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Abstract

Background: Cancer cells undergo global reprogramming of cellular metabolism to satisfy demands of energy and
biomass during proliferation and metastasis. Computational modeling of genome-scale metabolic models is an
effective approach for designing new therapeutics targeting dysregulated cancer metabolism by identifying
metabolic enzymes crucial for satisfying metabolic goals of cancer cells, but nearly all previous studies neglect the
existence of metabolic demands other than biomass synthesis and trade-offs between these contradicting
metabolic demands. It is thus necessary to develop computational models covering multiple metabolic objectives
to study cancer metabolism and identify novel metabolic targets.

Methods: We developed a multi-objective optimization model for cancer cell metabolism at genome-scale and an
integrated, data-driven workflow for analyzing the Pareto optimality of this model in achieving multiple metabolic
goals and identifying metabolic enzymes crucial for maintaining cancer-associated metabolic phenotypes. Using
this workflow, we constructed cell line-specific models for a panel of cancer cell lines and identified lists of
metabolic targets promoting or suppressing cancer cell proliferation or the Warburg Effect. The targets were then
validated using knockdown and over-expression experiments in cultured cancer cell lines.

Results: We found that the multi-objective optimization model correctly predicted phenotypes including cell
growth rates, essentiality of metabolic genes and cell line specific sensitivities to metabolic perturbations. To our
surprise, metabolic enzymes promoting proliferation substantially overlapped with those suppressing the Warburg
Effect, suggesting that simply targeting the overlapping enzymes may lead to complicated outcomes. We also
identified lists of metabolic enzymes important for maintaining rapid proliferation or high Warburg Effect while
having little effect on the other. The importance of these enzymes in cancer metabolism predicted by the model
was validated by their association with cancer patient survival and knockdown and overexpression experiments in a
variety of cancer cell lines.

Conclusions: These results confirm this multi-objective optimization model as a novel and effective approach for
studying trade-off between metabolic demands of cancer cells and identifying cancer-associated metabolic
vulnerabilities, and suggest novel metabolic targets for cancer treatment.
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Background

Metabolic reprogramming is recognized as an emerging
hallmark of cancer [1-4]. Besides the “wasteful” metab-
olism known as aerobic glycolysis or the Warburg effect
that was discovered almost a hundred years ago by Otto
Warburg [5, 6], metabolism of malignant cells is shifted
at the systematic level due to numerous factors including
nutrient and oxygen availability in the tumor micro-
environment, material and energy demands for rapid cell
proliferation, and dysregulated signal transductions in
malignant cells [7]. Targeting metabolic reprogramming
in cancer is hence a promising strategy for designing
highly selective anti-tumor therapeutics with several suc-
cessful examples [8—11]. However, the human metabolic
network covers thousands of enzymes, metabolites and
crosstalks, which are also highly context dependent. The
extreme complexity of human metabolic network greatly
limits our ability to efficiently and accurately identify
metabolic enzymes that serve as potential anti-tumor
targets.

Genome-scale metabolic model (GSMM) is a powerful
computational tool for studying metabolism [12—15] and
has enabled researchers to elucidate the plausible mech-
anism of cancer-associated metabolic features such as
the Warburg effect [16], quantify efficacies and side ef-
fects of cancer therapeutics [17-21], and unravel
context-dependent functionality of metabolic enzymes
during tumor progression [22—25]. Among various strat-
egies, flux balance analysis (FBA) exhibits itself as a
highly effective approach to analyze GSMMs [26]. FBA
commonly assumes that cells optimize certain objective
function by coordinating metabolic fluxes subjected to
upper/ lower limits and stoichiometric constraints, by
which both input and output fluxes are balanced to
maintain the steady state at the systemic level. In par-
ticular, the assumption of maximized biomass produc-
tion (representing for optimal cancer cell growth) has
been widely used in previous studies modeling cancer
metabolism [14, 15].

Despite the wide application of FBA-based compu-
tational methods, their fundamental assumption—
maximization of growth rate in cancer cells — is still
open to doubt. Although studies investigating the
metabolic objectives of cancer cells were scarce, sev-
eral studies focusing on unicellular organisms pro-
vided wuseful insights [27-29]. Interestingly, the
hypothesis of single-objective metabolic optimization
was challenged even in Escherichia coli which is signifi-
cantly less complicated than eukaryotes. Comparison of
experimentally-measured metabolic fluxes and the Pareto-
optimal surface defined by multiple metabolic objectives
revealed that cellular metabolism may be determined by
trade-off among three competing objectives: maximization
of biomass yield, maximization of ATP production, and
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minimization of gross metabolic fluxes [30]. Similarly, the
trade-off between biomass yield and ATP production was
also considered as one plausible mechanism underlying
tumor-associated metabolic disorders [31].

In line with these findings, we present here a theoret-
ical strategy involving multi-objective optimality for
modeling cancer metabolism. Specifically, we developed
algorithms for sampling balanced flux configurations
with Pareto optimality and building individualized
models based on multi-omics datasets. To demonstrate
our methodology, we construct cell line-specific models
for NCI-60 cancer cell lines and predict the impact of
metabolic gene ablation on Pareto optimality, metabol-
ism, and cell viability. With this approach, we identify
several groups of metabolic enzymes essential for cell
proliferation or the Warburg effect, and further validate
these putative targets through survival analysis and
cell-based experiments. These results will likely im-
prove our understanding of cancer-associated metabolic
disorders and reveal potential targets for novel cancer
therapeutics.

Methods

Mathematical model and statistical analysis

The mathematical models and algorithms used in this
study are explained in detail in Supplementary Methods.
Statistical tests were performed using MATLAB. Algo-
rithms for sampling the Pareto surface, constructing in-
dividualized models, and identifying targets were
implemented in MATLAB code. For multiple hypothesis
testing, p-values were corrected using the Benjamini-
Hochberg procedure.

Experimental validation of identified metabolic targets
For the validation of proliferation-promoting enzymes,
cell lines were selected from the NCI-60 panel based
on their predicted changes of biomass production flux
using the NCI-60 individualized models as previously
constructed. The simulation of enzymatic perturba-
tions was performed using minimization of metabolic
adjustment (MOMA) [32]. Cell lines predicted to have
significant reduction of biomass production flux were
selected for further experimental validation. For the
validation of proliferation-suppressing and Warburg
effect-suppressing enzymes, cell lines were selected to
cover a range of different tissues of origin.

Cell culture

BT549, MDA_MB_231, A549, U87, SW_620, COLO205,
and RPMI_8226 cell lines were purchased from the
China Infrastructure of Cell Line Resources and cultured
in RPMI containing 10% FBS and antibiotics. Purchased
U251 and HeLa cells were cultured in DMEM contain-
ing 10% FBS. All cell lines were confirmed to be
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mycoplasma negative. shRNA constructs were trans-
fected into cells using Lipofectamine and selected with
corresponding antibiotics.

Immunoblot analysis

Cells were lysed with lysis buffer (25 mM Tris, 100 mM
NaCl, 1% Triton X-100, 1 mM EDTA, 1mM DTT, 1
mM NaVO,, 1 mM b-glycerol phosphate, and 1 mg/mL
aprotinin), and then the lysates were resolved by SDS-
PAGE and proteins transferred to PDVF membranes.
The filters were incubated with various primary anti-
bodies diluted in TBST (20 mM Tris, 135 mM NaCl, and
0.02% Tween 20). The primary antibodies were detected
with horseradish peroxidase-conjugated secondary anti-
bodies followed by exposure to ECL reagent.

Cell growth and metabolic assays

Cells were plated in dishes at a density of 5 x 10* cells/dish
and cultured in low serum medium for 5 consecutive days.
Every other day one set of cells was collected and counted,
while the medium on the remaining sets of cells was
replenished. The oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) were determined
using a Seahorse XFe96 Analyzer (Agilent Technologies,
Inc) by following the manufacturer’s protocol.

Results

Four-objective optimization model for cancer metabolism
To develop a multi-objective optimization model for can-
cer metabolism, we hypothesized that metabolic flux con-
figurations in cancer cells are determined by the trade-off
among four biological objectives (Fig. 1a), including (1)
maximization of biomass synthesis, which is frequently
considered as the only objective of cancer cells in previous
studies [17, 19, 23, 33]; (2) maximization of ATP produc-
tion, which is considered as the objective of non-
malignant cells in some studies [17, 20]; (3) minimization
of total abundance of metabolic enzymes, which is an
analogue of the solvent capacity constraint (i.e. total abun-
dance of intracellular proteins is limited by molecular
crowding in the cytoplasm) [16, 34], and (4) minimization
of total carbon uptake [35]. These four objectives reflect
different metabolic demands of cancer cells, therefore cov-
ering both maximization of yield and minimization of cost.
Combining them with the human genome-scale metabolic
model Recon 1 [36] (Additional file 2: Table S1), we created
a multi-objective optimization model (Fig. la, Additional
file 1: Supplementary Methods), which lays the theoretical
foundation for our subsequent analysis.

Based on this model, we quantitatively describe trade-
offs among the four metabolic objectives by considering
metabolic flux configurations with Pareto optimality.
Pareto optimality is defined by the inability to simultan-
eously improve performances on all objectives. For
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instance, if a metabolic flux configuration has Pareto
optimality with respect to the two objectives of maxi-
mizing biomass and maximizing ATP vyield, there
shall be no other flux configurations that yield both
higher biomass synthesis and higher ATP production.
To uniformly sample from all flux configurations with
Pareto optimality (i.e. Pareto solutions), we designed
an algorithm based on the e-constraint method [37].
Briefly, this method transformed the original multi-
objective optimization problem to a collection of
single-objective linear programming problems (e.g.
maximizing biomass synthesis subjected to constraints
on ATP production, enzyme abundance and carbon
uptake), which were then optimized to generate solu-
tions with Pareto optimality with respect to the four
objectives. Using this method, we have sampled 42,
930 Pareto solutions in total (Additional file 1:
Supplementary Methods). In line with potential ob-
jective trade-offs, these Pareto solutions exhibit sub-
stantial variabilities in each single metabolic objective
and coupling between different objectives (Fig. 1b, c¢). In
summary, these results confirm that the multi-objective
optimization model can simulate a broad spectrum of
metabolic flux configurations, yielding different amounts
of energy and building blocks with variable engagements
of metabolic enzymes and nutrients.

Pareto models accurately predict metabolic phenotypes
of cancer cells

To further validate the four-objective optimization
method in modeling cancer metabolism, we next inte-
grated the Pareto solutions with multi-omics datasets for
a collection of cancer cell lines to construct cell line-
specific models and validated these models with reported
experimental data. Briefly, we constructed specific
models by searching for a group of Pareto solutions
maximizing the similarity between metabolic enzyme
abundances or metabolite exchange fluxes and metabolic
fluxes in the corresponding Pareto solutions (Fig. 2a).
This was based on the assumption that for a particular
metabolic pathway, the total abundance of metabolic en-
zymes associated with it closely correlates with the
metabolic flux through this pathway. We used multi-
omics datasets including LC-MS/MS based proteomics
[38] and consumption-release (CORE) profiles of metab-
olites [39] to reconstruct Pareto models for NCI-60 cell
lines (Supplementary Methods).

We first validated the Pareto models by comparing
model-predicted biomass fluxes to the actual cell growth
rates. The model-predicted biomass production fluxes
significantly correlate with experimentally measured cell
growth rates (Fig. 2b, Spearman’s rank correlation coeffi-
cient = 0.68, p-value =4.5x10""), demonstrating that
the cell line-specific Pareto models successfully
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recapitulate phenotypes of examined cancer cells. To
validate that all four metabolic objectives are indispens-
able in predicting cell growth rates, we repeated this
analysis with alternative models constructed with fewer
metabolic objectives (Additional file 1: Fig. Sla-d) or less
omics data input (proteomics only or exchange fluxes
only, Additional file 1: Fig. Sle, f) and found that the

prediction accuracy was significantly decreased in these
cases. We also compared our Pareto models with models
constructed using other computational approaches, in-
cluding E-Flux, which directly uses expression levels of
metabolic genes to adjust upper limits of associated
fluxes [40], and personalized reconstruction of metabolic
models (PRIME), which utilizes prior knowledge about
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correlations between metabolic gene expressions and Next, we applied this model to predict cellular responses
cellular phenotypes to improve prediction accuracy [19].  to metabolic gene ablations and compared the calculated
Using our input dataset, none of these approaches was results with experimentally measured, cell line specific
able to predict cell growth rates as well as our model did  sensitivities to RNAi-mediated [41] and CRISPR/Cas9-
(Additional file 1: Fig. S2a-d). mediated [42] gene ablations in Achilles, a genome-scale
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gene essentiality database [43]. Based on the assumption
that cancer cells tend to adopt flux configurations with Pa-
reto optimality, we hypothesize that the deviation of a
metabolic flux configuration from the Pareto surface re-
flects the fitness of cells bearing such a flux configuration.
To quantify this deviation, we computed a Pareto devi-
ation score (PDS) defined as the Euclidean distance be-
tween the flux configuration and the Pareto surface (Fig.
2¢, Additional file 1: Supplementary Methods). It is thus
straightforward that all PDS values are non-negative, and
a metabolic flux configuration has a PDS value equal to
zero only if it is a Pareto solution. For each metabolic gene
(1905 in total) included in the model, we evaluated its es-
sentiality in NCI-60 cell lines by computing the PDS
values for the flux configurations after genetic knockdown.
We found that most (1341 out of 1905) metabolic genes
were associated with zero PDS values in all NCI-60 cell
lines, suggesting that perturbation of these genes has min-
imal influence on fitness of the cells. We thus defined
these genes as nonessential metabolic genes and genes
with non-zero PDS values in at least one cell line as essen-
tial metabolic genes (Fig. 2d). Compared to nonessential
metabolic genes, essential genes predicted by the model
were associated with reactions carrying higher fluxes
(Additional file 1: Fig. S3b) and pathways known to be
important in energy and biomass production (Additional
file 1: Fig. S3c,d). Cell lines in the Achilles database were
also in general more sensitive to ablations of model-
predicted essential metabolic genes (Fig. 2e). These results
together demonstrate that PDS correctly predict metabolic
genes essential for survival in different cancer cell lines.
We next examined whether PDS also correctly pre-
dicted cell line specific response to metabolic perturba-
tions. We correlated model-predicted PDS values with
experimentally measured sensitivities to CRISPR/Cas9-
mediated and RNAi-mediated gene ablations in the
Achilles database and found that, for most of the examined
genes (293 out of 480 in the CRISPR/Cas9-based dataset
and 302 out of 486 in the RNAi-based dataset), the PDS
values positively correlated with experimentally-determined
sensitivity scores in cell lines shared by the NCI-60 panel
and the Achilles database (Fig. 2f, median Spearman correl-
ation = 0.061 for the CRISPR/Cas9-based dataset and 0.071
for the RNAi-based dataset, one-sided Wilcoxon’s signed
rank p-value = 1.2 x 10~ ** for the CRISPR/Cas9-based data-
set and 2.5 x 10" ° for the RNAi-based dataset), suggesting
that model-predicted deviations from the Pareto surface
correctly predict cell line-specific sensitivities to metabolic
gene ablations. We also tested several other metrics includ-
ing model-predicted reduction in growth rates, mRNA ex-
pression levels and protein abundance. We compared them
with the PDS values in terms of their abilities to predict cel-
lular responses to metabolic gene ablation and found that
the PDS metric yielded the best results (Additional file 1:
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Fig. S4). Moreover, model-predicted PDS values were also
consistent with a recent finding that combinatorial
inhibition of glycolysis and OXPHOS resulted was ne-
cessary to eliminate MDA-MB-231 cancer cells [44],
in which the combinatorial treatment resulted in a
larger PDS value compared to inhibiting either gly-
colysis or OXPHOS (Fig. 2g). These results demon-
strate that the Pareto models predict cellular
phenotypes more accurately than other computational
approaches examined and suggest that impairment of
Pareto optimality by perturbing expressions of meta-
bolic enzymes correlates with fitness reduction in
cancer cells. It is thus promising to apply this ap-
proach in designing potential therapeutics that select-
ively target cancer cells with aggressive metabolic
phenotypes.

Metabolic targets identified by Pareto surface analysis are
essential for cancer progression

Given that model-predicted impairment of Pareto opti-
mality reflects sensitivities to metabolic perturbation, we
next sought to identify anti-tumor metabolic targets
using this approach. The goal was to identify metabolic
genes and enzymes whose activation or inhibition lead
to selective impairment of viabilities in cells with cancer-
associated metabolic features such as rapid proliferation
and the Warburg effect. Therefore, we designed a per-
turbation strategy leading to larger Pareto deviation in
flux configurations with higher biomass production or
stronger Warburg effect, aiming to selectively reduce the
viability of malignant cells (Fig. 3a). This strategy was
achieved by activation or inhibition of metabolic en-
zymes, which can be quantified in our model as in-
creased or decreased metabolic fluxes governed by this
particular enzyme. Without loss of generality, we use cell
growth rate as a representative phenotype to illustrate
our strategy for target identification. First, we projected
the Pareto surface to a two-dimensional space spanned
by growth rate and one specific metabolic flux, in a way
that we can clearly define its lower and upper bounds
(Fig. 3a). After that, we examined how the upper bound
of metabolic flux varies with cell growth rate. If the
upper bound decreases with growth rate, activation of
this enzyme would lead to larger impairment of Pareto
optimality for flux configurations with higher growth
rate, thus resulting in selective fitness impairment to-
wards highly proliferative cells. In this case the enzyme
is considered to be tumor-suppressive (Fig. 3b). Con-
versely, inhibition of an enzyme would selectively impair
the viability of fast-growing cancer cells, if the lower
bound rises monotonously with their growth rates. This
enzyme is thus considered to be pro-oncogenic (Fig. 3b).
A correlation-based monotonousness score was defined
to assess the tendency of declining upper bound or rising
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lower bound (Supplementary Methods, Additional file 3:
Table S2). We also require that most of the individualized
models for NCI-60 cell lines locate close to the upper or
lower boundary, to allow the metabolic perturbation to
draw the flux configurations out of the Pareto surface and
confer significant impact on cell viability.

By analyzing the geometry of projected Pareto surface
as introduced above, we identified four groups of meta-
bolic enzymes that either suppress or promote cancer
cell growth or the Warburg effect (Fig. 3¢, Additional file
4: Table S3). Notably, these four categories of enzymes
had little overlap with each other except between en-
zymes promoting proliferation and those suppressing
the Warburg effect (78 overlapped enzymes out of 89
Warburg  effect-suppressing  enzymes and 115
proliferation-promoting enzymes). No versatile target
was predicted to exist whose activation or inhibition is
able to inhibit both processes. This result seems to be
contradictory to several previous studies [45, 46]. How-
ever, it is worth mentioning that our modeling results
only reflect the direct consequence of metabolic perturb-
ation. Metabolic enzymes often carry essential non-
metabolic functions, and inhibition of cell proliferation
may lead to metabolic shifts secondary to growth arrest,
which were not considered by our analysis or most other
theoretical methods. Nevertheless, we also found a sig-
nificant negative correlation between growth rate and
the Warburg effect in NCI-60 cell lines (Fig. 3d, Spear-
man’s correlation = - 0.2590, p-value = 0.0496), suggest-
ing a plausible trade-off between proliferation and the
Warburg effect. The finding about the contradictory
roles of the ambiguous enzymes in promoting cell prolif-
eration and suppressing the Warburg effect was also
supported by several lines of literature-based evidence.
For instance, the model-predicted ambiguous enzyme,
acetyl-CoA carboxylase (ACC), was shown to shift can-
cer metabolism  from  glycolysis-dependent  to
lipogenesis-dependent in human head and neck squa-
mous cell carcinoma (HNSCC) cells [47] and suppress
whole-body glycolysis in high-fat-fed mice [48], while its
inhibition impaired proliferation of human prostate can-
cer cells [49]. Another model-predicted ambiguous en-
zyme, proline dehydrogenase (PRODH/POX), was
shown to suppress lactate production in human colon
cancer cells [50], while its inhibition impaired prolifera-
tion of human lung cancer cells [51] and breast cancer
cells [52]. Besides the 89 ambiguous enzymes, there are
18 enzymes predicted to inhibit either proliferation or
the Warburg effect, and 39 enzymes predicted to func-
tion in the opposite direction (Additional file 5: Table
S4). We reasoned that the latter two groups of enzymes
may serve as a potential target pool for therapeutic
intervention, especially those harboring expression pro-
files significantly correlated with disease progression.
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To validate the association between identified meta-
bolic targets and cancer progression, we conducted
Kaplan-Meier survival analysis on thousands of breast
cancer patients to systematically evaluate the connec-
tion between metabolic enzymes and patient survival
[53]. Specifically, we analyzed the correlation between gene
expression levels and relapse-free survival of breast cancer
patients for all metabolic genes, and divided these genes to
three categories whose up-regulation positively, negatively or
non-significantly ~ correlates  with  patient  prognosis
(Additional file 6: Table S5). Consistent with model predic-
tions, expression levels of tumor-suppressive metabolic genes
were more likely to associate with better patient survival (Fig.
3e), and model-predicted pro-oncogenic genes generally as-
sociate with worse prognosis (Chi-squared test p-value = 3 x
10~ "2, Fig. 3f). For the ambiguous gene set, the trends of sur-
vival correlations were lying in between the cases of pro-
oncogenic and tumor-suppressive ones (Fig. 3g). Taken to-
gether, these integrated analyses of omics datasets validated
the close association between model-predicted targets and
cancer progression. Altering the cutoff parameters used in
the Pareto surface analysis had little effects on the correlation
between model-predicted putative targets and patient sur-
vival (Additional file 1: Fig. S5), suggesting that the Pareto
surface analysis approach is robust to parameter selections.
Notably, targets identified by the Pareto surface analysis had
little overlap with and showed better concordance with pa-
tient survival than targets identified from previously-
applied metrics, including reduction of growth rate simu-
lated using minimization of metabolic adjustment
(MOMA) [32], correlation between cancer cell prolifera-
tion and mRNA expression, and correlation between can-
cer cell proliferation and protein abundance (Additional
file 1: Fig. S6, Additional file 1: Supplementary Methods),
suggesting that our analysis may identify more novel tar-
gets potentially exploited for cancer therapeutics.

Experimental validation of identified metabolic targets
Based on above analyses, we have identified several groups
of metabolic enzymes whose up- or down-regulation is po-
tentially essential for cancer progression. These enzymes
may serve as novel targets for designing anti-tumor thera-
peutics. We next sought to validate these targets in cell-
based experiments. Since only two metabolic enzymes,
lactate dehydrogenase (LDH) and monocarboxylate trans-
porter (MCT), were predicted to promote the Warburg ef-
fect (Fig. 3c) and consistent with their well-established
functions, we decided to validate metabolic targets falling in
the other three categories, ie. proliferation-promoting en-
zymes, proliferation-suppressing enzymes, and Warburg
effect-suppressing enzymes.

We first examined the group of proliferation-promoting
metabolic enzymes. Pathway enrichment analysis revealed
that these enzymes were enriched in many metabolic
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pathways known to be up-regulated in tumors, such as  Pareto approach in identifying anti-tumor metabolic tar-
glycolysis, TCA cycle, oxidative phosphorylation, nucleo-  gets. Moreover, among this class of targets, there are also
tide metabolism and serine, glycine and one carbon me-  some novel candidates whose functions in cancer have not
tabolism (Fig. 4a), thus supporting the effectiveness of the  been thoroughly investigated, including three enzymes in
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the histidine degradation pathway, formimidoyltransferase
cyclodeaminase (FTCD), histidase (HAL), and urocanase
(UROC). We chose these enzymes for experimental valid-
ation, as well as three other enzymes that have been inves-
tigated in recent cancer studies, namely ribose-5-
phosphate isomerase (RPI), phosphoglycerate dehydrogen-
ase (PHGDH) and phosphoserine transaminase (PSAT) as
positive controls. All these enzymes were highly scored in
the Pareto surface analysis (Fig. 4b). Most cell lines used
in our experiments were selected from the NCI-60
panel, whereas some unavailable lines were replaced
by alternatives with identical cancer types. HeLa was
also included as a control. Efficiencies of gene abla-
tions were validated by RT-PCR (Additional file 1:
Fig. S7). Knockdown of each individual target was
associated with strong anti-proliferative effects in
examined cell lines (Fig. 4c-h). These results demon-
strated that the model-predicted proliferation-
promoting enzymes, including those involved in
histidine degradation, are indeed essential for cancer
cell proliferation.

Activation of lysine degradation pathway impairs cancer
cell proliferation

Besides the putative proliferation-promoting metabolic
enzymes we have identified and validated, this study
also highlighted several novel pathways functioning in
the opposite direction. In particular, our model pre-
dicted 7 metabolic enzymes to be potentially
proliferation-suppressing, indicating that up-regulation
of these enzymes may help restrain tumor growth.
These enzymes are enriched within metabolic path-
ways related to carbohydrate anabolism and lysine
degradation (Fig. 5a). Among them, the top-scored
three are aminoadipate-semialdehyde dehydrogenase
(NAD- or NADP-dependent) and 2-aminoadipate
transaminase (Fig. 5b). These enzymes catalyze the
first few steps (Ist, 2nd and 4th steps) of lysine deg-
radation pathway, thus potentially controlling the
metabolic flux through this route. To validate the
prediction that activating these enzymes may help re-
duce cancer cell growth, we over-expressed two re-
lated genes, AASS and AADAT, in a series of cancer
cell lines with different tissues-of-origin and genetic
backgrounds. Efficiencies of over-expressions were
confirmed by Western blot analyses (Additional file 1:
Fig. S7). In line with the predictions of our computa-
tional model, over-expression of AADAT or AASS
significantly inhibited proliferation in 3 out of the 5
tested cell lines (Fig. 5¢, d), corroborating the model-
predicted rationality of suppressing cancer cell prolif-
eration via activation of the lysine degradation
pathway.
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Over-expression of selective metabolic enzymes inhibits
the Warburg effect

Another interesting prediction by our Pareto model is the
wide existence of putative Warburg effect-suppressing
metabolic enzymes. Pathway enrichment analysis
showed that these enzymes were related to the TCA
cycle, amino acid metabolism and several other func-
tional categories (Fig. 6a). Many of them can direct
metabolic fluxes away from lactate production, thereby
inhibiting the Warburg effect. We selected three of the
top-scored enzymes including mitochondrial malate de-
hydrogenase (MDH2) in the TCA cycle, CTP synthase
(CTPS) in pyrimidine metabolism, and pyrroline-5-
carboxylate reductase (PYCR) in arginine and proline
metabolism for experimental validation (Fig. 6b). We
quantitated the magnitude of the Warburg effect by the
ratio of extracellular acidification rate (ECAR) to oxy-
gen consumption rate (OCR) (Additional file 1: Fig. S8
and Supplementary Methods) in 7 cell lines after the
individual over-expression of MDH2 (Fig. 6¢c), CTPS1
(Fig. 6d), CTPS2 (Fig. 6e), PYCR1 (Fig. 6f) or PYCR2
(Fig. 6g). Indeed, we found that over-expression of
these metabolic genes, especially PYCR1, PYCR2 and
CTPS2, resulted in a great inhibition of the Warburg
effect in multiple cell lines. These metabolic enzymes
have not been extensively characterized in the field of
cancer metabolism, thus representing interesting tar-
gets for future investigation. Moreover, up-regulation
of these metabolic genes did not increase cell growth
rate except for the SW620 cell line (Additional file 1:
Fig. S9), which is consistent with our predictions that
these enzymes did not serve as putative proliferation-
promoting factors.

In summary, using the multi-objective optimization
model of cancer metabolism and the Pareto surface ana-
lysis strategy, we have identified an array of metabolic
enzymes that significantly regulate cancer-associated
phenotypes including cell proliferation and the Warburg
effect. We have validated predicted results using cell-
based assays, demonstrating that these enzymes may
serve as metabolic targets for exploiting novel cancer
therapeutics.

Discussion

In this study, we developed a novel strategy to model
cancer metabolism based on the assumption of multi-
objective optimization. Specifically, we applied the con-
cept of Pareto optimality to predict metabolic flux con-
figurations with optimality in balancing the demands for
maximization of vyields (growth and energy) and
minimization of costs (enzymes and nutrients). By inte-
grating these metabolic objectives with multi-omics
datasets, we were able to construct cell line-specific
models that correctly predicted multiple phenotypes of
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cancer cells including cell growth rates and responses to
metabolic perturbations. This is the first attempt, to our
best knowledge, to incorporate multiple objectives in
modeling cancer metabolism, which demonstrates that
theoretically estimated deviations from Pareto optimality
with respect to different metabolic goals closely resemble
impairments of cell viability.

In our current model, we selected 4 most commonly
utilized metabolic objectives for FBA analysis, including
maximization of biomass production, maximization of
ATP hydrolysis, minimization of total abundance of
metabolic enzymes, and minimization of total carbon
uptake. Nevertheless, some other objectives may also be
considered, such as minimization of redox imbalance,
maximization of resistance to cytotoxic agents,
minimization of reactive oxygen species (ROS) produc-
tion, etc. Incorporating additional objectives in our
model may further improve the fitting accuracy of Pa-
reto surfaces to the actual metabolic configurations of
cells and tissues under different circumstances. Strat-
egies to deduct the best combinations of objectives [54,

55] may be combined with our modeling method, and
provide new insights to the reprogramming mechanism
of cancer metabolism.

Our theoretical model successfully dissects the cancer
metabolic network and identifies its vulnerabilities from
a global perspective. More specifically, we determined
several groups of novel metabolic targets controlling
cancer cell proliferation or the Warburg effect by analyz-
ing the geometry of the Pareto surface. Some of these
targets were not identified by previously reported ap-
proaches, suggesting that the assumption of multiple
metabolic goals is essential for identification of these
novel targets in the metabolic network. The model-
predicted associations between these targets and cancer
progression were not only consistent with their correla-
tions with patient survival, but also experimentally vali-
dated in a series of cancer cell lines with different
backgrounds. Investigation of these target categories re-
vealed several metabolic pathways with important yet
understudied functions in cancer progression, such as
histidine and lysine metabolism. Activity of histidine



Dai et al. Cell Communication and Signaling

a

-log10(Enrichment g-value)

(2019) 17:124

KEGG pathways enriched in model-predicted
Warburg effect-suppressing metabolic genes

10

81
6

Effects of CTPS1 over-expression on
the extent of Warburg effect
1.5 Vector
CTPS1 OE

Relative ECAR/OCR
1
,
1

f Effects of PYCR1 over-expression on
the extent of Warburg effect

s 1.5 Vector
g PYCR1 OE
(<_) 1.04{ = * P - . - .
w = s
2 05
5
g 00 & S
® 2P

Page 12 of 15

b Monotonousness scores for model-predicted

C

e

Warburg effect-suppressing enzymes
.0

0.5

Monotonousness score

MDH2
CTPS ||
PYCR||

Effects of MDH2 over-expression on
the extent of Warburg effect

8 1.5 Vector
= MDH2 OE
S10me gl B Wi
w
205
s
& 00 ) S O
>
«ﬁb‘ Q&\’ 00\ \t\‘bq'
Q ¢ 9

Effects of CTPS2 over-expression on
the extent of Warburg effect

14 Vector
8 1.5 CTPS2 OE
4
5 92 B : B P
w
2 05 ;
k]
& 0.0 o S A
® P ®

Effects of PYCR2 over-expression on
the extent of Warburg effect

14
8 1.5 Vector
= PYCR2 OE
S 10a:E a @.
& . g
2 o5 M
s
2 e S @
>
N Vv Vv Q)

Fig. 6 Over-expression of metabolic enzymes inhibits the Warburg effect. (@) KEGG pathways enriched in model-predicted Warburg effect-
suppressing targets. (b) Monotonousness scores for model-predicted Warburg effect-suppressing enzymes. Enzymes selected for
experimental validation are highlighted in red. (c-g) Relative values of ECAR/OCR ratio after 4 days upon (c) MDH2; (d) CTPS1; (e) CTPS2;
(f) PYCRT; (g) PYCR2 over-expression in the tested cell lines. P-values were computed using Wilcoxon's rank sum test. P-value< 0.05 was

considered as s

degradation pathway has recently been shown to posi-
tively correlate with sensitivity to methotrexate [56], sug-
gesting that activating this pathway could be beneficial

by enhancing

ignificant

effectiveness of related chemotherapies.

However, our study indicates that this pathway can also
be pro-oncogenic by promoting cancer cell growth. The
exact roles of these pathways in different cancer types
need further

investigation. Taken together, our
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theoretical and experimental results suggest that novel
roles of metabolic enzymes in cancer progression can be
uncovered by analyzing the landscape of Pareto surface
under the framework of four-objective optimization.

Moreover, our model highlighted a contradictory role
played by several metabolic enzymes in affecting cell
growth and the Warburg effect. For a group of enzymes
identified as potential targets for rapid proliferation,
their activations were predicted to inhibit the Warburg
effect (ambiguous enzymes in Fig. 3c). The conflict be-
tween inhibiting cell proliferation and the Warburg ef-
fect reflects the intrinsic robustness of cancer as a
complex disease. However, this could also be due to the
fact that our modeling approach only considers the dir-
ect influence of metabolic perturbation, not the second-
ary effects derived from primary manipulations. In
addition, our method only incorporated the stoichiomet-
ric constraints of metabolic fluxes, and ignored nonlin-
ear factors such as the allosteric regulation of metabolic
enzymes for modeling feasibilities. Further experimental
investigation is needed to characterize the precise roles
of those enzymes in cancer. Nevertheless, we presented
a comprehensive strategy to identify cancer-associated vul-
nerabilities with much-improved accuracies, as supported
by our survival analyses and cell-based experiments.

Conclusions

To summarize, we have developed a novel method to
model cancer metabolism based on Pareto optimality
under the framework of multi-objective optimization.
This approach created an integrated workflow from
omics-based mathematical models to metabolic target
identification, and predicted metabolic hubs essential for
cancer cell proliferation and/or the Warburg effect. The
high concordance between predicted roles of metabolic
enzymes in cancer and tumor ‘omics’ data suggests that
the overall effect of a specific enzyme during tumor de-
velopment should be determined by its comprehensive
functions in multiple cellular tasks, rather than a single
task such as cell proliferation. In addition to modeling
cancer metabolism, this methodology may also be ap-
plied to explore other disease-related metabolic abnor-
malities with accessible omics datasets.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512964-019-0439-y.

Additional file 1: Supplementary materials and methods. Fig. S1.
(Related to Fig. 2). Comparison between actual growth rates of NCI-60
cell lines and growth rates predicted by alternative models. Fig. S2
(Related to Fig. 2). Comparisons between actual growth rates of NCI-60
cell lines and growth rates predicted by other methods. Fig. S3. (Related
to Fig. 2). Comparison between model-predicted essential and
nonessential metabolic genes. Fig. S4. (Related to Fig. 2). Distributions of

Page 13 of 15

Spearman’s rank correlation coefficients between experimentally measured
sensitivities of NCI-60 cell lines to metabolic gene knockdowns and
sensitivities predicted by different computational methods. Fig. S5. (Related
to Fig. 3). Influences of monotonousness score cutoff used in Pareto surface
analysis on the associations between model-predicted targets and cancer
patient survival. Fig. S6. (Related to Fig. 3). Comparison between targets
identified by Pareto surface analysis and other methods. Fig. S7. (Related to
Figs. 4, 5, 6). Validation of efficiencies of gene knockdowns and over-
expressions. Fig. S8. (Related to Fig. 6). Mitochondrial respiration and ECAR
profiles of SW620, A549, BT549, Hel.a, RCC10 and U87 cells with or without
over-expression of MDH2, CTPS1, CTPS2, PYCR1 or PYCR2. Fig. S9. (Related
to Fig. 6). Relative number of cells after 4 days in the control group (PCDH)
or upon over-expression of MDH2, CTPS1, CTPS2, PYRC1 or PYRC2 in the
tested cell lines. (DOCX 4356 kb)

Additional file 2: Table S1. Information of the genome-scale metabolic
model used in this study. (XLSX 732 kb)

Additional file 3: Table S2. Monotonousness scores for all metabolic
enzymes included in the model. (XLSX 127 kb)

Additional file 4: Table S3. Lists of metabolic targets identified based
on the Pareto surface analysis. (XLSX 20 kb)

Additional file 5: Table S4. Complete lists of tumor-suppressive, pro-
oncogenic and ambiguous enzymes and genes. (XLSX 25 kb)

Additional file 6: Table S5. Complete results of survival analysis for all
metabolic genes included in the model. (XLSX 59 kb)

Abbreviations

ACC: Acetyl-CoA carboxylase; CORE: Consumption-release; CTPS: CTP
synthase; ECAR: Extracellular acidification rate; FBA: Flux balance analysis;
FTCD: Formimidoyltransferase cyclodeaminase; GSMM: Genome-scale
metabolic model; HAL: Histidase; HNSCC: Head and neck squamous cell
carcinoma; LDH: Lactate dehydrogenase; MCT: Monocarboxylate transporter;
MDH2: Mitochondrial malate dehydrogenase; MOMA: Minimization of
metabolic adjustments; OCR: Oxygen consumption rate; PDS: Pareto
deviation score; PHGDH: Phosphoglycerate dehydrogenase;

PRIME: Personalized reconstruction of metabolic models; PRODH/

POX: Proline dehydrogenase; PSAT: Phosphoserine transaminase;

PYCR: Pyrroline-5-carboxylate reductase; RPI: Ribose-5-phosphate isomerase;
UROC: Urocanase

Acknowledgements
ZD thanks Dr. Ning Yin for helpful discussions and insightful comments on
the manuscript and Dr. Chunmei Li for help with the cancer cell lines.

Authors’ contributions

ZD, BL and LL designed the study and wrote the manuscript with input from
all authors. ZD and SG developed the computational model and conducted
the computational analysis. SY, LX, HH, KL and JW conducted the
experiments with initial help from QW. All authors read and approved the
final manuscript.

Funding

This study was supported in part by the Ministry of Science and Technology
(2016YFA0502303 and 2015CB910300 to LL, 2016YFA0502600 to BL), the
National Natural Science Foundation of China (21633001 to LL, 81622034
and 81572508 and to BL) and the Guangdong Natural Science Foundation
(2016A030313260 to BL). This study was also supported by the Guangdong
Innovative and Entrepreneurial Research Team Program (2016ZT065638).

Availability of data and materials

The datasets generated in this study are available in the figshare repository:
https://figshare.com/articles/Multi-objective_optimization_model_of_cancer_
metabolism/8182331. The omics datasets analyzed in this study are available
in repositories detailed in the section “Retrieving and processing the omics
datasets” in Supplementary Methods.

Ethics approval and consent to participate
Not applicable.


https://doi.org/10.1186/s12964-019-0439-y
https://doi.org/10.1186/s12964-019-0439-y
https://figshare.com/articles/Multi-objective_optimization_model_of_cancer_metabolism/8182331
https://figshare.com/articles/Multi-objective_optimization_model_of_cancer_metabolism/8182331

Dai et al. Cell Communication and Signaling (2019) 17:124

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
'Center for Quantitative Biology, Academy for Advanced Interdisciplinary
Studies, Peking University, Beijing 100871, China. “Program of Cancer

Research, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan

School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.

3Beijing National Laboratory for Molecular Sciences, State Key Laboratory for

Structural Chemistry of Unstable and Stable Species, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China.

“Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871,

China.

Received: 19 June 2019 Accepted: 10 September 2019
Published online: 10 October 2019

References

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.
2011;144(5):646-74.

2. Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell
survival and growth. Nat Cell Biol. 2015;17(4):351-9.

3. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv.

2016;2(5):21600200.

4. Pavlova NN, Thompson CB. The emerging hallmarks of Cancer metabolism.

Cell Metab. 2016;23(1):27-47.

5. Dai Z Shestov AA, Lai L, Locasale JW. A flux balance of glucose metabolism

clarifies the requirements of the Warburg effect. Biophys J. 2016;111(5):
1088-100.

6. Liberti MV, Locasale JW. The Warburg effect: how does it benefit Cancer
cells? Trends Biochem Sci. 2016;41(3):211-8.

7. Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on
chromatin dynamics and epigenetics. Nat Cell Biol. 2017;19(11):1298-306.

8. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window
opens. Nat Rev Drug Discov. 2011;10(9):671-84.

9. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP.
Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;
14(2):113.

10. Vernieri C, Casola S, Foiani M, Pietrantonio F, de Braud F, Longo V. Targeting

Cancer metabolism: dietary and pharmacologic interventions. Cancer
Discov. 2016;6(12):1315-33.

11. Cheong H, Lu C, Lindsten T, Thompson CB. Therapeutic targets in cancer
cell metabolism and autophagy. Nat Biotechnol. 2012,30(7):671-8.

12. Thiele |, Palsson BO. A protocol for generating a high-quality genome-scale

metabolic reconstruction. Nat Protoc. 2010;5(1):93-121.
13. Thiele |, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK,

Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, et al. A community-driven

global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):
419-25.

14. Yizhak K, Chaneton B, Gottlieb E, Ruppin E. Modeling cancer metabolism on

a genome scale. Mol Syst Biol. 2015;11(6):817.

15. Nilsson A, Nielsen J. Genome scale metabolic modeling of cancer. Metab
Eng. 201743(Pt B:103-12.

16.  Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. Genome-scale
metabolic modeling elucidates the role of proliferative adaptation in
causing the Warburg effect. PLoS Comput Biol. 2011,7(3):e1002018.

17. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting

selective drug targets in cancer through metabolic networks. Mol Syst Biol.

2011,7:501.
18. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J.
Identification of anticancer drugs for hepatocellular carcinoma through

personalized genome-scale metabolic modeling. Mol Syst Biol. 2014;10:721.

19. Yizhak K, Gaude E, Le Devedec S, Waldman YY, Stein GY, van de Water B,
Frezza C, Ruppin E. Phenotype-based cell-specific metabolic modeling
reveals metabolic liabilities of cancer. Elife. 2014;3.

20. Yizhak K, Le Devedec SE, Rogkoti VMM, Baenke F, de Boer VC, Frezza C,

Schulze A, van de Water B, Ruppin E. A computational study of the Warburg

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 14 of 15

effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol.
2014;10:744.

Shaked 1, Oberhardt MA, Atias N, Sharan R, Ruppin E. Metabolic network
prediction of drug side effects. Cell Syst. 2016;2(3):209-13.

Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L,
Micaroni M, Chaneton B, Adam J, Hedley A, et al. Haem oxygenase is
synthetically lethal with the tumour suppressor fumarate hydratase. Nature.
2011,477(7363):225-8.

Megchelenbrink W, Katzir R, Lu X, Ruppin E, Notebaart RA. Synthetic dosage
lethality in the human metabolic network is highly predictive of tumor
growth and cancer patient survival. Proc Natl Acad Sci U S A. 2015;112(39):
12217-22.

Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, Agron S, Stettner
N, Sun Q, Brandis A, Helbling D, et al. Diversion of aspartate in ASS1-
deficient tumours fosters de novo pyrimidine synthesis. Nature. 2015;
527(7578):379-83.

Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H,
Sakariassen PO, Weinstock A, Wagner A, et al. Glutamine synthetase activity
fuels nucleotide biosynthesis and supports growth of glutamine-restricted
glioblastoma. Nat Cell Biol. 2015;17(12):1556-68.

Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol.
2010;28(3):245-8.

Knorr AL, Jain R, Srivastava R. Bayesian-based selection of metabolic
objective functions. Bioinformatics. 2007;23(3):351-7.

Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions
for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007;3:119.
Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA.
Predicting biological system objectives de novo from internal state
measurements. BMIC Bioinformatics. 2008;9:43.

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U.
Multidimensional optimality of microbial metabolism. Science. 2012;
336(6081):601-4.

Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the
evolution of ATP-producing pathways. Science. 2001;292(5516):504-7.

Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed
metabolic networks. Proc Natl Acad Sci U S A. 2002;99(23):15112-7.

Gatto F, Miess H, Schulze A, Nielsen J. Flux balance analysis predicts
essential genes in clear cell renal cell carcinoma metabolism. Sci Rep. 2015;
5:10738.

Vazquez A, Liu J, Zhou Y, Oltvai ZN. Catabolic efficiency of aerobic
glycolysis: the Warburg effect revisited. BMC Syst Biol. 2010;4:58.

Savinell JM, Palsson BO. Network analysis of intermediary metabolism using
linear optimization. . Development of mathematical formalism. J Theor Biol.
1992;154(4):421-54.

Duarte NC, Becker SA, Jamshidi N, Thiele |, Mo ML, Vo TD, Srivas R, Palsson
BO. Global reconstruction of the human metabolic network based on
genomic and bibliomic data. Proc Natl Acad Sci U S A. 2007;104(6):1777-82.
Mavrotas G. Effective implementation of the e-constraint method in multi-
objective mathematical programming problems. Appl Math Comput. 2009;
213(2):455-65.

Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B. Global
proteome analysis of the NCI-60 cell line panel. Cell Rep. 2013;4(3):609-20.
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R,
Kirschner MW, Clish CB, Mootha VK. Metabolite profiling identifies a key role
for glycine in rapid cancer cell proliferation. Science. 2012;336(6084):1040-4.
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY,
Moody DB, Murray M, Galagan JE. Interpreting expression data with
metabolic flux models: predicting mycobacterium tuberculosis mycolic acid
production. PLoS Comput Biol. 2009;5(8):e1000489.

McFarland JM, Ho 2V, Kugener G, Dempster JM, Montgomery PG, Bryan JG,
Krill-Burger JM, Green TM, Vazquez F, Boehm JS, et al. Improved estimation
of cancer dependencies from large-scale RNAi screens using model-based
normalization and data integration. Nat Commun. 2018;9(1):4610.

Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV,
Montgomery PG, Cowley GS, Pantel S, et al. Computational correction of
copy number effect improves specificity of CRISPR-Cas9 essentiality screens
in cancer cells. Nat Genet. 2017:49(12):1779-84.

Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S, East-Seletsky A,
Ali LD, Gerath WF, Pantel SE, et al. Parallel genome-scale loss of function
screens in 216 cancer cell lines for the identification of context-specific
genetic dependencies. Sci Data. 2014;1:140035.



Dai et al. Cell Communication and Signaling

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

(2019) 17:124

Jia B, Lu M, Jung KH, Park JH, Yu L, Onuchic JN, Kaipparettu BA, Levine H.
Elucidating cancer metabolic plasticity by coupling gene regulation with
metabolic pathways. Proc Natl Acad Sci U S A. 2019;116(9):3909-18.

Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE,
Vander Jagt DL, Semenza GL, Dang CV. Inhibition of lactate dehydrogenase
a induces oxidative stress and inhibits tumor progression. Proc Natl Acad
Sci U S A. 2010;107(5):2037-42.

Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P, Signoretti S, Billiard J,
Duffy KJ, Grant A, et al. Targeting lactate dehydrogenase--a inhibits
tumorigenesis and tumor progression in mouse models of lung cancer and
impacts tumor-initiating cells. Cell Metab. 2014;19(5):795-809.

Luo J, Hong Y, Lu Y, Qiu S, Chaganty BK, Zhang L, Wang X, Li Q, Fan Z.
Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to
survive inhibition of the Warburg effect by cetuximab. Cancer Lett. 2017,
384:39-49.

Choi CS, Savage DB, Abu-Elheiga L, Liu ZX, Kim S, Kulkarni A, Distefano A,
Hwang YJ, Reznick RM, Codella R, et al. Continuous fat oxidation in acetyl-
CoA carboxylase 2 knockout mice increases total energy expenditure,
reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci U S A.
2007;104(42):16480-5.

Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K,
Verhoeven G, Swinnen JV. Chemical inhibition of acetyl-CoA carboxylase
induces growth arrest and cytotoxicity selectively in cancer cells. Cancer
Res. 2007,67(17):8180-7.

Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM. Proline
oxidase functions as a mitochondrial tumor suppressor in human cancers.
Cancer Res. 2009,69(16):6414-22.

Liu W, Hancock CN, Fischer JW, Harman M, Phang JM. Proline biosynthesis
augments tumor cell growth and aerobic glycolysis: involvement of
pyridine nucleotides. Sci Rep. 2015;5:17206.

Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C,
Grunewald TGP, Fendt SM. Proline metabolism supports metastasis
formation and could be inhibited to selectively target metastasizing cancer
cells. Nat Commun. 2017,8:15267.

Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An
online survival analysis tool to rapidly assess the effect of 22,277 genes on
breast cancer prognosis using microarray data of 1,809 patients. Breast
Cancer Res Treat. 2010;123(3):725-31.

Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, Tendler A,
Mayo AE, Alon U: Inferring biological tasks using Pareto analysis of high-
dimensional data. Nat Methods 2015, 12(3):233-235, 233 p following 235.
Zhao Q, Stettner Al, Reznik E, Paschalidis |, Segre D. Mapping the landscape
of metabolic goals of a cell. Genome Biol. 2016;17(1):109.

Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, Kunchok T, Abu-
Remaileh M, Freinkman E, Schweitzer LD, Sabatini DM. Histidine catabolism
is a major determinant of methotrexate sensitivity. Nature. 2018,559(7715):
632-6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 15 of 15

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

e thorough peer review by experienced researchers in your field

 rapid publication on acceptance

e support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

B BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Mathematical model and statistical analysis
	Experimental validation of identified metabolic targets
	Cell culture
	Immunoblot analysis
	Cell growth and metabolic assays


	Results
	Four-objective optimization model for cancer metabolism
	Pareto models accurately predict metabolic phenotypes of cancer cells
	Metabolic targets identified by Pareto surface analysis are essential for cancer progression
	Experimental validation of identified metabolic targets
	Activation of lysine degradation pathway impairs cancer cell proliferation
	Over-expression of selective metabolic enzymes inhibits the Warburg effect

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

