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N822K- or V560G-mutated KIT activation ")
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Golgi apparatus in leukemia cells
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Abstract

Background: KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells.
Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia
(MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL,
KIT with mutations (D816V, human; D874Y, mouse) traffics to endolysosomes (EL), where it can then initiate
oncogenic signaling. On the other hand, KIT mutants including KIT?®'*' in GIST accumulate on the Golgi, and from
there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML
(CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream
molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KIT?"®Y in MCL is able to
signal on EL.

Methods: We used leukemia cell lines, such as Kasumi-1 (KITV8?2 AML), SKNO-1 (KIT"*8?X AML), and HMC-1.1
(KIT5%%C MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the
mutants using immunofluorescence microscopy and inhibition of intracellular trafficking.

Results: In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the
Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However,
results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of
KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT,
ERK, and STATS, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT
signaling. Interestingly, KIT"*%°¢ in HMC-1.1 migrates and activates downstream in a similar manner to KIT¥®*¢in
Kasumi-1.

Conclusions: In AML, KITN®??K mislocalizes to EL. Our findings, however, suggest that the mutant transduces

phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KIT'**°C signal platform in
MCL is similar to that of KIT¥®?? in AML. These observations provide new insights into the pathogenic role of KIT
mutants as well as that of other mutant molecules.
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Background

KIT is a member of the type III receptor tyrosine kinase
(RTK) family that includes platelet-derived growth fac-
tor receptor A/B (PDGFRA/B), fms, and fms-like tyro-
sine kinase 3 (FLT3) [1-3]. It is known to participate in
tyrosine phosphorylation signals at the PM, ensuring
cell growth and survival in hematopoietic cells, mast
cells, interstitial cells of Cajal, germ cells, and melano-
cytes [4-6].

KIT is composed of N-glycosylated immunoglobulin
domains in the amino-terminal extracellular portion,
transmembrane region, juxta-membrane (JM) region,
and the carboxy-terminal cytoplasmic tyrosine kinase
domain [6, 7]. Stem cell factor (SCF), a ligand for KIT,
stimulates KIT phosphorylation on selective tyrosine res-
idues, such as Y703 and Y721, and these phospho-tyro-
sines serve as docking sites for downstream molecules
[7-9]. SCE-KIT activates the phosphatidyl 3-kinase-AKT
pathway and the RAS-MEK-ERK cascade, which control
gene expression, metabolism, and cytoskeletal architec-
ture [6, 9-11]. The JM region plays a role in autoinhibi-
tion of the receptor through intra-molecular binding
[12]. Thus, constitutively active mutations of KIT allow
host cells to autonomously proliferate, resulting in the
development of AML, MCL, GIST, germ cell tumors,
and melanoma [6, 13-16]. In particular, KIT mutations
in the JM region (eg, V560G, deletion etc.) are found in
70% of GIST patients [17-19]. A tyrosine kinase inhibi-
tor, imatinib mesylate (Gleevec), has been developed for
the treatment of GIST, and it has dramatically improved
the prognosis of patients [19, 20]. However, KIT-bearing
mutations in the kinase activation loop (AL), such as
D816V, cause a loss of sensitivity to imatinib [17, 18, 21,
22]. In comparison to JM mutants (mut), KITN**¢ js
also imatinib-resistant but to a lesser degree than
KITP#14V [17, 22, 23].

Previously, we reported that in MCL, KIT®**¢V (hu-
man) and KITP®#*Y (mouse) activate AKT and the signal
transducer and activator of transcription 5 (STAT5) in
EL and on the ER, respectively (Table 1) [24, 25]. Fur-
thermore, previous studies showed that in cells other
than those of MCL, such as GIST and NIH3T3 cells,

Table 1 Summary of KIT localization and signaling in AML, MCL,

and GIST

Cell line, KIT mutation KIT Downstream  Reference
localization  activation

Kasumi-1 (AML), N822K EL Golgi This study

HMC-1.1 (MCL), V560G EL Golgi

HMC-1.2/RCM (MCL), D816V/D814Y  EL ER, EL [24, 25]

GIST cell lines (ex11/17 etc...), Golgi Golgi [26-29, 30]

NIH3T3 (transfected KIT?%% etc. . )

AML acute myeloid leukemia, MCL mast cell leukemia, GIST gastrointestinal
stromal tumor, Ex exon, EL endo-lysosomes, ER endoplasmic reticulum

Page 2 of 15

JM-mut or AL-mut accumulates on the Golgi apparatus,
where it initiates oncogenic signals (Table 1) [26-29].
These studies raised important questions as to whether
mutant KIT initiates signaling from intracellular com-
partments in other cancers such as AML, and whether
the mutation status of KIT affects the platform for onco-
genic signaling.

KIT mutations have been found in approximately 30%
of CBF-AML patients who have chromosome aberra-
tions [31-33]. Recent studies showed that active KIT
mutations are correlated with a poor prognosis in AML
patients [31, 32]. The major activating KIT mutations
are found at D816 and N822 (26 cases and 14 cases in
63 KIT mutation-positive patients, respectively) [33]. Al-
though spatio-temporal analyses of KIT"®'®V signals
have been performed [24, 25, 28], it is unclear whether
the N822K mutation in leukemia affects KIT localization
and the signal platform.

We then investigated the relationship between
KITN®*2X Jocalization and tyrosine phosphorylation sig-
nals in Kasumi-1 cells (an AML cell line) that endogen-
ously express KITN®?2X Furthermore, we examined
whether KITV**°¢ in HMC-1.1 (MCL) caused signaling
on the Golgi, ER, PM, or EL. In Kasumi-1, KIT is prefer-
entially found in EL. Newly synthesized KIT in the ER
traffics to the PM through the Golgi and subsequently
relocates to EL through endocytosis in a manner
dependent on its kinase activity. Our immunofluores-
cence assay, however, showed that KIT autophosphoryl-
ation preferentially occurs on the Golgi. Indeed,
KITN®?2K activates AKT, ERK, and STATS5 on the Golgi
in Kasumi-1 cells. Moreover, lipid rafts in the Golgi play
a role in KIT signaling. Interestingly, KIT"**°S in MCL
transduces signals in the Golgi in a similar manner to
KITY***% in AML but not to KIT”*'*Y in MCL. Our
study demonstrates that both KIT™*?* and KITY>%°¢
are mainly present in EL, but that their signal platform
in leukemia cells is the lipid rafts of the Golgi. Further-
more, blockade of mutant KIT incorporation into the
lipid rafts may provide a new strategy for suppression of
growth signals in leukemia cells.

Methods
Cell culture
Kasumi-1, SKNO-1 (JCRB Cell Bank, Osaka, Japan),
HMC-1.1 (Merck Millipore, Darmstadt, Germany),

HMC-1.2 and ptl8 cells were cultured at 37°C in
RPMI1640 medium supplemented with 10% FCS, peni-
cillin, streptomycin, glutamine (Pen/Strep/Gln), and re-
ducing agents (0.5 mM monothioglycerol or 50 uM 2-
mercaptoethanol). For expansion of SKNO-1, 10 ng/mL
granulocyte macrophage colony-stimulating factor (GM-
CSF, Peprotech, Rocky Hill, NJ) was used. GIST-T1 cells
(Cosmo Bio, Tokyo, Japan) were cultured at 37°C in
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DMEM supplemented with 10% FCS and Pen/Strep/Gln.
All human cell lines were authenticated by Short Tan-
dem Repeat analysis at JCRB Cell Bank (Osaka, Japan)
and tested for Mpycoplasma contamination with a
MycoAlert Mycoplasma Detection Kit (Lonza, Basel,
Switzerland).

Chemicals

Imatinib (Cayman Chemical, Ann Arbor, MI) and
PKC412 (Selleck, Houston, TX) were dissolved in
DMSO. Bafilomycin Al, brefeldin A (Sigma, St. Louis,
MO), monensin (Biomol, Exeter, UK), and cer-C6 (Cay-
man Chemical) were dissolved in ethanol. M-COPA
(also known as AMF-26) was synthesized as previously
described [34, 35] and dissolved in DMSO.

Antibodies

The sources of purchased antibodies were as follows:
KIT (M~ '), cathepsin D (H 7°), STAT5 (C-17), ERK2
(K-23), ARF1 (ARES 3F1), GBF1 (25), PTP1B (D-4),
SHP-1 (D-11), and SHP-2 (B-1) from Santa Cruz Bio-
technology (Dallas, TX); KIT [pY703] (D12E12), KIT
(D13A2), LAMP1 (lysosome-associated membrane pro-
tein 1, D40O1S), AKT (40D4), AKT [pT308] (C31E5E),
STAT5 (D206Y), STAT5[pY694] (D47E7), ERK1/2
(137F5) and ERK [pT202/pY204] (E10) from Cell Signal-
ing Technology (Danvers, MA); PDI (RL90), TER (trans-
ferrin receptor, ab84036), giantin (ab24586), and GM130
(EP892Y) from Abcam (Cambridge, UK); TFR (H68.4)
from Thermo Fisher Scientific (Rockford, IL); calnexin
(ADI-SPA-860) from Enzo (Farmingdale, NY); GM130
(clone 35) from BD Transduction Laboratories (Franklin
Lakes, NJ); LAMP1 (L1418) from Sigma (St. Louis, MO)
and KIT (104D2) from Biolegend (San Diego, CA). HRP-
labeled secondary antibodies were purchased from the
Jackson Laboratory (Bar Harbor, MA). Alexa Fluor-con-
jugated secondary antibodies were obtained from Mo-
lecular Probes (Eugene, OR).

Immunofluorescence confocal microscopy

Cells in suspension culture were fixed with methanol for
10 min at —20°C or with 4% paraformaldehyde for 20
min at room temperature, then cyto-centrifuged onto
coverslips. GIST-T1 cells were cultured on poly-L-ly-
sine-coated coverslips and fixed as above. Fixed cells
were permeabilized and blocked for 30 min in PBS sup-
plemented with 0.1% saponin and 3% BSA, and then in-
cubated with a primary and a secondary antibody for 1 h
each. After washing with PBS, cells were mounted with
Fluoromount (DiagnosticBioSystems, Pleasanton, CA).
Confocal images were obtained with an Fluoview FV10i
(Olympus, Tokyo, Japan) or a TCS SP5 II/SP8 (Leica,
Wetzlar, Germany) laser scanning microscope. Compos-
ite figures were prepared with Photoshop Elements 10
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and Illustrator CS6 software (Adobe, San Jose, CA).
Pearson’s R were calculated with NIH Image] 1.48v
software.

Western blotting

Lysates prepared in SDS-PAGE sample buffer were sub-
jected to SDS-PAGE and electro-transferred onto PVDF
membranes. Immunodetection was performed by ECL
(PerkinElmer, Waltham, MA). Sequential re-probing of
membranes was performed after the complete removal
of primary and secondary antibodies in stripping buffer
(Thermo Fisher Scientific), or inactivation of peroxidase
by 0.1% sodium azide. Results were analyzed with an
LAS-3000 with Science Lab software (Fujifilm, Tokyo,
Japan) or a ChemiDoc XRC+ with Image Lab software
(BIORAD, Hercules, CA).

Flow cytometry

Leukemia cells were directly collected from a cell sus-
pension by centrifugation. GIST-T1 cells were scraped
from culture dishes and then centrifugated. Cells were
stained with anti-KIT (104D2) and Alexa Fluor 488-con-
jugated anti-mouse IgG in PBS supplemented with 0.5%
calf serum and 0.1% NaNj at 4 °C for 1h each. Stained
cells were fixed with 4% paraformaldehyde for 20 min at
room temperature. Flowcytometric data were obtained
by FACSCalibur (BD Biosciences, Franklin Lakes, NJ),
and results were analyzed with FlowJo software (Tomy
Digital Biology, Tokyo, Japan).

Gene silencing with small interfering RNA (siRNA)

For silencing ARF1, GBF1, PTP1B, SHP-1, or SHP-2
genes, ON-TARGETplus SMARTpool siRNAs were
purchased from Dharmacon (Lafayette, CO). ON-TAR-
GETplus Non-targeting Pool (Dharmacon) was used as
a source of control siRNAs. Electroporation was per-
formed using a Neon Transfection System (Thermo
Fisher Scientific), according to the manufacturer’s
instructions.

Cell proliferation assay

To measure Kasumi-1 and HMC-1.1 proliferation, cells
were cultured with Gleevec or Midostaurin (referred to
henceforth as imatinib and PKC412, respectively) for 18
h, and then treated with [*H] thymidine deoxyribonucle-
otide (TdR) for 12 h. Cell proliferation was evaluated by
the incorporation of [*’H] TdR.

Analysis of protein glycosylation

Following the manufacturer’s instructions (New England
Biolabs, Ipswich, MA), NP-40 cell lysates were treated
with endoglycosidases for 1h at 37°C. The reactions
were stopped with SDS-PAGE sample buffer, and prod-
ucts were resolved by SDS-PAGE and immunoblotted.
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Statistical analyses

For statistical analysis, experiments were repeated as
three biological replicates. Differences between two or
more groups were analyzed by the two-tailed Student’s
t-test or one-way analysis of variance followed by Dun-
nett’s multiple comparison post-hoc test, respectively.
All significant differences stated indicate a 5% level of
probability.

Results

KITN822€ and KITY>5°¢ mislocalize to EL in leukemia cells
To investigate the sub-cellular localization of endogen-
ous KIT, we performed confocal immunofluorescence
microscopic analyses in ptl8 (mouse mast cell line, KIT
wild-type (WT)), Kasumi-1 (human AML, KITWT/NS22K
SKNO-1 (human AML, KIT"¥??N822K) " and HMC-1.1
(human MCL, KITVT/V5606) (Fig. 1a). As previously de-
scribed [24], most KITY7 localized to the PM in pt18
(Fig. 1b, left). In contrast, KIT accumulated in vesicular
structures in Kasumi-1, SKNO-1, and HMC-1.1 (Fig.
1b). We then performed co-staining assays to identify
these structures. In Kasumi-1, KIT was co-localized
with TFR (transferrin receptor, endosome marker) and
LAMP1 (lysosome marker) rather than with calnexin
(ER marker) or giantin (Golgi marker) (Fig. 2a). Simi-
larly, in HMC-1.1, KIT in vesicular structures was colo-
calized with TFR and cathepsin D (lysosome marker)
(Fig. 2b; Additional file 1: Figure S1A). By calculating
Pearson’s R correlation coefficients (Pearson’s R) for
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KIT versus organelle markers, the intensity from KIT-
TER was significantly greater than that from KIT-cal-
nexin, —giantin, and -LAMP1 in Kasumi-1 (Fig. 2c, left
graph), suggesting that KIT mainly localizes to endo-
somes. The quantification showed that in HMC-1.1,
KIT was colocalized with TFR to a similar extent as
with cathepsin D (Fig. 2¢, right graph). In both types of
cells, KIT was colocalized with EL markers rather than
with ER/Golgi markers. We previously showed that in
MCL and GISTs, KIT mutants are normally complex-
glycosylated in the Golgi [24, 26]. To test for the KIT
glycosylation state in Kasumi-1 and HMC-1.1, we
treated KIT with endoglycosidase H, which digests
immature high-mannose forms of KIT but not mature
complex-glycosylated forms. Figure 2d shows that most
KIT in these leukemia cells was in a complex-glycosyl-
ated form, similar to normal KIT [24, 28, 29]. KIT
shifted to a non-glycosylated form following the
complete digestion of N-linked glycans by peptide-N-
glycosidase F. In SKNO-1, as with Kasumi-1 and HMC-
1.1, KIT was complex-glycosylated (Additional file 1:
Figure S1B). Pearson’s R quantification from immuno-
fluorescence images showed that in SKNO-1, KIT
localized to endosomes to a similar extent as to lyso-
somes and it was found in EL rather than on ER/Golgi
(Additional file 1: Figure S1C & D). These results
suggest that complex-glycosylated KIT accumulates in
EL in leukemia cells but not in the early secretory
compartments.

A

Expressing cells

KITWT /WT

KITWT IN822K

ECD TM  Kinase

KITVT -| H:H |- Normal cells, pt18

KITN822K _I I—D—l ® I- Kasumi-1, SKNO-1
822

KiTvsse | HH H HMC-1.1
1 4 976
V560G
Kasumi-1 SKNO-1 HMC-1.1

KITNSZZK

Fig. 1 N822K- or V560G-mutated KIT mis-localizes to vesicular structures in leukemia cells. a Schematic representations of wild-type KIT (KIT
and constitutively active KIT mutants (KITV®?2K and KIT"*%%%) showing the extracellular domain (ECD), the transmembrane domain (TM), the kinase
domain, the lysine mutation at 822 (K in red), and the glycine mutation at 560 (V560G). b Kasumi-1, SKNO-1, HMC-1.1, or pt18 cells were
immunostained with anti-KIT. Bars, 10 um. Note that KIT"" localized to the PM, whereas KIT mutants accumulated on vesicular compartments

KITN822K/N822K KITWT /V560G

“h




Obata et al. Cell Communication and Signaling (2019) 17:114

Page 5 of 15

A Kasumi-1

LAMP1

B HMC-1.1
Cathepsin D

Cc

Kasumi-1
[
g 10
:
E',:, 0.5 0.5
c
I}
2
s 0
a PRSI D N
& M &K
-staining: @ & S
Co: sta|n|ng.dz>¢ 0{0 \,V’
ER/Golgi EL
Kasumi-1 lysates HMC-1.1 lysates
PNGaseF: - + - PNGaseF: - + -
Endo H: - - + (kDa) EndoH: - - + (kDa)
cG CG > | e
g6 - 150 i " | 150
DG™> 100 DG —> - 100
WB: KIT WB:KIT

Fig. 2 KIT mutants localize to EL but not to the PM in leukemia cells.
a & b Kasumi-1 (@) or HMC-1.1 cells (b) were double-stained with
anti-KIT (green) plus the indicated antibody (red). Insets show
magnified images. Bars, 10 um. ¢ Pearson’s R correlation coefficients
were calculated by analyzing the intensity of KIT vs. organelle
markers. Results are means = s.d. (n = 12~22). *P < 0.05, ***P < 0.001.
NS, not significant. Calnexin (ER marker); giantin (Golgi marker);
GM130 (Golgi marker); TFR (endosome marker); LAMP1 (lysosome
marker); cathepsin D (cathD, lysosome marker). d Lysates from
Kasumi-1 (left) or HMC-1.1 cells (right) were treated with peptide N-
glycosidase F (PNGase F) or endoglycosidase H (endo H) then
immunoblotted with anti-KIT. CG, complex-glycosylated form; HM,
high mannose form; DG, deglycosylated form. Note that most KIT
was present in a complex-glycosylated form in these leukemia cells

KIT mutants autonomously migrate from the PM to EL
through endocytosis in a manner dependent on their
kinase activity

Next, we examined the role of KIT kinase activity on cell
proliferation, growth signals, and KIT localization. As
previously reported [36-39], Kasumi-1 and HMC-1.1
proliferate autonomously, and KIT tyrosine kinase inhib-
itors (TKIs), such as imatinib and PKC412, suppressed
cell proliferation in a dose-dependent manner (Fig. 3a).
Immunoblotting showed that phosphorylation of KIT,
AKT, ERK, and STAT5 occurred in the absence of TKIs,
and PKC412 and imatinib reduced these phosphoryla-
tions (Fig. 3b), confirming that KIT activates AKT, ERK,
and STATS5 in Kasumi-1 and HMC-1.1. Next, we inves-
tigated the localization of KIT in TKI-treated cells by
immunofluorescence and flow cytometry. In Kasumi-1
cells treated with TKIs, KIT localized more in PM (out-
side ER staining, Fig. 3c & d) and less in endosomes
(Fig. 3e & f). Similar results were seen with HMC-1.1
and SKNO-1 (Additional file 1: Figure S1E). Collectively,
in these leukemia cells, newly synthesized KIT in the ER
moves to the PM along the secretory pathway and
subsequently traffics to EL through kinase activity-
dependent endocytosis. In addition to our previous find-
ings that KIT"*'®Y and KIT“*°**"® in the PM are
increased by TKI treatment [24, 26, 40], these results
suggest that retention in the PM by TKIs is a ubiquitous
feature of KIT mutants.

Autophosphorylation of KITN822K and KITV>6°C
predominantly occurs on the Golgi in leukemia cells

We next examined the site of KIT activation in leukemia
cells. To determine the signal platform for KIT, we
immuno-stained for phospho-tyrosine residues in the
kinase domain which would indicate KIT activation [7—
9, 26, 27]. In Kasumi-1 cells, phospho-KIT Y703 (pKIT
[Y703]) was clearly detected (Fig. 4a), although pKIT
[Y721], [Y730], and [Y936] were undetectable by our im-
munofluorescence staining (data not shown). Interest-
ingly, compared with KIT localization to EL, pKIT
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(See figure on previous page.)

Fig. 3 KIT migrates to EL through endocytosis in a manner dependent on their kinase activity. a Kasumi-1 or HMC-1.1 cells were cultured for 24 h in
the presence of KIT kinase inhibitors (imatinib, open circles; PKC412, closed circles). The graphs show the levels of PH] thymidine deoxyribonucleotide
(TdR) incorporation into cells (counts per minute, cp.m. growth index) at the indicated inhibitor concentrations. Results are means + sd. (n=3). b
Kasumi-1 or HMC-1.1 cells were treated for 4 h with 1 uM PKC412 or 1 uM imatinib. Lysates were immunoblotted for KIT, phospho-KIT Y703 (pKIT™7%3),
AKT, pAKT, STATS, pSTATS5, ERK, and pERK. ¢-f Kasumi-1 cells were treated for 12 h with 1 uM PKC412 (PKC) or 1 uM imatinib (IMA). ¢ Cells were
immunostained with anti-KIT (green) and anti-calnexin (ER marker, red). Confocal immunofluorescence images are shown. Insets show magnified
images of the PM region. Bars, 10 um. d Cell surface KIT levels determined by flow cytometry are shown. Non-permeabilized cells were stained with
anti-KIT extracellular domain antibody. Green histogram, with KIT inhibitor treatment; white histogram, no KIT inhibitor; gray histogram, no anti-KIT
antibody control. e Cells were immunostained with anti-KIT (green) and anti-TFR (endosome marker, red). Confocal immunofluorescence images are
shown. Bars, 10 um. f Pearson'’s R correlation coefficients were calculated by analyzing the intensity of KIT vs. TFR. Results are means + s.d. (n = 22~29).

.

***P < 0,001. Note that these inhibitors lowered KIT in vesicular structures and increased KIT in the PM

J

[Y703] was restricted to the perinuclear region in
Kasumi-1 (Fig. 4a, top panels, arrowheads). Similar to
KIT in Kasumi-1, KIT in HMC-1.1 was found in the
perinuclear compartment (Fig. 4b). Perinuclear KIT au-
tophosphorylation was colocalized with GM130 (Golgi)
rather than with PDI (ER), TFR (endosomes), or LAMP1
(lysosomes) (Fig. 4c; Additional file 1: Figure S2A). Simi-
lar results were obtained with SKNO-1 (Additional file
1: Figure S2B & C). These results suggest that in
leukemia cells, activation of KITN?2% and KITY>%°C oc-
curs predominantly on the Golgi although KIT itself is
found mainly in EL.

KITN822€ and KITY>5°¢ mainly activate downstream
molecules on the Golgi in leukemia cells

We then examined whether KIT activated downstream
molecules on the Golgi in leukemia cells. To resolve this
question, we used inhibitors of intracellular trafficking,
such as brefeldin A (BFA), 2-methylcoprophilinamide
(M-COPA) (inhibitors of ER export to the Golgi) [27,
34, 35, 41], monensin (an inhibitor of intra-Golgi traf-
ficking) [26, 42], and bafilomycin Al (BafAl, an inhibitor
of endosome-to-lysosome trafficking) [24, 43]. In
Kasumi-1 and HMC-1.1, treatment with BFA or M-
COPA significantly increased colocalization of KIT with
an ER marker, calnexin (Fig. 5a & Additional file 1: Fig-
ure S3A), confirming that the treatment inhibited ER ex-
port of KIT. Immunoblotting showed that KIT shifted to
a lower molecular weight in BFA- or M-COPA-treated
cells because of a defect in full glycosylation on the
Golgi apparatus (Fig. 5b & c, top panels). KIT on the ER
was dephosphorylated and unable to activate down-
stream molecules (Fig. 5b & c). Previous studies showed
that a major target of BFA/M-COPA is Golgi-specific
BFA-resistance guanine nucleotide exchange factor 1
(GBF1) that plays a role in the secretory pathway
through activation of ADP ribosylation factor 1 (ARF1)
[34, 44, 45]. Interestingly, knockdown (KD) of ARFI and
GBF1 with siRNAs did not cause a defect in full glyco-
sylation of KIT or inhibition of signaling (Additional file
1: Figure S3B). Since BFA and M-COPA bind not only
to the ARF1-GBF1 complex but also to other complexes

[44, 45], the blockers affect KIT trafficking in a manner
independent of ARF1-GBF1 inhibition in the leukemia
cells used in this study. Further study will be required
for understanding how the inhibitors block KIT traffick-
ing from the ER.

Fig. 5d shows that inhibition of the Golgi export of
KIT through blocking intra-Golgi trafficking did not
suppress KIT signaling, suggesting that Golgi-localized
KIT is sufficient for oncogenic signaling in Kasumi-1
and HMC-1.1. As shown in Additional file 1: Figure
S3C, KIT signals remained in BafAl-treated cells, indi-
cating that endosome-to-lysosome trafficking is un-
necessary for downstream activation. Taken together,
these results suggest that the Golgi apparatus serves as
the platform for KIT activation in leukemia cells. To
support this conclusion, we stained for phospho-AKT
(pAKT), pERK, and pSTATS5. As shown in Fig. 5e, these
phosphorylations were found at the Golgi region in
Kasumi-1 cells. Compared with pAKT, total AKT was
barely seen in the Golgi (Additional file 1: Figure S3D,
upper panels). In Kasumi-1, only part of AKT may be
activated by KIT. Furthermore, total ERK and STAT5
were distributed in the Golgi region (Additional file 1:
Figure S3D). These results support our hypothesis that
KIT activates these downstream molecules on the Golgi
in leukemia cells. In HMC-1.1, AKT, ERK, STATS5, and
their phospho-forms showed a diffuse distribution com-
pared with those in Kasumi-1 (Additional file 1: Figure
S3E). Since pAKT, pERK, pSTATS5, though small, were
found in the Golgi region, they could be activated on the
Golgi and subsequently move elsewhere.

Recently, we showed that in GISTs, KIT on the ER is
dephosphorylated by protein tyrosine phosphatases
(PTPs) [27]. We then considered the role of PTPs in
KIT inactivation in the ER in leukemia cells. In M-
COPA-pretreated Kasumi-1, a 3-h treatment with a PTP
inhibitor (sodium orthovanadate, Na3VO,) [46] restored
pKIT [Y703], resulting in downstream reactivation (Fig.
5%, left), indicating that in Kasumi-1, PTPs play a role in
KIT inactivation in the ER. In M-COPA-treated HMC-
1.1, pKIT [Y703] and pSTAT5 were recovered by
Na3VO, treatment, but AKT and ERK did not become
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Fig. 4 Autophosphorylation of KITV®2?¢ and KITY*%°¢ occurs
preferentially on the Golgi in leukemia cells. a & b Kasumi-1 (a) or
HMC-1.1 cells (b) were immunostained for KIT (green), phospho-KIT
Y703 (pKIT""% red or green) together with GM130 (Golgi marker,
blue), PDI (protein disulfide isomerase, ER marker, red), TFR
(endosome marker, red), or LAMP1 (lysosome marker, red). Insets
show magnified images. Bars, 10 um. ¢ Pearson’s R correlation
coefficients were calculated by analyzing the intensity of pKIT""*® vs.
organelle markers. Results are means + s.d. (n=12~21). ***P < 0.001.
Note that pKIT"% was colocalized with GM130 rather than with PDI,
TFR, or LAMP1 both in Kasumi-1 and HMC-1.1 cells

active on PTP inhibition (Fig. 5f, right). Negative regula-
tion of AKT and ERK may differ among cell types.
Taken together, these results suggest that ER-localized
KIT is inactivated by PTPs. PTP1B, Src homology 2
containing PTP-1 (SHP-1), and SHP-2 have been re-
ported as PTPs for KIT and FLT3 RTKs [47-50].
Thus, we knocked down these PTPs and treated cells
with M-COPA to investigate the key PTPs for KIT in
the ER. Additional file 1: Figure S4 shows that in M-
COPA-treated cells, pKIT [Y703], pAKT, and pERK
were not restored by PTPIB or SHP1/2 KD, suggest-
ing that these PTPs are not responsible for this
dephosphorylation in the ER. Interestingly, PTPI1B but
not SHP1/2 KD partially rescued pSTATS5 in M-
COPA-treated cells (Additional file 1: Figure S4A,
arrows). Although we were unable to identify KIT
phospho-tyrosine sites that are dephosphorylated by
PTP1B in this study, PTP1B in the ER may play a
role in inactivation of the KIT-STAT5 axis.

SKNO-1 cells were similar to Kasumi-1 in phospho-
regulation of KIT in intracellular compartments (Add-
itional file 1: Figure S5A & B). However, AKT, ERK, and
STATS5 were not activated by KITN®?2X (Additional file
1: Figure S5C). SKNO-1 requires GM-CSF for prolifera-
tion, but the cytokine did not affect the activation of
KIT, AKT, ERK, or STAT5 (Additional file 1: Figure
S5C, right panels). AKT and ERK were not found in spe-
cific compartments in SKNO-1 in the presence or ab-
sence of GM-CSF (Additional file 1: Figure S5D). At
present, we are unable to find downstream molecules
that are activated by KITN** in SKNO-1 cells. We will
investigate the role of KITN®*?X in SKNO-1 growth in
the near future.

Lipid rafts play a key role in KIT signaling, which occurs
on the Golgi apparatus

Recent studies showed that sphingomyelin-enriched
membrane microdomains (lipid rafts) in the Golgi are
needed for activation of an innate immunity molecule,
STING [51, 52]. Formation of normal lipid microdo-
mains is inhibited by N-hexanoyl-D-erythro-sphingosine
(cer-C6) through producing short chain sphingomyelin
that disrupts the lipid order [51, 53, 54]. Figure 6a shows
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then immunoblotted

Fig. 5 In Kasumi-1 and HMC-1.1, KIT activates downstream pathways on the Golgi apparatus. a Kasumi-1 cells were cultured for 12 h in the
presence of 1 uM BFA or 1 uM M-COPA (inhibitors of ER export to the Golgi) and immunostained for KIT and calnexin (ER marker, red). Bars,

10 um. Pearson’s R correlation coefficients were calculated by analyzing the intensity of KIT vs. calnexin. The right graph shows Pearson’s R (KIT-
calnexin) for HMC-1.1 cells treated with 5 uM BFA or 1 uM M-COPA for 16 h. Results are means + s.d. (n = 14~20). ***P < 0.001. b-d Kasumi-1 cells
were treated for 12 h with T uM BFA, T uM M-COPA, or 250 nM monensin (an inhibitor of Golgi export to the PM). HMC-1.1 cells were treated
with 1~5 uM BFA, 1 uM M-COPA for 16 h, or 250 nM monensin for 24 h. Lysates were immunoblotted. e Kasumi-1 cells were immunostained for
phospho-AKT (pAKT, green), pERK (green), pSTAT5 (green), and GM130 (Golgi marker, blue). Bars, 10 um. Arrowheads indicate the Golgi region. f
Cells were treated with 1 uM M-COPA for 12 h (Kasumi-1) or 16 h (HMC-1.1), including 3 mM Na3VO, (a PTP inhibitor) during the last 3 h,

that in Kasumi-1, cer-C6 treatment lowered the protein
levels of KIT and inhibited KIT autophosphorylation
and the activation of AKT, ERK, and STATS5 in a dose-
dependent manner. The treatment did not decrease but
rather increased KIT on the Golgi (Fig. 6b & c). These
results suggest that KITN*** and KIT">%°C require lipid
rafts for their stability and activation in the Golgi in
these leukemia cells.

Finally, we asked whether lipid rafts play a role in
oncogenic signaling by all KIT mutants. GIST-T1 cells
(KIT?*°°~>7%) grow in a manner dependent on KIT sig-
naling on the Golgi, whereas HMC-1.2 (mast cell
leukemia, KIT">%5/P316Vy requires pAKT on EL and
pSTAT5 on the ER [24-27] (Additional file 1: Figure
S6A & Table 1). In both cell types, TKIs increased PM
distribution of KIT mutants (Additional file 1: Figure
S6B), supporting our data obtained with Kasumi-1 that
mutant KIT localizes to intracellular compartments in a
manner dependent on its kinase activity. In GIST-T1,
cer-C6 inhibited the phosphorylation of KIT and down-
stream molecules (Fig. 6d). Unlike KIT in leukemia cells,
that in cer-Cé6-treated GIST-T1 assumed an immature
glycosylated form (Fig. 6e), indicating that KIT is
complex-glycosylated in GIST after reaching lipid rafts.
Similar to the results using Kasumi-1, the treatment did
not decrease but rather increased KIT on the Golgi
(Additional file 1: Figure S6C). On the other hand, in
HMC-1.2, cer-C6 did not have an inhibitory effect on
Golgi export of KIT®*'*V and growth signals (Fig. 6f;
Additional file 1: Figure S6D). Therefore, lipid rafts play
a critical role in KIT signaling that occurs on the Golgi.

Discussion

In this study, we demonstrate that in leukemia cells,
localization of KITN®?2 and KITY>°C is clearly different
from that of KITY" in normal cells. We provide evi-
dence that after secretory trafficking to the PM, these
mutants localize to EL through kinase activity-dependent
endocytosis. However, they are autophosphorylated pre-
dominantly on the Golgi apparatus, where they activate
downstream molecules, such as AKT, ERK, and STATS5.
Lipid rafts play a key role in KIT signaling on the Golgi.
Moreover, ER-localized KIT is dephosphorylated by
PTPs (Fig. 7). This phospho-regulation of KIT is similar

to that in GISTs. Our observations show that in some
cases, receptor mutants can initiate signals from the
Golgi even if they are mainly present in EL (Table 1).

Recently, we reported that in MCL, AL-mut, such as
KITP#'%Y (human) and KITP#'*Y (mouse), accumulates
in EL (Table 1) [24, 25]. Unlike JM-mut, AL-mut in
MCL activates AKT and STAT5 on EL and the ER,
respectively. Previous studies showed that transfected
AL-mut in cell lines other than MCL, such as NIH3T3
and GISTs, localizes to the Golgi, where it initiates
oncogenic signals on the Golgi apparatus (Table 1) [26,
28]. The host cell environment rather than the KIT mu-
tation status may determine the mutant’s subcellular
localization. Considering that J]M-mut in MCL activates
a downstream pathway on the Golgi, these studies sug-
gest that AL-mut activates downstream molecules on EL
and the ER only when it is expressed in an MCL envir-
onment. Moreover, there is great interest in further
investigation as to whether KIT”®*'®V in AML causes
growth signaling on the ER, Golgi, or EL. Further studies
will be required for understanding the mechanism respon-
sible for the difference in the signal platforms of KIT.

In addition to previous reports on MCL and GISTs
[24, 26, 30], this study suggests that KIT™®?*X also
mis-localizes to intracellular organelles in AML. Per-
manently active KIT mutations are found in about
25% of mucosal melanomas and seminomas [22, 55—
57]. Thus, we will examine the relationship between
KIT localization and oncogenic signaling in these can-
cers in the near future. Furthermore, recent studies
reported that cancer-causing receptor mutants and
splice variants also accumulate on intracellular com-
partments in an aberrant manner [58]. FLT3-internal
tandem duplication (FLT3-ITD, AML), FGFR3X®*°F
(multiple myeloma), PDGFRAY?38C °or V361D (carcin-
omas/GIST), and a splice variant of TRKA (TRKAIII,
neuroblastoma) are found in early secretory compart-
ments [59-65], and EGFR"***17°°M ' GP130“YY, and
CSF3RT®8 mislocalize to endosomes [66—68]. These
reports and the findings of our study raised the intri-
guing possibility that mislocalization in cancer cells is
a ubiquitous feature of aberrant receptors.

In innate immune cells, STING binds to exogenous
DNA fragments in the ER, then moves to lipid rafts of
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Fig. 6 Lipid rafts have a role in KIT signaling at the Golgi apparatus. a-c Kasumi-1 or HMC-1.1 cells were treated with 0~40 uM cer-C6 for 8 h (for
inhibition of normal lipid raft formation). a Lysates were immunoblotted. b Cells treated with 40 uM cer-C6 for 8 h were immunostained for KIT
(green), giantin (Golgi marker, red), or GM130 (Golgi marker, blue). Bars, 10 um. ¢ Pearson’s R correlation coefficients were calculated by analyzing
the intensity of KIT vs. giantin (Kasumi-1) or GM130 (HMC-1.1). Results are means + sd. (n=16~22). *P < 0.01. d & e GIST-T1 cells were treated
with 0~10 uM cer-C6 for 10 h. d Lysates were immunoblotted. e Lysates were treated with PNGase F or endoglycosidase H then immunoblotted
with anti-KIT. CG, complex-glycosylated form; HM, high mannose form; DG, deglycosylated form. f HMC-1.2 cells were treated with 0~40 uM cer-

C6 for 8 h, then immunoblotted

the Golgi [51, 52]. This requires palmitoylation of its cyst-
eine residues for migration to the lipid rafts, where it can
activate the TBK1-IRF3 pathway [51]. MET tyrosine kin-
ase is activated and palmitoylated on its extracellular do-
main at the Golgi [69, 70], and lipid rafts contribute to
receptor distribution and stability [70, 71]. These studies
raise the interesting possibility that incorporation of KIT
into the lipid rafts of the Golgi is involved in protein acyl-
ation. Investigation as to whether palmitoylation is neces-
sary for KIT signaling on the Golgi is now under way.

PTPs play a role in inactivation of KIT in the ER. Our
loss of function study showed that PTP1B, SHP-1, and
SHP-2 are not major PTPs for KIT dephosphorylation in
the ER, suggesting the role of other PTPs in KIT inacti-
vation. In addition, negative regulators of KIT and
downstream molecules could be abundant in intracellu-
lar compartments other than the Golgi. Further analyses
of the localization and functions of these negative regu-
lators should explain how KIT signaling is inactivated in
the ER, PM, and EL both in leukemia and GISTs. In

Leukemia cells with KITN822K or V560G.dependent signals

[Endocytosis

(kinase activity-dependent)j PM

ER

Newly synthesized KIT

Endosome

Inactivation on the ER
by PTPs

3%>: HM (high mannose)

() +KIT2X or KIT'C p: Phosphorylation
1$: CG (complex glycosylation)

Fig. 7 Model of mutant KIT trafficking and signals on the Golgi in leukemia cells. Newly synthesized mutant KIT (KITNE22K o KITY*6%) in the ER
traffics to the PM through the Golgi apparatus. They are normally complex-glycosylated in the Golgi. After reaching the PM, mutant KIT
immediately undergoes endocytosis in a manner dependent on its kinase activity, then accumulates in EL. However, its full autophosphorylation
mainly occurs on the Golgi, where it causes downstream activation. Lipid rafts play a role in KIT signaling. ER-localized KIT is inactivated by PTPs




Obata et al. Cell Communication and Signaling (2019) 17:114

other words, the study will reveal the mechanism of de-
regulation of RTK on signal platforms.

In this study, KIT mutants were retained in the PM in
TKI-treated cells, since TKIs inhibit endocytosis of KIT,
which depends on the kinase activity. Furthermore, TKIs
increase PM localization of EGFR in lung cancers and
PDGFRA/KIT in GISTs [26, 63, 72]. A previous report
showed that TKI treatment increases the FLT3-ITD PM
level in AML, which enhances the effect of FLT3-di-
rected immunotherapy in mice [73]. Moreover, anti-KIT
antibody is efficacious for suppression of the autono-
mous growth of GIST cells [74, 75]. From a clinical
point of view, combined therapy with anti-RTK anti-
bodies and TKIs seems attractive.

Small molecule TKIs and antibodies against RTKs
have been developed for suppression of proliferative sig-
nals in cancers. In this study, blockade of the ER export
of KIT with BFA/M-COPA decreased KIT’s autophos-
phorylation in leukemia cells. Together with the results
previous reports [25, 27, 76, 77], our findings may offer
a trafficking blockade of receptor mutants as a third
strategy for inhibition of oncogenic signaling.

Conclusions

In conclusion, we show that in leukemia cells, N822K-
and V560G-mutated KIT can initiate growth signals in
lipid rafts of the Golgi apparatus. These observations
provide new insights into the pathogenic role of KIT
mutants as well as into that of other mutant signaling
molecules. Moreover, from a clinical point of view, our
findings offer a new strategy for leukemia treatment
through that blocks the incorporation of KIT mutants
into the lipid rafts of the Golgi.

Additional file

Additional file 1: Figure S1. Mutant KIT localizes preferentially to EL in
HMC-1.1 and SKNO-1 cells. Figure S2. In HMC-1.1 and SKNO-1, the major
site for KIT autophosphorylation is colocalized with the Golgi region.
Figure S3. Distribution of signal molecules in Kasumi-1 and HMC-1.1
cells. Figure S4. Effect of knockdown of PTP1B, SHP-1, and SHP-2 on KIT
signals. Figure S5. KITV®* does not activate AKT, ERK, and STATS in
SKNO-1 cells. Figure S6. Effect of inhibition of normal lipid raft formation
on KIT distribution. (PDF 14400 kb)
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