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Abstract

Phosphatidylserine (PtdSer), an essential constituent of eukaryotic membranes, is the most abundant anionic
phospholipid in the eukaryotic cell accounting for up to 10% of the total cellular lipid. Much of what is known
about PtdSer is the role exofacial PtdSer plays in apoptosis and blood clotting. However, PtdSer is generally not
externally exposed in healthy cells and plays a vital role in several intracellular signaling pathways, though relatively
little is known about the precise subcellular localization, transmembrane topology and intracellular dynamics of
PtdSer within the cell. The recent development of new, genetically-encoded probes able to detect
phosphatidylserine is leading to a more in-depth understanding of the biology of this phospholipid. This review
aims to give an overview of recent developments in our understanding of the role of PtdSer in intracellular
signaling events derived from the use of these recently developed methods of phosphatidylserine detection.
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Background

The ability to produce phosphatidylserine (PtdSer) is essen-
tial for mammalian survival [1], while the lack of PtdSer pro-
duction in yeast leads to growth defects and an increase in
other negatively charged lipids in an attempt at compensa-
tion [2, 3]. In addition, over production of PtdSer leads to
the congenital disease Lenz-Majewski syndrome, character-
ized by the combination of sclerosing bone dysplasia, intel-
lectual disability and distinct craniofacial, dental, cutaneous
and distal-limb anomalies [4].

PtdSer has important roles in apoptosis and blood clot-
ting, and most of what is known about PtdSer applies to
these roles. However, in homeostasis PtdSer is not gener-
ally externally exposed, yet it clearly plays a vital role in
healthy cells. The function of PtdSer, as with all lipids, is
determined by both its concentration and sidedness in in-
dividual organellar membranes. Mitochondria associated
membranes (MAMs) of the endoplasmic reticulum (ER)
have high rates of PtdSer synthesis and serve as a conduit
for the transfer of lipids between the ER and adjacent
mitochondria [5, 6]. The bulk subcellular distribution of
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PtdSer results from the coordinated actions of metabolic
enzymes in conjunction with vesicular and nonvesicular
transport pathways, while the topology of PtdSer results
from the actions of transmembrane enzymes capable of
moving PtdSer between lipid bilayers; PtdSer flippases,
floppases, and scramblases [7, 8]. Until relatively recently,
PtdSer distribution and topology studies depended solely
on the fractionation and subsequent chemical analysis of
cellular organelles. These early studies highlighted PtdSer
distribution throughout the cell is unbalanced (Fig. 1a),
being more concentrated in the plasma membrane (PM)
(~10-15% total lipid) with lower levels in the ER (~ 4%)
and mitochondria (~ 1%), the latter of which uses PtdSer
as a source of phosphatidylethanolamine (PtdEtn)
(reviewed in [7, 9, 10]). The PtdSer content of less abun-
dant organelles, including the endosomal system, has gen-
erally been less well defined because of the difficulty
inherent in purifying them to homogeneity.

In addition to difference of PtdSer content amongst
organelles, the unequal bilayer distribution of PtdSer at
the PM has long been appreciated [11], as has the im-
portance of movement of PtdSer from the cytoplasmic
to exofacial face of the PM being involved in critical sig-
naling events including blood clotting [12] and apoptotic
cell recognition and removal by macrophages [13]. Fur-
thermore, the PM has a net-negative charge on its
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Table 1 Examples of Intracellular Proteins Binding or Influenced by PtdSer

Protein
K-Ras
Rab-GTPases

Brief function description

An early GTPase in many signal transduction pathways, for review see [77].

A large family of proteins controlling endocytosis, cell migration, cell progression and morphology: many are discussed

in main text. Exactly how many of the Rho GTPases that bind or depend on PtdSer for their localization remains uncertain.
Src A central non-receptor tyrosine kinase with localization dependent on PtdSer, as discussed in the main text.

Protein kinase C Enzyme family controlling other proteins through phosphorylation [78].

Akt Activation mediates downstream responses through protein phosphorylation, binding to both PI(3,4,5)Ps and PtdSer [79].

Cavinl As discussed in main text, PtdSer is required for cavin1 and caveolin1 to form stable caveolae in vivo [68]. Cavin1 forms
polyhedral lattices on PtdSer- containing liposomes [80].

Evectin-2 Retrograde endosome to Golgi trafficking [72, 73]. Specific binding to PtdSer depends on the PH-domain of the protein [72, 81].

P4-ATPases Evolutionarily conserved lipid flippases (including ATP8A1, ATP8A2, ATP9A in mammals and Drs2 in yeast) [8]. Some are specific

for PtdSer [82] and as discussed in main text, a number are important for endosomal trafficking [76, 83-86], with recent reviews
providing more detail [33].

cytoplasmic face [14], and consequently has an essential
role in charge-based signaling events [15]. However, the
contribution by PtdSer to this charge, as well as precise
localization and the dynamics of PtdSer, or indeed other
organelles, within whole and live cells, remains an area
of active research which has recently been aided by new

this review, we will highlight recent contributions to the
understanding of PtdSer distribution and its roles within
a normal cell.

Distribution and dynamics of phosphatidylserine
The development of the PtdSer-specific LactC2 probe, based

tools for the detection and visualization of PtdSer. In  on the PtdSer-specific calcium independent discoidin-type
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Fig. 1 Intracellular distribution of PtdSer. a Relative abundance of PtdSer in membranes as mol% of total lipids throughout organelles of the cell.
ER - endoplasmic reticulum, PM - plasma membrane. b, ¢ The probe LactC2 labels cytoplasmic-facing leaflets containing PtdSer. When co-
expressed with additional organellar markers (such as the plasma membrane labelling PH-PLC (b)) relative correlations as determined by
calculation of Pearson'’s correlative co-localization (c) can be determined as a proxy for the relative amounts of PtdSer in the cytoplasmic-facing
leaflets of organelles (as first published in Hirama et al. [48]). Markers for plasma membrane (PH-PLC), ER (Sec61), Golgi (GalT), mitochondria (Mito
(MitoTracker)), early endosomes (Rab5), fast and slow recycling endosomes (Rab4 and Rab11, respectively) and lysosome (LAMP1) are shown. The
lack of ER and Golgi labeling by LactC2 suggests a lack of PtdSer in the cytoplasmic leaflets as discussed in the text
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Fig. 2 Current knowledge of roles and intracellular transport of PtdSer. PtdSer is produced in the ER, from where it is distributed throughout the
cell. PtdSer can be transferred to the mitochondria through mitochondria associated membranes (MAMs) (1), where it is mostly converted to
PtdEtn. Distribution to the PM and endosomal system can occur via traditional vesicle-mediated trafficking as well as via direct movement via
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PtdSer-specific lipid transfer proteins (2). The relative importance of both trafficking methods is currently unclear. At the PM (3), PtdSer is kept in
the cytoplasmic-facing leaflet and is important for generating a high net-negative charge. A number of important signaling molecules are
recruited to the PM through charge and/or direct PtdSer recognition binding, with PtdSer thus playing essential roles in many signaling cascades
and protein localization. PtdSer also plays important roles in endocytosis (4), including through its curvature-inducing headgroup interactions as
well as interactions with proteins required for caveolae formation. PtdSer may also play a role in Golgi function (5), related to cargo sorting and
budding from the trans-Golgi. PtdSer also appears to be important for recycling of cargo and interaction with the recycling machinery (e.g. Evectin2, EHD1,
Snx4) at the recycling endosome (6). These interactions with the recycling machinery also likely helps to ensure PtdSer returns to, and maintains its
enrichment on, the PM while causing reduced PtdSer levels on the late endosomes and lysosomes. Mito — mitochondria, ER — endoplasmic reticulum, PM
- plasma membrane, EV — exocytic vesicle, EE — endocytic vesicle, RE — recycling endosome, Lys — lysosome

C2 binding domain of lactadherin (also known as Milk fat
globule-EGF factor 8 (MFGES)) [16] has enabled the
visualization of PtdSer in live cells (Fig. 1b-c). Indeed, the
initial study using this probe showed for the first time the
cytoplasmic-facing distribution of PtdSer in live cells. This
initial LactC2 study underscored the importance of PtdSer
in providing the negative charge of the PM, finding that
cationic probes track the presence of LactC2-identified
PtdSer, including in the absence of polyphosphoinositides
[16]. The study also highlighted the presence of PtdSer in,
and its ability to recruit charge-based protein probes to,
endosomal compartments, while not being detectable in
the cytoplasmic-facing cis-Golgi, ER or mitochondria.
While it is possible the LactC2 probe does not have high
enough sensitivity to detect the relatively low levels of

PtdSer present in these organelles [9, 10], it is also possible
that, like in the PM, PtdSer leaflet distribution in intracel-
lular organelle membranes is asymmetrical [17]. Indeed,
there existed significant evidence prior to the development
of the LactC2 probe suggesting this is the case, at least in
the ER [18-21]. This evidence has since been strength-
ened with additional data that does not require the bio-
chemical isolation, and potential disruption of, this
intricate tubular organelle. Using a combined light micros-
copy and on-section staining electron microscopy (EM)
approach, the LactC2 probe was able to detect PtdSer on
the luminal but not cytoplasmic facing ER membrane
[22]. A modified ER-targeted LactC2 probe has also been
used to successfully detect PtdSer in the ER lumen of live
cells [23].
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The ability of PtdSer to change membrane leaflets
faces a high energy barrier, with spontaneous transloca-
tion estimated to only occur in the order of hours per
single molecular translocation event [24, 25]. Three cat-
egories of proteins have been characterized that enable
the trans-leaflet movement of lipids: flippases that transfer
lipids to the cytosolic leaflet from the PM extracellular or
organellar luminal leaflet, floppases that transfer in the op-
posite direction (out of the cytosolic facing leaflet), and
scramblases that are bidirectional [26-28]. As the cyto-
plasmic leaflet of the ER is where the active site of glycero-
phospholipid enzymes reside [29], it has generally been
thought that most glycerophospholipids in the ER are
scrambled equally between leaflets to allow for proper ER
membrane expansion and leaflet coupling [30, 31]. How
this can be compliant with PtdSer having a polarized dis-
tribution in the lumen of the ER is unclear. However, ex-
pression of gain-of-function PtdSer synthase 1 identified
from Lenz-Majewski syndrome patients does result in the
appearance of cytosolic PtdSer in the ER, demonstrating
that the normal mechanism(s) that restrict PtdSer to the
luminal leaflet are saturable [32]. One possibility is that
PtdSer, once in the luminal leaflet, is kept there through
interactions with luminal proteins and/or Ca®* [33]. Other
non-mutually exclusive possibilities are that movement
PtdSer from the cytoplasmic-facing leaflet occurs at the
MAM into the mitochondria where it is used for the pro-
duction of PtdEth [34], or PtdSer is removed from the
cytoplasmic leaflet through non-vesicular transport by
lipid transfer proteins (LTPs).

LTPs, along with vesicular trafficking, are how lipids
move between cellular membranes [9, 33, 35]. Recent
studies have highlighted the ability of specific LTPs,
oxysterol-binding homology (Osh) proteins 6 and 7 in
yeast [36, 37] and oxysterol-binding protein (OSBP)-re-
lated proteins (ORPs) 5 and 8 in mammalian cells [36,
38], to move PtdSer between membranes. The existence
of these PtdSer-specific LTPs thus provide a potential
mechanism for the generation and/or maintenance of
the PtdSer cellular membrane gradient present in cells.
Indeed, recent studies have shown that LTP-mediated
transfer of PtdSer against its concentration gradient is
possible through exchange with phosphatidylinositol 4-
phosphate (PtdIns4P) down its concentration gradient
from the PM to the ER, where the phosphatase Sacl
converts PtdIns4P to PtdIns [38, 39]. However, recent
evidence suggests this exchange may be principally used
to fine tune the PM levels of PtdIns4P and PtdIns(4,5)P,
rather than be responsible for bulk movement of PtdSer
into the PM [39, 40]. There is also compelling evidence
for the importance of vesicular trafficking in being the
major route for PtdSer trafficking and concentration
within the PM. For example, in yeast with temperature-
sensitive mutations in secretory proteins Sec6 and Secl,
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the polarization of PtdSer in the PM normally seen at a
forming bud is inhibited and PtdSer instead accumulates
on the vesicle that are prevented from fusing with the
PM [2]. Additionally, endosomal recycling is important
in the maintenance of high PtdSer levels, with inhibition
causing a redistribution of PtdSer throughout the endo-
somal system in yeast [41]. Similarly, disrupting LTP
function in mammalian cells has been found to result in
slightly altered, but not disrupted, cellular membrane
PtdSer distribution [38, 39]. Furthermore, Snx4, a mem-
ber of the sorting nexin family of proteins involved in
endosomal cargo sorting and recycling [42] that is spe-
cifically involved in recycling of Sncl in yeast [43] and
transferrin receptor in mammalian cells [44] has recently
been implicated in leading to the modification of endo-
somal PtdSer levels [41].

Thus, while nonvesicular lipid transport, mediated by
LTPs, play an important role, vesicular trafficking appears
to be a significant contributor for maintaining the inter-
membrane PtdSer gradient within the cell. Though the full
molecular mechanisms of how PtdSer is segregated from
other lipids remains to be fully elucidated, biochemical
studies indicate a significant fraction of PtdSer in mamma-
lian cells is enriched in PM-derived detergent-resistant,
cholesterol-enriched “lipid-rafts” [45]. This biochemical
data is supported by both electron microscopy analysis
showing PtdSer is not homogenously distributed through-
out the PM [22] and the finding that cholesterol and PtdSer
co-segregate throughout subcellular compartments, being
most concentrated in the PM and early endosomal com-
partments and relatively absent from the ER [22, 46, 47].
Further, acute changes in either affect the distribution of
the other; cholesterol is required for the normal distribution
of PtdSer [2, 48] and acute changes in PM levels of PtdSer
alter the distribution of cholesterol [46]. Evidence is also
building for the likelihood that plasma membrane outer
leaflet rafts, dependent on glycersphingolipids and choles-
terol [49], are coupled to inner leaflet rafts [50, 51]. The im-
portance of PtdSer in this coupling, in both the PM and
endosomal membranes, is the subject of a recent excellent
review [52] so will not be further covered here.

Roles of intracellular phosphatidylserine
As described in Background, PtdSer is essential in mam-
malian cells [1], while yeast lacking PtdSer are viable but
have greatly reduced growth kinetics [2, 3]. As well, as
PtdSer-mediated extracellular signaling, such as during
blood clotting and apoptosis, has recently been reviewed
[53-55], we will focus here on information regarding the
roles of PtdSer within healthy non-apoptotic cells (Fig. 2).
As described, at steady state in a healthy cell PtdSer
makes up to ~ 15 mol% of the total lipid in the PM. Fur-
thermore, as it is nearly exclusively in the inner (cyto-
plasmic-facing) leaflet it can therefore make up to ~ 30
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mol% of the lipid on this leaflet. As the major lipid with
a net-negative charge, PtdSer is therefore responsible for
providing much of the inner leaflet’s charge density. A
significant role of PtdSer then is interacting with pro-
teins in a non-specific charge-based manner to permit
their appropriate localization within the cell (Table 1).
For example, the protein kinase Src and Ras GTPase
family members Racl and K-Ras are proteins whose
membrane targeting requires a polycationic stretch in
addition to lipid modifications [56, 57]. The polycationic
stretch of K-Ras4B has a net charge of + 8, resulting in its
localization almost exclusively at the PM. If PtdSer is re-
moved [58], or if the net charge of this stretch is varied the
resulting mutants are directed additionally to other mem-
branes; constructs of intermediate charge (e.g., + 5) localize
to endosomal membranes [16]. Similarly, Src has a polyca-
tionic stretch next to its myristoylated residue at the N-
terminus with a net charge of + 5, and the kinase was found
to associate not only with the PM but also extensively with
PtdSer-enriched endosomal membranes [16].

Further evidence of the importance for PtdSer in
charge-based protein distributions has been observed
with the phagocytic process. When pathogens cause a
depletion of PtdSer from phagosomes, Src is also lost
[59]. In other instances, such charged motifs are not suf-
ficient to direct proteins to a membrane but nonetheless
influence their targeting, likely playing a complementary
role [56, 60]. Evidence that this is the case comes from
studies in yeast where polarized PtdSer is required for
the recruitment of the signaling and polarity-regulating
molecule Cdc42 to the forming bud neck; without
PtdSer Cdc42 remains Golgi-associated and buds are
very inefficiently formed, leading to poor growth [2].
Similarly, Cdc42 and Rhol are dependent on PtdSer
polarization for their proper localization and function in
Schizosaccharomyces pombe [61]. In yet another ex-
ample, the plant GTPase Rho of Plants (ROP) family
member ROP6 doesn’t appear to require PtdSer for its
PM association, but does require PtdSer to be stabilized
into nanodomains within the membrane upon activation
that allows proper signal transduction [62]. Whether
PtdSer is required for, or can modulate, signaling of
other ROP family members, all of which contain a poly-
basic stretch of amino acids at their C-terminus [62], re-
mains to be seen.

Traditionally, the interactions between polycationic
stretches in proteins and anionic phospholipid head-
groups have been thought to be strictly charge based
with little specificity. However, recent evidence chal-
lenges this assumption. For instance, K-Ras4B which
contains six lysine residues adjacent to a farnesylated
cysteine residue, has recently been shown to interact
with PtdSer preferentially [63]. The tail region of K-
Ras4B adopts a series on conformations, disordered,
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ordered and intermediate, with the disordered being the
preferred conformation. This conformation is also able
to H-bond PtdSer more effectively than the other two
confirmations [63]. Conversely, other proteins such as
K-RasG12V and Racl show no preference for PtdSer
[63-65]. While these are only initial studies, the results
suggest that some polybasic proteins may have a prefer-
ence for PtdSer or other anionic lipids beyond simple
electrostatically driven interactions.

There are also multiple lines of evidence indicating the
charge of PtdSer contributes to PM curvature and is im-
portant for the formation of some forms of endocytic
vesicles. For example, caveolae are bulb-shaped nanodo-
mains (50-100 nm) of the PM that have been linked
with many physiological functions, including mechano-
sensing and endocytic transport [66]. While caveolae
have been known to be enriched for cholesterol and spe-
cific glycerosphingolipids, including GM3 [67], PtdSer
has recently been identified as being required for their
formation and maintenance [68]. This is likely at least
partly due to the charge-based PtdSer binding of the
cavinl protein [69] which, along with caveolinl, is re-
quired for in vivo caveola formation [70]. PtdSer is also
capable of causing membrane curvature and induce
endocytosis upon the acute removal of cholesterol, again
a consequence of the charged headgroup of PtdSer [48].
It is likely that cholesterol, which makes up ~ 40 mol%
of PM lipids [10], helps to keep the PtdSer headgroup
charge density on the inner leaflet low enough to not in-
duce spontaneous curvature. However, once cholesterol
is removed the distance between phospholipid head-
groups is decreased, resulting in high spontaneous
curvature capable of forming endocytic tubules [48, 71].
Indeed, increasing PtdSer levels on the inner leaflet of
the PM above homeostatic levels (and therefore charge
density) without concomitant cholesterol removal is also
sufficient to increase formation of endocytic vesicles
[48]. It is tempting to speculate that the cavin and cave-
olin proteins are taking advantage of this curvature-
inducing property of PtdSer to induce caveolae. Thus,
while cholesterol appears important for PtdSer cellular
localization, it also appears to be important for modula-
tion of PtdSer spacing and membrane curvature induc-
tion. This intimate relationship with cholesterol likely
plays important roles in other PtdSer function as well, as
suggested by PtdSer dynamics and interactions with ca-
veolae [68] and signaling proteins [2, 59, 62].

The understanding of the role of PtdSer in internal
membranes remains even less clear than the roles at the
PM. Similar to the plasma membrane, recycling endo-
somes are rich in PtdSer [72] and recent work has dem-
onstrated that PtdSer supports a variety of functions in
these endosomes. The endosomal protein Evectin-2 con-
tains a pleckstrin homology domain that binds to PtdSer
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rather than phosphoinositides [72]. Depletion of
Evectin-2 or decreasing the availability of PtdSer pre-
vents the movement of cholera toxin from the recycling
endosome to the Golgi. Similarly, depletion of Evectin-2
and a reduction of PtdSer levels results in an inability of
Golgi proteins (e.g. TGN38) to be retrieved from endo-
somes [72, 73]. In addition to the presence of PtdSer on
the cytosolic leaflet of recycling endosomes, PtdSer flip-
pases (e.g., ATP8A1, ATP8A2) are also required to sup-
port trafficking events. One critical effector downstream
of flipped PtdSer is the Epsl5 homology domain-
containing protein-1 (EHD1), an ATPase with dynamin-
like activity and a role in membrane remodeling re-
quired for the retrograde transport of Shiga toxin to the
Golgi [74, 75]. Curiously, PtdSer, Evectin-2 and ATP8A1
have all recently been implicated as regulators of Yes-
associated protein (YAP) signaling and cell proliferation
[76]. ATP8A1 knockdown results in the activation of
Lats, which in turn phosphorylates YAP and prevents its
translocation into the nucleus. Silencing of Evectin-2 re-
sults in a decrease of Nedd4-mediated ubiquitination of
Lats], resulting in increased levels that also result in in-
creased phosphorylation and inactivation of YAP. These
studies raise several questions regarding how PtdSer and
its flipping in recycling endosomes are controlling these
effectors. Additionally, since recycling endosomes re-
ceive a lot of incoming membrane from the asymmetric
plasma membrane, it is unclear where the luminal leaflet
PtdSer is coming from to serve as a substrate for the
flippases. Much is still to be learned regarding the cell
physiology of PtdSer and we anticipate that the same
biophysical properties PtdSer imposes on the plasma
membrane will hold in endosomes and the trans-Golgi.

Conclusions

It is becoming clear through recent studies that the es-
sential phospholipid PtdSer is important for many intra-
cellular processes in addition to its well-characterized
roles in apoptosis and blood clotting. This advancement
of our understanding of the intracellular roles for PtdSer
has been fueled in part by the recent development of
new probes to detect PtdSer. However, as described, our
knowledge of the normal roles for PtdSer in both signal-
ing and cellular trafficking within the normal cell is still
developing and many details remain to be discovered.
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