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Background: Overexpression of erythropoietin (EPO) and EPO receptor (EPO-R) is associated with poor prognosis in
non-small-cell lung carcinoma (NSCLC). Hypoxia, a potent EPO inducer, is a major stimulating factor in the growth
of solid tumors. However, how EPO-R expression is regulated under hypoxia is largely unknown.

Methods: The role of EPO-R in NSCLC cell proliferation was assessed by RNA interference in vitro. Luciferase
reporter assays were performed to map the promoter elements involved in the EPO-R mRNA transcription. Nuclear
co-immunoprecipitation and chromatin immunoprecipitation were performed to assess the interaction among
transcription factors HIF1a, SP1, and EGR1 in the regulation of EPO-R under hypoxia. The expression of key EPO-R
transcription factors in clinical specimens were determined by immunohistochemistry.

Results: Hypoxia induced a dosage and time dependent EPO-R mRNA expression in NSCLC cells. Knockdown of
EPO-R reduced NSCLC cell growth under hypoxia (P < 0.05). Mechanistically, a SP1-EGR1 overlapped DNA binding
sequence was essential to the hypoxia induced EPO-R transcription. In the early phase of hypoxia, HIF1a interacted
with EGR1 that negatively regulated EPO-R. With the exit of EGR1 in late phase, HIF1a positively regulated EPO-R
expression through additive interaction with SP1. In clinical NSCLC specimen, SP1 was positively while EGR1 was
negatively associated with active EPO-R expression (P < 0.05).

Conclusions: HIF1a, SP1 and EGR1 mediated EPO-R expression played an essential role in hypoxia-induced NSCLC
cell proliferation. Our study presents a novel mechanism of EPO-R regulation in the tumor cells, which may provide

Background

The solid tumor expansion is usually characterized by
the existence of focal hypoxic regions which leave por-
tions of the tumor suffering from oxygen deprivation.
Although the hypoxic microenvironment may suppress
tumor cells division or even lead to their death, it can
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also lead to alteration of metabolism in tumor cells to
improve their chance for survival. Thus, hypoxia repre-
sents a paradox for various tumor studies. Accumulating
evidence demonstrated that hypoxia has significant im-
pacts on the behavior of a wide spectrum of tumors
including non-small cell lung cancer (NSCLC) [1, 2].
Under hypoxic conditions, NSCLC is often educated to
be more aggressive and prone to be radio- and chemo-
resistant [3, 4]. Hypoxia-inducible factor 1 alpha (HIF1a)
is one of the most potent factors that are widely linked
to the behavior changes of hypoxic tumor cells [5].
HIFla activates the transcription of dozens of genes

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-019-0458-8&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Qiuyang.Zhang@BSWHealth.org

Su et al. Cell Communication and Signaling (2019) 17:152

including erythropoietin (EPO), which provide tumor
cells with the device to maintain vigorous growth and
expansion in a hypoxic microenvironment [6].

As a pleiotropic cytokine, EPO regulates bone marrow-
derived erythroid progenitor proliferation, differentiation
and survival via binding to erythropoietin receptor (EPO-R).
It is well known that EPO-R is mainly expressed in eryth-
roid, megakaryocytic and mast cells and the hematopoietic-
specific transcription factor GATA-1 plays a pivotal role in
the activation of the EPO-R promoter [7]. However, EPO-R
is also found expressed in endothelial cells and brain
[8-10]. In addition, recombinant EPO or erythropoiesis-
stimulating agents (ESAs) can accidentally stimulate the
growth of EPO-R-positive tumors when used for treating
tumor-related anemia suggesting the universality and im-
portance of tumor-associated EPO-R expression [11-15].
Like EPO, EPO-R expression is also dynamically regulated
under hypoxic stress. The enhanced EPO signaling is found
within hypoxic tumor regions with highest levels of EPO-R
expression [16]. However, unlike EPO, the mechanism of
hypoxia-mediated EPO-R expression is not delineated.

We previously reported that hypoxia can induce EPO
expression and promote cell proliferation in NSCLC
[17]. In the present study, we aim to investigate if and
how hypoxia regulates EPO-R expression in NSCLC,
and to determine if the transcription regulation of EPO-
R has clinical relevance in NSCLC.

Materials and methods

Clinical specimen

Patient tumor and control tissue specimen were obtained
from the First Affiliated Hospital of Sun Yat-sen Univer-
sity with written informed consents. In total, 20 patients
who had surgical resection in 2006 were enrolled: 15
NSCLC and 5 lung bullae patients as control samples
(Additional file 1: Supplementary Materials and Methods).

Cell lines

Three normal human bronchial epithelial cells (HBEC-
3KT, -4KT, and-6KT), six NSCLC cell lines (A549, H44,
H2073, H1819, H1833, H3122), and one human EPO-
dependent erythroleukemia line OCIM-1 were used in
this study (Additional file 1: Supplementary Materials
and Methods).

Hypoxic treatment
Detailed is described in Additional file 1: Supplementary
Materials and Methods.

RNA extraction, real-time PCR, protein extraction and
immunoblots

Detailed is described in Additional file 1: Supplemen-
tary Materials and Methods and in Additional file 2:
Supplementary Tables.
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DNA constructs

The methods for construction of wild-type and site-
specific mutation of human EPO-R promoters, and for
cloning full-length or truncated, and wildtype or site-
specific modified cDNA of the transcription factors are
described in Additional file 1: Supplementary Materials
and Methods.

Construction of stable cell line using lentiviral particles
Detailed is described in Additional file 1: Supplementary
Materials and Methods.

Nuclear protein complex co-immunoprecipitation (co-IP)
and chromatin immunoprecipitation (ChIP) assays
Nuclear co-IP was performed to evaluate the interaction
among HIFla, SP1 and EGR1 and ChIP to assess the
binding activity of SP1 and/or EGRI1 to proximal EPO-R
promoter under hypoxia in A549 cells (Additional file 1:
Supplementary Materials and Methods; Additional file 2:
Supplementary Tables).

Immunohistochemistry (IHC)

Details are described in Additional file 1: Supplementary
Materials and Methods and listed antibodies are in
Additional file 2: Supplementary Tables.

Luciferase reporter assay

Luciferase reporter assays were done to characterize
the EPO-R promoters as described previously [18]
(Additional file 1: Supplementary Materials and Methods).

Data analysis

Statistical analyses were performed using an unpaired Stu-
dent’s t-test with the InStat for Windows statistical soft-
ware package (GraphPad Software, San Diego, CA). For
multiple comparisons, an ANOVA and the Student-
Newman-Keuls multiple-comparisons test was performed
using the InStat for Windows statistical software package
(GraphPad). Differences were considered significant at
P <0.05 (Additional file 1: Supplementary Materials and
Methods).

Results

Hypoxia-induced EPO-R is essential to NSCLC cell growth
The upregulation of EPO-R reported in various solid tu-
mors has raised safety concerns for the use of EPO or
ESAs to treat anemia in cancer patients. To investigate
the potential role of EPO-R in NSCLC, we examined
EPO-R protein and mRNA expression in 6 NSCLC and
3 HBEC cell lines with the high-EPO-R expressing eryth-
roid cell line OCIM1 as a positive control [19]. EPO-R
was significantly overexpressed in NSCLC cell lines as
compared with those of HBEC lines (Additional file 3:
Figure S1A and S1B). Hypoxia potently induced stable
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EPO-R overexpression in NSCLC cells (P < 0.05) (Fig. 1a).
In addition, we found that the hypoxic inducibility was
not different among the high and low-EPOR expressing
NSCLC cells (data not shown). In OCIM1 cell, EPO-R
was induced after 4 h treatment and returned to basal
level 8 h later. Modest induction was found in HBEC
cells (Fig. 1a).

Next, we used two representative cell lines H44 (low
EPO-R expression) and H1833 (high EPO-R expression)
to determine if hypoxia-induced EPO-R expression played
a role in NSCLC cells. We first verified that hypoxia did
increase EPO-R protein expression (Fig. 1b and c). HIFla
is the most potent transcription factor that mediated the
hypoxic response in mammalian cells. As shown in Fig. 1b
and ¢, hypoxia induced EPO-R protein expression which
was inhibited by pretreating cells with a HIFla inhibitor
YC-1. By using the cells with stable knockdown of EPO-R,
we found that EPO-R silencing almost completely abro-
gated hypoxia-induced cell proliferation (Fig. 1d and e).
These data suggested that EPO-R was essential to pro-
mote NSCLC proliferation under hypoxia condition, inde-
pendent of basal expression level of EPO-R.

HIF1a and SP1 positively, whereas EGR1 negatively
mediated hypoxia induced EPO-R mRNA transcription

To investigate how EPO-R was induced under hypoxic
condition, we analyzed the —-200bp proximal promoter
region of EPO-R and identified several putative transcrip-
tion factors binding sites including those for HIF (called
hypoxia-responsive element, or HRE), SP1 and EGRI1
(Additional file 3: Figure S2A). Among them, the overlap-
ping SP1 and EGRI site was found conservative among
human, mouse and dog (Additional file 3: Figure S2B).

Next, we determined the role of these sequences on
EPO-R expression under hypoxia in A549 cells. As ex-
pected, hypoxia induced gradual increase of wild-type
EPO-R promoter activity (Fig. 2a). With point mutated
SP1 and intact EGR1 sites, basal promoter activity was
decreased and hypoxic inducibility was diminished
(Fig. 2a). On the other hand, with point mutated EGR1
and intact SP1 sites, the basal promoter activity was in-
creased and hypoxic inducibility was maintained (Fig. 2a).
These data suggested that EPO-R mRNA transcription
was positively regulated by SP1 but negatively regulated
by EGRI. Surprisingly, the abolishment of putative HRE
site did not affect hypoxic inducibility of EPO-R pro-
moter (Fig. 2a). These data also suggested that A549 is a
valid NSCLC cell line for studying mechanism of hyp-
oxia mediated transcription of EPO-R in NSCLC.

Next, we determined if these transcription factors were
involved in hypoxia inducible expression of EPO-R. As
expected, hypoxia induced EPO-R mRNA expression in
dose- and time-dependent fashion in A549 cells (Fig. 2b).
Correspondingly, exposure to 1% O, resulted in gradual
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increase of nuclear HIFla during the 8h treatment
(Fig. 2c). Hypoxia induced a sharp increase of nuclear
EGRI1 at 1h followed by rapid decline to lower than
baseline level (Fig. 2c). Modest or no changes were
found in HIF2a, SP1, EGR2 and EGR3 and decrease was
found in EGR4 expression levels (Fig. 2c). We then mea-
sured EPO-R mRNA in A549 cells with ectopic expres-
sion of HIFla, SP1 or EGR1 which were responsive to
hypoxia treatment and/or has a binding site within the
proximal EPO-R promoter. As shown in Fig. 2d, HIFla
and SP1 promoted whereas EGR1 inhibited EPO-R ex-
pression, confirming that HIF1a, SP1 and EGR1 played a
role on the hypoxia-mediated EPO-R gene transcription.
Again, these data further confirmed that A549 was feas-
ible as a model cell line for mechanistic study of
hypoxia-mediated EPO-R regulation.

The interaction of HIF1a and SP1 promoted EPO-R
transcription under hypoxia

Since the HRE site was not essential to hypoxia mediated
EPO-R transcription, we speculated that HIF1a promotes
EPO-R expression through interacting with SP1 under
hypoxia. We transfected A549 cells with a wild-type (wt)
or SP1 site mutated EPO-R luciferase promoter, together
with HIFla and/or SP1 c¢DNA. As expected, SP1 and
HIFla alone significantly increased wt EPO-R promoter
activity (Fig. 3a). The combination of HIFla and SP1
cDNA further increased wt EPO-R promoter activity addi-
tively (Fig. 3a). In the SP1 site mutated promoter, neither
SP1 and HIFla each alone nor in combination enhanced
the promoter activity (Fig. 3a). These data suggested that
HIFla and SP1 regulated EPO-R through interacting with
the SP1 binding sequence.

To elucidate how HIFla interacts with SP1 to regulate
EPO-R expression, a series of truncated HIFla cDNAs
were co-transfected with wild type EPO-R promoter into
A549 cells, in the absence or presence of SP1 cDNA. As
expected, the full-length HIFla positively interacts with
SP1 to promote EPO-R promoter activity (Fig. 3b). The
HIFla fragment without the unique region (UR) and C-
terminal transactivation domain (CTAD) did not affect
its interaction with SP1 for this regulation (Fig. 3b).
However, the HIF1a fragment without basic helix—loop—
helix (bHLH) and PER-ARNT-SIM (PAS) or N-terminal
transactivation (NTAD) domains lost its basal activity
and its capacity to interact with SP1 (Fig. 3b). All these
data indicated that the bHLH, PAS and NTAD domains
are required for HIFla and SP1 interaction in EPO-R
regulation under hypoxia condition.

EGR1 inhibited EPO-R mRNA transcription through
negatively regulating the HIF1a and SP1 interaction

As a member of the zinc finger transcription factor fam-
ily, EGR1 has been widely reported to serve as a tumor
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Fig. 1 (See legend on next page.)
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Fig. 1 Hypoxia-induced EPO-R overexpression promotes cell proliferation in NSCLC. a Hypoxia induced EPO-R expression in NSCLC cells. Three
HBEC (HBEC3KT, HBEC4KT and HBEC6KT) and 6 NSCLC (A549, H44, H2073, H1819, H1833, H3122) cell lines were treated with 1% hypoxia or room
air for 0, 4 or 8 h. The erythroleukemia line OCIM-1 was used as a positive control. The mRNA level was determined by real-time RT-PCR with
cyclophilin as an internal control. Mean + SEM; ** P < 0.01. b and ¢ Expression of EPO-R protein was upregulated under hypoxia in H44 (b) and
H1833 cells (c), which was diminished by treatment with HIF1a inhibitor YC-1. Protein expression was determined by Western blots and {3-actin
was used as a loading control. d and e MTT assays showed that hypoxic treatment promoted H44 (d) and H1833 (e) cell growth, and knockdown
of EPO-R with specific sShRNA abolished these effects. The data are representative of three experiments. Mean + SEM; *P < 0.05
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Fig. 2 Identification of transcription factors that mediated EPO-R mRNA expression under hypoxia in A549 cells. a Luciferase reporter activity of
the human EPO-R proximal promoters of wild-type, site-direct mutated HRE, SP1, and EGR1 sites under hypoxia. Mean + SD; * P < 0.05, ** P < 0.01
versus “0” hour. b Time and dosage-dependent expression of EPO-R mRNA under hypoxia. mRNA was determined by real-time RT-PCR with
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HIF1a, HIF2q, SP1, EGR1, EGR2, EGR3 and EGR4 under hypoxia. Nuclear protein level was determined by Western blots with TGFIID included as a
loading control. d Effects of HIF1a, SP1 and EGR1 overexpression on EPO-R mRNA expression. All the data were repeated three times. Mean =+ SD;
*P<0.05 ** P<0.01 versus empty vector (EV)




Su et al. Cell Communication and Signaling (2019) 17:152

Page 6 of 12

A
— HIF1o+SP1
mutSP1 EPO-R promoter
HRE EGR1 5 ] HIFla
i %
- SP1
~ HIF1o+SP1 o
wt EPO-R promoter
P — HIF1o *
HRE SPl/EGR1|_>
= - SP1 :
- 1 T T T T T 1
0 1 2 3 4 5 6
Promoter cDNA Fold luciferase activity
B HIF1la cDNA wtEPO-R promoter
O -SP1cDNA
Nterm HIF1a PAS B +SP1cDNA
Nterm-NTAD HIFla [bHLH [ PAS | NTAD/ODD | ok
*
Cterm HIF1
NTAD-Cterm HIF1o [ NTAD/ODD | UR  [CTAD |
*
Full-length HIF1e [bHLH | Pas | NTaD/ODD | UR [cTaD| ?* '
I 1 1 1 1
1 352 572 7384 826 O 2 4 6 8
Fold luciferase activity
Fig. 3 Synergistic interaction between HIFTa and SP1 promoted EPO-R transcription under hypoxia. a Luciferase reporter activity of the EPO-R
proximal promoters of wild-type or site-direct mutated SP1 site with co-expression of HIF1a and SP1 cDNA alone or HIF1a and SP1 cDNA in
combination. b Luciferase reporter activity of the wild-type EPO-R proximal promoters with co-expression of full-length or truncated HIF1a alone
or in combination with SP1T cDNA. The empty cDNA and empty promoter vectors were included as negative controls (EV). The fold activity was
calculated first by normalizing to cDNA EV and then to promoter EV. Data are from three independent repeats and are represented as Mean + SD;
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suppressor gene in various tumors [20]. We identified an
EGR1 binding site in the EPO-R promoter and deletion
of this site potently stimulated EPO-R promoter activa-
tion (see Fig. 2a). In addition, EGR1 was induced at the
early stage of hypoxia and then declined rapidly (see
Fig. 2c), which led us to speculate that EGR1 may negatively
regulates EPO-R. To test this hypothesis, we transfected
A549 cells with the wt EPO-R promoter in combination
with a constitutively active (ca) EGR1 (caEGR1) or with a
zinc-finger domain mutated EGR1 (zfmEGR1) cDNA. The
caEGR1 significantly suppressed EPO-R promoter activity
(Fig. 4a) while the zZfmEGRI1 activated EPO-R promoter ac-
tivity (Fig. 4a), suggesting that DNA binding was essential to
the inhibition of EPO-R transcription by EGR1. Next, we

transfected A549 cells with a wild-type (wt) EPO-R lucifer-
ase promoter, together with HIFla, SP1, and caEGR1 or
zfmEGR1 ¢DNA. The caEGRI eliminated the synergistic
interaction between HIF1a and SP1 while zEmEGR1 partially
restored this interaction (Fig. 4a) (P < 0.05).

Next, we tested whether EGR1 can negatively interact
with HIFla to regulate EPO-R transcription. As shown
in Fig. 4b, EGR1 significantly suppressed the full-length
HIFla-induced wt EPO-R promoter activity. Results
again showed that bHLH, PAS, NTAD/ODD domains
were essential to the HIFla basal activity, and the C-
terminal regions of the UR and CTAD domains were re-
quired for a significant negative interaction between
HIFla and EGRI1 (Fig. 4b).
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HIF1a regulated EPO-R through sequential interaction
with EGR1 and SP1 under hypoxia

Since the interaction between HIFla and SP1 or EGR1
was critical for positive or negative regulation of EPO-R
expression respectively, we next asked how these three
transcription factors interact during hypoxic exposure. A
sequential co-IP assay with nuclear extracts indicated
that HIF1a interacted more with EGR1 at an earlier time
point (2h) but interacted with SP1 more at later time
point (8 h) after hypoxic exposure (Fig. 5a); EGR1 inter-
acted with HIF1a and SP1 both more at early time point
(2h) than late time point (8h); SP1 interacted with

HIFla gradually increased from early to late time point
(Fig. 5a).

As SP1 and EGR1 can each interact with the overlap-
ping SP1-EGR binding site of the EPO-R promoter, we
next determined if these two proteins physically bind to
this DNA sequence under hypoxia. As shown in Fig. 5b,
SP1 was constitutively bound to the EPO-R promoter
which was not changed by hypoxia. However, binding by
EGRI1 was induced at the early time point of hypoxia but
returned to basal level at later time point (Fig. 5b).

The aforementioned data assisted us to draw a diagram
that summarizes how HIFla, EGR1, and SP1 cooperatively
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Fig. 5 Immunoprecipitation analysis of the protein-protein and protein-DNA interactions around proximal EPO-R promoter under hypoxia. a
Nuclear co-immunoprecipitation of the transcription factors HIF1a, EGR1, and SP1. Nuclear lysates were pulled down by immunoprecipitation (IP),
followed by western blotting (IB) detection with TFIID used an input control. The experiments were repeated at least twice. b Chromatin
immunoprecipitation (ChIP) analysis of promoter DNA binding activity under hypoxia. The chromatins pull-downed by antibody against SP1 or
EGR1, or by normal IgG were analyzed by standard PCR using primers for proximal EPO-R promoter (pEPO-R). Bactin promoter primers (pActin)
were used as an internal control. The experiments were repeated at least twice. ¢ A diagram depicts how HIF1a, EGR1, and SP1 cooperatively and
sequentially regulates EPO-R expression under hypoxia condition in cultured NSCLC cells

and sequentially regulate EPO-R expression in response to
hypoxia in vitro (Fig. 5c). Under normoxia, EPO-R ex-
presses at a low level which is maintained by SP1. EPO-R
expresses slightly higher at the early phase of hypoxia when
EPO-R promoter was concurrently bound by EGR1, HIF1a
and SP1. EGR1 counteracts the upregulation effects by
HIFla and SP1. At the late phase of hypoxia, EPO-R was
potently induced when EGR1 expression level declined and
the synergistic effect of HIFla and SP1 was enhanced.
Taken together, the additive and sequential interactions of
HIFla, EGR1 and SP1 finely mediate EPO-R expres-
sion in NSCLC under hypoxia, which affects NSCLC
progression and makes it response sensitively to the
tumor microenvironment.

SP1 was upregulated and EGR1 downregulated in NSCLC
Considering that EGR1 and SP1 play pivotal roles on
EPO-R expression, we examined their levels in 15 cases
of NSCLC and 5 cases of normal lung specimens by
immunohistochemistry (Additional file 2: Table S3). As
shown in Fig. 6a, b and Additional file 2: Table S4, SP1
was upregulated whereas EGR1 was downregulated in
the NSCLC specimens as compared with the normal
lung tissues. We also found that phosphor-EPO-R
(pEPO-R) and HIFla were also significantly higher in
NSCLC, which is consistently with our previous report
[17]. The expression levels of pEPO-R, HIFla and SP1
were positively while EGR1 was negatively associated in
NSCLC (Fig. 6¢). In the 6 NSCLC and 3 HBEC cell lines
used in this study, we found HIFla was significantly
higher while EGR1 was significantly lower in NSCLC
cells compared to HBEC cells (P <0.05) (Fig. 6d). Based
on these data, we again hypothesized that it is HIFla,
EGR1 and SP1 that govern EPO-R expression in HBEC
and NSCLC cells (Fig. 6e). All these data collectively
supported our in vitro and in vivo findings and sug-
gested that HIF1a, EGR1 and SP1 are critical factors that
can be induced by hypoxia to control the EPO-R expres-
sion in the progression of NSCLC.

Discussion

The role of EPO signaling on tumor growth remains un-
clear nowadays, which is partly due to undefined EPO-R
expression pattern in tumor cells. On one hand, EPO-R
can be overexpressed and play critical roles in tumor

progression such as those associated with post ESA/
rhEPO treatment [11-15]. On the other hand, no signifi-
cant EPO-R expression was detected in several system-
atic screenings in both tumor cell lines and solid tumor
specimens [21, 22]. In NSCLC, we previously identified
high- and low-EPO-R cell population and we found that
tumor-derived EPO significantly stimulated the growth
of EPO-R-positive NSCLC cells [17]. Here in this study,
we further confirmed that EPO-R expression was indu-
cible under hypoxia (independent of basal expression
level) in NSCLC.

Unlike EPO, the transcriptional regulation of EPO-R
under hypoxia is not well studied. Several transcription
factors including GATA-1 and SP1 have been identified
to directly regulate the EPO-R mRNA expression but
how these factors are linked to hypoxia-mediated EPO-R
expression remain unknown [7, 23]. In the present
study, we identified a cis-acting DNA element essential
for hypoxia induced expression of human EPO-R for the
first time. We found that the sequential interactions be-
tween HIF1a/EGR1 and HIF1a/SP1 that govern EPO-R
expression at different phases of hypoxic exposure. Our
future studies will focus on whether other transcription
factors also participated in the transcriptional regulation
complex of EPO-R promoter.

EGRI is a prototypical member of the zinc-finger tran-
scription factors family and a range of molecular and
environmental stimuli and stressors have been reported to
induce EGR1 expression. EGR1 regulates the expression
of dozens of target genes such as insulin-like growth
factor-1I (IGF-II) [24], BCL-2 [25], PTEN [26, 27] and
tumor necrosis factor-alpha (TNFa) [28]. As a result,
EGR1 exerts contradictory activities by modulating differ-
ent signaling pathways. In NSCLC, EGR1 is reported to
inhibit its malignancy and development by regulating
KRT18 [29]. Here, we reported that the induction of
EGR1 by hypoxia plays a negative role on EPO-R expres-
sion in NSCLC. In addition, very low level of EGR1 can be
detected both in NSCLC cell lines and in clinical speci-
mens as compared with the normal controls. All these
data collectively suggested that EGR1 acts as a suppressor
gene in NSCLC.

SP1 is another zinc-finger transcription factor that can
regulate gene expression through synergistically interact-
ing with EGRI1 such as that in PDGF [30]. Conversely, in
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Fig. 6 Expressions of phosphor-EPO-R (pEPO-R), HIF1a, SPT and EGR1 in the NSCLC clinical specimens. a Immunohistochemical staining and
scoring b of pEPO-R, HIF1q, SPT and EGR1 in clinical NSCLC specimens or normal controls. Bars = 50 uM. ¢ Correlation analysis of HIF1a, SP1 and
EGR1 with pEPO-R expression in NSCLC. d RT-PCR analysis of HIF1a, HIF2a, SP1T and EGR1-4 mRNA expression in the NSCLC cell lines under
normoxic condition. Mean + SD; *, P < 0.05. e A diagram depicts how HIF1a, EGR1, and SP1 regulate EPO-R expression under normoxic condition

in HBEC and NSCLC

this study we found that SP1 and EGR1 bind competi-
tively to an overlapping DNA element in the proximal
human EPO-R promoter and consequently, counteract
to regulate its transcription. We found that hypoxia did
not alter nuclear SP1 protein level, which suggest that
the major contribution of SP1 to EPO-R regulation are
through increased binding to EPO-R promoter to pro-
mote recruitment of hypoxia inducible factors such as
HIFla.

Conclusions

EPO-R expression is essential to NSCLC cell growth
under hypoxic condition. Hypoxia induced EPO-R is
mediated by HIF1la through sequential interaction with
EGR1 and SP1; thus, the hypoxia/HIF1a/EGR1/SP1/
EPO-R axis may be potential targets for NSCLC diagno-
sis and therapy.
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