, stained by Page Blue solution (Thermo
Fisher Scientific) and detected by autoradiography.

Identification of NFATC1 in vivo phosphorylation sites by

mass spectrometry

PC-3 cells were transiently transfected with the pEYFP-
NFATCI expression vector. After 48 h, cells were stimu-
lated with TPA and IM for 1 h prior to cell lysis in RIPA
buffer supplemented with complete mini EDTA-free
protease inhibitors (Roche, Basel, Switzerland). Protein
concentrations were determined by the DC Lowry
method (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
1 mg aliquots of proteins were mixed with Chromotek-
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GFP-Trap® Magnetic beads (Allele Biotechnology, San
Diego, CA, USA), after which GFP-tagged proteins were
immunoprecipitated according to manufacturer’s proto-
col, heated in 2x LSB, resolved in 10% Bis-Tris gel (Bio-
Rad) and stained with colloidal coomassie blue solution
(Thermo Fisher Scientific). NFATC1 protein isolation,
trypsin digestion and titanium dioxide enrichment with-
out salt extraction were performed as previously de-
scribed [27, 28]. Thereafter, samples were analysed by
LTQ Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific), using the HCD Top 10 method with 10 min
gradient and mass value of 300 to 2000.

Luciferase assays

To measure NFAT-dependent transcriptional activity,
PC-3 cells were transiently transfected with the pGL3-
IL-2-luciferase reporter and either pBJ5-NFATC1-Flag
or an empty control vector. To stimulate NFATC1 activ-
ity and nuclear translocation, cells were treated for 7h
with 15 ng/ml of 12—-0-tetradecanoyl-phorbol-13-asetate
(TPA; Sigma-Aldrich, St. Louis, MO, USA) in DMSO
and 1pM ionomycin (IM; Merck KGaA, Darmstadt,
Germany) in EtOH. To inhibit PIM kinase activity, cells
were treated for 24h with 10uM DHPCC-9 in 0,1%
DMSO. As controls for all chemical compounds, their
solvents were used. 24 or 48 h after transfections, cells
were collected, lysed in 1% NP-40 buffer by repeated
freezing and thawing, and analysed for luciferase activity
using the Luminoscan Ascent luminometer (Thermo
Fisher Scientific).

To compare activities of wild-type (WT) and multi mu-
tant (MM) NFATCI1 in PC-3, DU-145 and LNCaP cell
lines, cells were transiently transfected with the pGL3-
NFAT-luciferase reporter and either WT or MM pCMV-
NFATCI1-Flag or an empty control vector. Renilla lucifer-
ase (pRLTk; Promega) was co-transfected as an internal
transfection efficiency control. Part of the cells were
treated with TPA and IM and/or DHPCC-9 as described
above. To inhibit calcineurin activity and thereby also nu-
clear translocation of NFATC1, cells were treated for 24 h
with 1 uM cyclosporine A (CsA; Merck) in EtOH. Lucifer-
ase assays with four parallel samples were performed on
96-well plates using the Dual-Glo® Luciferase Assay Sys-
tem (Promega) according to manufacturer’s protocol. Lu-
ciferase activities were measured with the EnVision 2104
Multilabel Reader (Perkin Elmer, Waltham, MA, USA).
The results were presented as relative luciferase activity
(RLU) corresponding to the firefly luciferase light emission
values normalized against renilla luciferase light emission
values.

Localization assays
To determine the subcellular localizations of wild-type
and mutant NFATC1 proteins, PC-3 cells plated on
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coverslips were transiently transfected with Flag-tagged
expression vectors. After 48 h, cells were fixed, perme-
abilized and stained with anti-Flag antibody (Sigma-Al-
drich) and Alexa Fluor™ 488 Ilabelled anti-mouse
secondary antibody (Thermo Fisher Scientific). Samples
were imaged and analysed with the Zeiss ApoTome.2
fluorescence microscope and Zen lite 2012 software. Ap-
proximately 15 images were taken from each sample.

Fluorescence-lifetime imaging method (FLIM)

To visualize interactions between RFP-tagged PIM1 and
GFP-tagged NFATC1, PC-3 cells plated on coverslips
were transiently transfected with the corresponding ex-
pression vectors and/or their empty controls. Part of the
samples were treated overnight with DMSO or 10 uM
DHPCC-9. 48 h after transfection, cell samples were
fixed with 4% PFA and mounted with Mowiol. First,
physical interactions between tagged proteins were
measured by analysing GFP lifetime with Lambert In-
struments Fluorescence Lifetime Attachment (LIFA) and
LI-FLIM software as previously described [23]. Then co-
localization of proteins was imaged by Zeiss LSM 780
confocal microscope and by sequential scanning with
ZEN lite 2012 software. Excitation wavelengths were
488 nm (GFP) and 561 nm (RFP), and emission wave-
lengths 500-535nm (GFP) and 599-651nm (REP).
Image analyses were performed with the Image]® soft-
ware (Wayne Rasband, NIH, USA).

Wound healing assays

PC-3 or DU-145 cells were transiently transfected with
wild-type or mutant NFATC1 expression vectors. 24 h
later, samples were treated with either DMSO or 10 uM
DHPCC-9. To confirm that changes in cell migration
were not due to changes in cell proliferation, 15 pg/ml
of the anti-proliferative agent mitomycin C (Sigma-Al-
drich) was used. Scratching of the wounds, microscopy
and image analyses of PC-3 cells were performed as pre-
viously described [4]. Imaging of DU-145 cells was per-
formed with CM Technologies Cell-IQ (D.I. Biotech,
Korea) by using 4x objective and image analysis with the
Cell-1Q software 4.3 and scratch wound measurement
tool.

Boyden chamber invasion assays

One day after transfection, invasiveness of PC-3 cells
was analysed using cell culture invasion inserts of 8 um
pore size (Corning BioCoat™ Matrigel® Invasion Cham-
ber, Bedford, MA, USA) according to manufacturer’s
instructions. For this purpose, cells were suspended in
DMEM supplemented with 1% BSA (20,000 cells/each
chamber) and either DMSO or 10uM DHPCC-9.
Conditioned medium from confluent MG-63 human
osteosarcoma cells was used as a chemoattractant [29].
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Cells were incubated for 48 h, after which insert mem-
branes were fixed for 2 min in methanol and stained for
10 min with 0,2% crystal violet in methanol. Then they
were cut out from the inserts and mounted with
immersion oil. Invaded cells on the membranes were
scanned by the Olympus BX51 scanner with Surveyor
software and analysed by automated image analysis. Re-
sults were verified by manual counting with the Image]°
software from 5 random fields of each membrane.

Gelatinase activity assay

Gelatinase activity assay was performed with InnoZyme™
gelatinase (MMP-2/MMP-9) fluorogenic activity assay
kit (Merck) according to manufacturer’s instructions.
Medium samples for the assay were collected from the
upper chambers of invasion inserts after the invasion as-
says described above. Samples were incubated at + 37 °C
for 3 h protected from light. Fluorescence was then mea-
sured with the Envision plate reader (Perkin Elmer) with
an excitation wavelength of 320nm and an emission
wavelength of 405 nm.

Western blotting

Cells were lysed in 2x LSB and heated at 95 °C for 5 min.
Proteins were separated by SDS-PAGE, immobilized
onto PVDF-membrane (EDM Millipore, Merck) and in-
cubated overnight with anti-PIM-1 (1:500, 12H8; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-PIM-2
(1:1000, D1D2; Cell Signaling Technology, Danvers, MA,
USA), anti-PIM-3 (1:1000, D17C9; Cell Signaling Tech-
nology), anti-NFATC1 (1:500, Santa Cruz Biotechnol-
ogy), anti-V5 (1:500, Invitrogen, Carlsbad, CA, USA),
anti-Flag (1:500, F1804; Sigma-Aldrich), anti-ACTB
(anti-B-actin; 1:1000, 13E5, #4970S, Cell signaling Tech-
nology), anti-GAPDH (1:50000, Sigma-Aldrich), anti-p
Tubulin (1:40000, Sigma-Aldrich) or anti-Fibrillarin (1:
1000, Cell Signaling Technology) antibodies. After incu-
bations with secondary antibodies, chemiluminescence
reactions were generated using either Amersham™ ECL
Plus or ECL Prime reagents (GE Healthcare).

Microarray analyses

For microarray analyses, PC-3 cells with or without
stable PIM1 overexpression were transiently transfected
with wild-type (WT) or multi mutant (MM) NFATC1
expression vectors. At the following day, total RNAs
were extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s
protocol. The samples were then labelled and hybridized
using the Agilent whole genome oligo microarray plat-
form on Human Gene Expression v2 4x44K Microarray
slides (G4845A; Agilent Technologies, Palo Alto, CA,
USA). The slides were scanned on the Agilent C-
Scanner and the raw expression values were extracted
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using the Agilent Feature Extraction software v. 11.0.1.1.
Raw mRNA expression values were imported using
limma read.maimages function. Low quality probes were
filtered using the distribution of negative control probes
as a reference. In particular, only probes whose raw ex-
pression values were higher than the 90th percentile of
negative control probes were retained for successive ana-
lysis. Expression values were log2 transformed, quantile
normalized between samples and median aggregated at
the gene symbol level using Agilent annotation. A
limma-based approach [30] was then applied to estimate
the difference in average expression in each comparison.
A fold-change cutoff (20.1) and p-value of (< 0.05) were
used to determine differential gene expression.

Canonical pathway analysis

IPA (Ingenuity Pathway Analysis, Ingenuity Systems) was
used for functional enrichment and detection of pathways
with significant alterations based on microarray gene ex-
pressions. In canonical pathway analysis -log(p-values)
over threshold 2.5 were considered significant.

Real-time quantitative polymerase chain reaction (qRT-
PCR)

PIM, NFATCI and ITGAS expression levels were deter-
mined from total RNAs isolated from PC-3 cells as
described above. Quantitative real-time PCR was per-
formed using random hexamere primers, Maxima re-
verse transcriptase (Thermo Scientific), Maxima SYBR
Green qPCR Master Mix (Thermo Fischer Scientific)
and the CFX96™ Real-Time PCR Detection System (Bio-
Rad Laboratories, Inc.). Each sample was run in tripli-
cate, and expression values were normalized against the
TATA-binding protein (TBP). Sequences of all primers
(Sigma-Aldrich) for qRT-PCR are described in the Add-
itional file 1: Table S2.

Gene correlation analyses

Three distinct clinical data sets were used to assess cor-
relations between two different genes in clinical prostate
cancer patient samples: The Cancer Genome Atlas
(TCGA) - Prostate adenocarcinoma RNA-Sequencing
data [31], Integrative Genomic Profiling of Human Pros-
tate Cancer microarray data [32] and Tampere PC
sequencing data [33].

Statistical analyses

The statistical significance of data from luciferase, wound
healing, FLIM and cell viability assays was determined
using the two-sided ¢-test. Cell invasion and gelatinase ac-
tivity data were analysed by using the unpaired two-sided
t-test or Wilcoxon matched pairs test. In RT-qPCR data
validation, P-values were determined by the Mann-
Whitney U-test. In gene correlation analyses, Pearson
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correlation coefficient and P-values were determined ac-
cording to Gaussian populations. In all analyses, a P-value
<0.05 was considered statistically significant (*), P <0.01
(**) and P < 0.001 (***). Error bars represent standard devi-
ation (SD) values in each graph. Statistical analyses were
performed using the GraphPad Prism version 5.02
(GraphPad Software, La Jolla, CA, USA).

Results

NFATC1 is endogenously expressed and constitutively
active in PC-3 cells

As we had previously shown both PIM kinases and
NFATCI1 to be essential for the motility of PC-3 prostate
cancer cells [4], we decided to use these cells in order to
investigate in more detail the functional interactions be-
tween PIM and NFATC1 proteins. When we analysed
the basal expression and transcriptional activity of
NFATC1 in PC-3 cells, Western blotting with NFATC1
antibodies detected an endogenously expressed protein
with the expected size of approximately 75 kDa (Fig. 1a).
NFAT-dependent luciferase assays in turn revealed en-
dogenous NFAT activity, which was dependent on the
presence of NFAT binding sites (Fig. 1b), and which was
enhanced by ectopic overexpression of NFATCI1, but
not by stimulation of cells with TPA and the calcium
ionophore ionomycin (Fig. 1lc). This was surprising,
since usually the nuclear translocation and activation of
NFATC1 is tightly regulated in a calcium- and
calcineurin-dependent fashion [1, 2]. To determine the
subcellular localization of NFATC1 in PC-3 cells, we
transiently expressed there wild-type (WT) or mutant
NFATC1 proteins (24; Table 1). While the dominant
negative (DN) mutant was mostly retained in the cyto-
plasm and the constitutively active (mSRR) mutant in
the nucleus, the WT protein could be detected in both
compartments (Fig. 1d, Additional file 2: Figure S1A),
suggesting that it can shuttle between the compartments
of PC-3 cells. When we carried out wound healing
assays to compare the effects of WT and mSRR
NFATCI1 on cell migration, we noticed that both of
them enhanced cell motility as compared to control cells
(Fig. 1e), while no major changes were observed in cell
viability (Additional file 2: Figure S1B).

PIM kinases phosphorylate NFATC1 in several serine and
threonine residues

As we had previously shown that the PIM1 kinase phos-
phorylates NFATC1 and enhances its transcriptional ac-
tivity [12], we now wanted to identify the as vyet
unknown PIM1 target sites in NFATCI1 and to investi-
gate their physiological roles in more detail. For this
purpose, we carried out in vitro kinase assays with GST-
tagged PIM-1 and NFATCI1 (amino acids 1-418) pro-
duced in bacteria, and cell-based assays with YFP-tagged
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Fig. 1 NFATC1 is constitutively active in PC-3 cells. Flag-tagged NFATCT1 or its mutated derivatives were transiently expressed in PC-3 prostate
cancer cells. Untransfected (—) or mock-transfected cells were used as controls. a The endogenous or ectopic expression levels of NFATC1 were
analysed by Western blotting with antibodies against NFATc1 or Flag, while ACTB staining was used as a loading control. b The endogenous
NFAT activity of PC-3 cells was measured by luciferase assays, using transiently transfected reporters with wild-type (WT) or mutated (M) NFAT
binding sites. Shown are mean luciferase activities from two independent experiments. ¢ The effects of TPA and ionomycin on NFAT activity were
measured by luciferase assays. Shown are luciferase activities of duplicate samples from one representative experiment. d Subcellular localizations
of transiently expressed wild-type (WT) NFATCT, the constitutively active (mSRR) mutant and the dominant negative (DN) mutant were analysed
by confocal microscopy after staining with anti-Flag antibody. Shown are average localization patterns from one experiment with three parallel
samples. e The abilities of WT NFATC1 and the mSRR mutant to promote cell motility were analysed by wound healing assays from three parallel
samples. Equivalent expression of these proteins was confirmed by Western blotting with anti-Flag antibody, while GAPDH staining was used as a
loading control

Table 1 Different NFATC1 forms and mutants used in the experiments

NFATC1 proteins Mutated sites Length
Wild type (WT) none full-length
Dominant negative (DN) none 410-680 aa
Constitutively active (mSRR) all 11 serines mutated to alanines in the SRR (172-194) 1-418 aa
Double mutant (DM) S245, S269 full-length
Triple mutant (TM) S151, S153, T154, S256, S257, S335, T338, T339 full-length
Multi mutant (MM) S151, S153, T154, S245, 5256, 5257, S269, S335, T338, T339 full-length

The amino acid substitutions (from serine or threonine to alanine) and other mutations in NFATC1 and the length of each mutant protein used in this study
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NFATC1 protein overexpressed in PC-3 cells. When
phosphorylated NFATCI1-derived peptides were sub-
jected to mass spectrometry analyses, several novel
phosphorylation target sites were discovered both from
the in vitro samples and from the PC-3 cell-derived sam-
ples (Fig. 2a, Additional file 1: Table S3) in addition to
those in vivo sites that we had already previously identi-
fied from COS-7 cells [27]. However, since more en-
dogenously phosphorylated cellular sites were discovered
than in vitro target sites for PIM1, it was evident that
many of the in vivo sites were targeted by other kinases.

To be able to evaluate the functional impact of phos-
phorylation at putative PIM1 target sites, we mutated
multiple serine or threonine residues in NFATCI into
alanines to create phosphodeficient mutants (Fig. 2a,
Table 1, Additional file 1 Table S3). The mutated sites
were primarily chosen based on the presence of PIM1
consensus target sequences [34] with basic residues pre-
ceding the in vivo phosphosites observed in PC-3 cells.
Those were supplemented with close-by sites that had
been phosphorylated by PIM1 in vitro. Stepwise muta-
genesis resulted in approximately 50% (double mutant,
DM) or 90% (multi mutant, MM) reduction in the ability
of PIM1 to phosphorylate NFATC1 in vitro, while
the previously validated PIM-selective inhibitor
DHPCC-9 [4, 26] fully abrogated PIM1 autophospho-
rylation and PIM1-mediated NFATC1 phosphoryl-
ation (Fig. 2b). In addition to PIM1, also PIM2 and
PIM3 were able to phosphorylate WT, but not MM
NFATCI1 in vitro (Fig. 2c).
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Both wild-type and phosphomutant NFATC1 interact with
PIM1 in PC-3 cells

To assess the subcellular localization of WT versus
phosphodeficient NFATC1, we transiently expressed
them in PC-3 cells, where they showed similar
localization patterns in the nucleus, in the cytoplasm or
in both (Fig. 3a, Additional file 1: Figure S1C). As we
had previously shown that NFATC1 and PIM1 can be
co-immunoprecipitated with each other [12], we now
wanted to determine whether the mutations in the PIM1
target sites affected either the colocalization or the phys-
ical interaction of GFP-tagged NFATCI1 proteins with
RFP-tagged PIM1. For these purposes, confocal micros-
copy and the fluorescence-lifetime imaging method
(FLIM) were used as in our previous studies [23]. Both
WT and MM NFATC1 showed nuclear co-localization
(Fig. 3b) as well as interaction (Fig. 3c) with PIM1, as
was evident from merged confocal images and from re-
duced lifetimes of GFP signals, respectively. Further-
more, the PIM inhibitor DHPCC-9 did not have major
effects on the localizations or interactions, indicating
that PIM-induced phosphorylation was not required
there (Fig. 3b, c).

Phosphorylation by PIM1 promotes NFATC1 activity

To determine whether phosphorylation affects transcrip-
tional activity of NFATC1, we transiently overexpressed
WT and mutant NFATCI1 proteins in three different
prostate cancer cell lines, PC-3, DU-145 and LNCaP
cells. Both PC-3 and DU-145 cells represent hormone-
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mutant, MM), grown in bacteria as GST fusion proteins and subjected to radioactive in vitro kinase assays with human PIM1 pretreated with
DMSO (=) or 10 uM DHPCC-9 (+). Shown in the upper panel are the signal intensities of phosphorylated proteins (NFATC1 phosphorylation lined
red), in the lower panel the total amounts of proteins (NFAT total protein loadings lined red), and under the panels the relative levels of
phosphorylation of WT NFATCT (100%) versus those of the mutants. ¢ Similar kinase assays were performed also with human PIM2 and
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proteins were analysed by fluorescence-lifetime imaging microscopy (FLIM) from samples of transiently transfected PC-3 cells. 24 h after
transfection, cells were treated overnight with DMSO or 10 uM DHPCC-9. Shown on the left are representative images of negative control cells
with expression of empty GFP or RFP vectors, while on the right are single channel or merged images of cells co-transfected with GFP- or
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insensitive tumors, while LNCaP cells are hormone-
sensitive, but carry mutated androgen receptors [35].
Based on our previously published RNA-sequencing
dataset [36], endogenous PIMI1 mRNA expression
levels were relatively high in PC-3 cells, lower in DU-
145 cells and lowest in LNCaP cells, while relatively
low NFATCI mRNA levels were observed for all cell
lines (Fig. 4a).

According to data from NFAT-luciferase assays, PC-3
cells had clearly higher basal NFAT activity than DU-

145 or LNCaP cells, although in DU-145 cells the activ-
ity could be increased by stimulation with TPA and the
calcium ionophore ionomycin (Fig. 4b, Additional file 1:
Figure S4A). This suggests that in contrast to PC-3 cells,
NFAT nuclear translocation and activation are normally
regulated by calcium and calcineurin in DU-145 cells.
This conclusion was further supported by the ability of
cyclosporin to slightly suppress NFAT activity in stimu-
lated DU-145 cells, but not in any other cell samples
(Fig. 4c, Additional file 1: Figure S4B).
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The presence of overexpressed WT NFATCI1 strongly
enhanced NFAT activity in all three cell lines, while muta-
tions in the PIM1 target sites or treatment of cells with
the PIM inhibitor DHPCC-9 resulted in significantly com-
promised NFAT activities in PC-3 and DU-145 cells, but
not in LNCaP cells (Fig. 4b, Additional file 1: Figure S4).
These results indicated that full NFAT activity was
dependent on phosphorylation of PIM target sites in PC-3
and DU145 cells, but PIM-independent in LNCaP cells,
where nearly negligible PIM mRNA levels had been ob-
served (Fig. 4a).

Prostate cancer cell motility is regulated by NFATC1
phosphorylation

As we had previously shown that PIM inhibition blocks
the pro-migratory effects of NFATCI1 in PC-3 cells [4],
we wanted to investigate the role of NFATC1 phosphor-
ylation in this context. In wound healing assays with PC-
3 cells transiently overexpressing WT NFATC1 or phos-
phomutants, mutations in the PIM target sites signifi-
cantly reduced the ability of NFATC1 to promote cell
migration (Fig. 5a). While there were minor effects by
the DM mutant and more pronounced effects by the
MM mutant, PIM inhibition by DHPCC-9 completely
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blocked cell migration in each case. Similar wound heal-
ing experiments were also performed with DU-145 pros-
tate cancer cells, which transiently overexpressed WT
NFATCI or the multi mutant. As in PC-3 cells, muta-
tions in the PIM target sites abolished the ability of
NFATC1 to promote cell migration (Fig. 5b). Also
DHPCC-9 diminished motility, but less efficiently than
in PC-3 cells, which migrated slightly slower than DU-
145 cells.

Western blotting was used to confirm equivalent pro-
tein levels of NFATC1 and PIM family members in PC-
3 cells (Additional file 1: Figure S3A). DHPCC-9 slightly
reduced them, but did not significantly affect cell viabil-
ity (Additional file 1: Figure S3A, B). Similar viability
and protein expression data were obtained also from
DU-145 cells (Additional file 1: Figure S3C). Additional
wound healing assays were performed in PC-3 cells in the
presence of mitomycin C to exclude effects of cell prolifer-
ation on cell migration (Additional file 1: Figure S3D), but
no major differences were observed as compared to
its absence (Fig. 5a). More interestingly, the triple
mutant (TM) NFATC1 with intact S245 and S269
sites blocked cell migration almost as efficiently as
MM lacking them, suggesting that the pro-migratory
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Fig. 5 Lack of PIM1 target sites reduces the ability of NFATC1 to promote migration of prostate cancer cells. Wild-type (WT), double mutant (DM)
or multi mutant (MM) NFATC1 were transiently expressed in PC-3 cells (a) or DU-145 cells (b). For wound healing assays, cell layers were
scratched 24 h after transfection with a 10 pl pipette tip and the wounded areas were allowed to recover for another 24 h in the presence of
either DMSO or 10 uM DHPCC-9. Shown are representative pictures taken at 0 h and 24 h time-points, and average wound healing percentages
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effects of NFATC1 were more dependent on phos-
phorylation of other PIM1 target sites.

To investigate the role of NFATC1 phosphorylation in
cell invasion, we carried out matrigel-based Boyden
chamber invasion assays. There WT NFATCI1 increased
invasion of transiently transfected PC-3 cells through
the membranes, while mutations in PIM targets sites in
MM NFATC1 or the presence of the PIM inhibitor
DHPCC-9 decreased it (Fig. 6a). NFATCI protein levels
were also monitored by western blotting in the invasion
experiments (Additional file 1: Figure S3E). No major
differences were observed in cell viability, except for a
slight increase by MM NFATCL1 at the later 72 h time-
point (Additional file 1: Figure S3F). As activities of
matrix metalloproteinases (MMPs), such as MMP-2 and
MMP-9 are needed for cell invasion and may be regu-
lated in an NFAT-dependent fashion also in our cells of
interest [2], we analysed the effects of NFATCI1 phos-
phorylation on their expression by gelatinase activity as-
says. The relative MMP expression levels were slightly,
although not significantly reduced by MM NFATCI,
while the decrease was more prominent with the PIM
inhibitor DHPCC-9 (Fig. 6b). In each case, the MMP
enzymatic activities correlated well with data from the
invasion assays, suggesting that MMPs are relevant
NFATC1 targets, whose activities can be indirectly
regulated by PIM kinases.

ITGAS is a putative target for phosphorylated NFATC1

To identify additional targets for the interplay between
PIM1 and NFATC1, we designed microarray experi-
ments, where we compared mRNA transcriptomes of
PC-3 cells with or without stable overexpression of
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PIM1, and with or without transient overexpression of
either WT or MM NFATCI. Real-time qPCR was first
used to confirm overexpression of PIM1 and/or
NFATCI genes in the cell samples (Additional file 1:
Figure S4A-B). With the microarrays, we performed
three different types of comparisons: First, we compared
parental PC-3 cells to their derivatives that stably
expressed PIM1, to identify the genes that are up- or
downregulated by elevated PIM1 expression. Secondly,
we compared the PC-3 cells that had transiently been
transfected with WT or MM NFATCI, to find genes
that are controlled by the levels of NFATCI1 activity.
Finally, we compared PC-3 cells that both stably overex-
pressed PIM1 and transiently expressed WT or MM
NFATC1, to unravel the genes regulated by PIM1-
dependent phosphorylation of NFATCI. Genes with
altered expression profiles in these three comparisons
are listed in Additional file 1: Table S4.

Clustering analyses revealed that the cells overexpressing
PIM1 and WT NFATCI1 have a different profile as com-
pared to the other samples (Additional file 1: Figure S4C).
All the genes listed in Fig. 7a and Additional file 1:
Table S4 showed higher mRNA levels in cells with
WT NFATCI than with MM, and their levels were lower
also in the other control samples (Additional file I:
Figure S4C). Based on the observed gene expression
profiles, we performed a canonical pathway analysis
to determine, which cellular functions are primarily
affected by the PIM-NFATC1 axis. We discovered five
pathways that had significantly been enriched, many
of which regulate cell adhesion and motility-related
functions, like integrin, paxillin and FAK-signaling
pathways (Additional file 2: Figure S6).
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Fig. 6 Lack of PIM1 target sites reduces also the ability of NFATC1 to enhance invasiveness of prostate cancer cells. a For invasion assays, PC-3
cells were grown in Boyden chambers in the absence (—) or presence (+) of 10 uM DHPCC-9. After 48 h, cells that had invaded through the
membranes were fixed, stained with crystal violet and counted. Shown are relative invasion rates from two separate experiments with triplicate
samples, the results of which had been normalized against the mock-transfected control samples. Shown are also representative pictures of the
effects of wild-type (WT) or multi mutant (MM) NFATC1 on cell invasion after 48 h. Scale bar 500 um. b Matrix metalloprotease (MMP) expression
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overexpression. The data were normalized against TBP expression levels

Fig. 7 Microarray analysis reveals /TGA5 as a putative PIM1/NFATC1 target gene. a Heatmap of the potential PIM1/NFATC1 target genes found
from microarray analysis. Shown are fifty genes with highest log2 fold changes (logFC 21 and P-value <0,05), when PC-3 cells expressing PIM1
plus multi mutant (MM) NFATC1 were compared to cells expressing PIM1 plus wild-type (WT) NFATC1. Dashed line indicates the median of the
expression values and solid line shows the expression levels more precisely in a diagrammatic form. Genes listed in bold are reviewed in more
detail in the discussion. b Relative expression levels of [TGA5 mRNA were analysed by real-time gPCR from microarray samples (right panel) and
from another independent data set (left panel) after transient transfections of WT or MM NFATCT to PC-3 cells without (=) or with (+) stable PIM1

To validate the microarray data, we selected integrin
alpha 5 (ITGAS5) for more detailed expression analysis,
as it is involved in the regulation of cell adhesion to
matrices such as fibronectin [37, 38], and as we have
previously connected PIM inhibition to decreased adhe-
sion to fibronectin [39]. When we compared the expres-
sion levels of ITGA5S mRNA between one independent
data set (24 h after transfections) with microarray sam-
ples (48 h after transfections), we observed decreased
expression in cells with MM NFATC1 as compared to
control cells or cells with WT NFATC1 (Fig. 7b). These
differences resembled those observed in MMP assays
(Fig. 6b), and were statistically significant after 24 h in
the cells stably overexpressing PIM1 and after 48 h in
the control cell line, suggesting a role for PIMI1-
mediated phosphorylation and activation of NFATCI in
regulating /TGAS mRNA expression levels.

Our data prompted us to examine clinical prostate
cancer samples for their expression levels of PIMI,
NFATCI and/or ITGA5 mRNAs. Therefore, we per-
formed pairwise comparisons of these three genes in
three independent prostate cancer patient-derived data-
sets [31-33]. The expression levels of PIMI and ITGAS
or NFATCI and ITGAS mRNAs positively correlated in
all datasets (Additional file 2: Figure S5). Most interest-
ingly, the positive correlation between NFATCI and
ITGAS increased along the Gleason score, with the
strongest correlation in prostate cancer patients with
Gleason =8.

Discussion
Here we have analysed the functional interactions of
PIM and NFATC1 proteins in several prostate cancer
cell lines. We have identified multiple PIM target sites in
NFATC1 that are phosphorylated in vitro and/or in
cells, and are essential for the transcriptional activity of
NFATC1 as well as for its pro-migratory and pro-
invasive effects. By contrast, the physical interactions or
colocalization of PIM1 and NFATCI1 are not affected by
PIM-dependent phosphorylation. In addition to PIMI,
also PIM2 and PIM3 can phosphorylate NFATC1, add-
ing it to the growing list of substrates shared by all PIM
family members [16].

While our study was in progress, additional kinases
targeting NFATC1 were identified. Phosphorylation by

the IkB kinase epsilon (IKKe) was shown to inhibit
NFATC1 activity [40], whereas phosphorylation by the
DYRKI1A kinase increased NFATC1 protein stability by
interfering with NFATC1 ubiquitination and degradation
[41]. We identified two IKKe target sites (Serl51 and
Ser161) and one DYRKI1A site (Ser278) as cellular phos-
phorylation sites of NFATC1 in PC-3 cells, but our multi
mutant NFATC1 protein lacked only one of them (Ser
151), suggesting that the effects of the mutant were
mostly due to lack of PIM-dependent phosphorylation.
This conclusion was further supported by our observa-
tions that the double mutant lacking known PKA target
sites (Ser245 and Ser269; 11) promotes cell migration
nearly as efficiently as wild-type NFATCI1, while the
triple mutant with intact PKA target sites inhibits cell
motility almost as much as the multi mutant.

In this study, we have shown that the PC-3 prostate
cancer cells exhibit constitutive NFAT activity. This is in
contrast to most cells, where upstream activation of the
calcium- and calcineurin-dependent pathway is required
to allow NFAT family members to enter the nucleus and
stimulate transcription there [1, 2]. This may not be a
general feature of prostate cancer cells, since in another
hormone-insensitive cell line, DU-145, NFAT activity
could be enhanced by the calcium ionophore ionomycin
and inhibited by the calcineurin inhibitor cyclosporin A.
Yet in both cell lines, the transcriptional as well as pro-
migratory activities of NFATC1 were similarly compro-
mised by mutations in the PIM target sites. As the PIM-
selective inhibitor DHPCC-9 blocked the activities of
NFATC1 even more efficiently, this suggests that it
affects additional downstream targets, only some of
which are shared by PIM1 and NFATCI.

In our microarray analyses of transfected PC-3 cell
samples, we were able to identify novel putative PIM1/
NFATCI target genes, which were more abundantly
expressed in the presence of both PIM1 and wild-type
NFATC1, but less in cells expressing the multi mutant
NFATCI1 or in other types of control cells. Thus, expres-
sion of all these target genes may be upregulated by
PIM1-dependent phosphorylation of NFATCI1. The
putative PIM1/NFATC1 target genes included one en-
coding for the known PIM substrate NUMA1 (nuclear
mitotic apparatus protein 1 [42];). Otherwise the target
genes could be divided into several groups based on the
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types of proteins encoded by them, including regulators
of transcription, cell cycle, cell survival, cell motility, cell
adhesion as well as intracellular trafficking. As expected,
there were several genes involved in the NFAT signaling
pathway [43], such as those encoding the catalytic sub-
unit alpha of protein kinase A (PRKACA) and the
FK506 immunosuppressant-binding immunophilin pro-
tein FKBPS8. The latter protein also acts as a chaperone
for the anti-apoptotic BCL2 protein, the expression
levels of which have previously been shown to be
upregulated by PIM kinases [44]. In addition, the BCL2
homolog BCL2L1 was listed there as also several genes en-
coding proteins involved in intracellular trafficking
(RAB11B, STXBP2, AP2A1, ARF1). Maybe most interest-
ingly in regard to our data on promotion of prostate can-
cer cell motility by PIM1 and NFATCI, there were several
genes encoding regulators of the cytoskeletal actin net-
work (INF2, FHODI1, ACTN3, COROI1B) and cell adhe-
sion (COL6A2, PXN, ITGA5).

As signaling pathways involving integrins were highly
enriched in our canonical pathway analysis, we picked
ITGA5 for further expression analyses. Integrins are
well-known cellular adhesion receptors that connect
cells to the extracellular matrix and have been impli-
cated in multiple steps of tumorigenesis [45]. ITGA5 has
an essential role in cell adhesion, migration and tumor
invasion [46-48]. Interestingly, previous experiments
have linked both PIM and NFAT family members to
integrin-mediated cell adhesion or motility. NFATC1
binds to the ITGB3 promoter in osteoclast precursor
cells, while NFATC2 and NFAT5 promote ITGA6/
ITGB4-mediated cell invasion in breast cancer [49, 50].
Furthermore, PIM inhibition decreases cell adhesion to
collagen and fibronectin matrices via different integrin
subunits [38]. While no clear PIM-dependent changes in
integrin activity or expression have previously been
reported, we now found correlations between PIMI or
NFATCI mRNA expression levels with ITGAS5, both in
PC-3 cells and in prostate cancer patient-derived
samples. However, more detailed studies are needed to
determine how critical ITGAS or other genes identified
by the microarray analyses are in mediating the pro-
motility effects of PIM and/or NFATC1 proteins.

Conclusions

In conclusion, we have shown that phosphorylation of
PIM1 target sites stimulates the transcriptional activity
of NFATC1 and enhances its ability to promote prostate
cancer cell migration and invasion. Thereby, the inter-
play between PIM kinases and NFATC1 may also pro-
vide possibilities for therapeutic interventions against
metastatic prostate cancer through combinatory ap-
proaches involving PIM-selective kinase inhibitors.
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