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Abstract

Background: Patients with microsatellite instability-high (MSI-H) colorectal cancer (CRC) generally have a better
prognosis than patients with microsatellite stable (MSS) CRC. However, some MSI-H CRC patients do not gain
overall survival benefits from immune checkpoint-blockade treatment. In other words, heterogeneity within the
subgroup of MSI-H tumors remains poorly understood. Thus, an in-depth molecular characterization of MSI-H
tumors is urgently required.

Methods: Here, we use nonnegative matrix factorization (NMF)-based consensus clustering to define CRC MSI-H
subtypes in The Cancer Genome Atlas and a French multicenter cohort GSE39582. CIBERSORT was used to calculate
the proportions of 22 lymphocytes in tumor tissue in MSI-H subtypes.

Results: MSI-H CRC samples basically clustered into two subgroups (MSI-H1 and MSI-H2). MSI-H1 was characterized
by a lower BRAF mutational status, higher frequency of chromosomal instability, global hypomethylation, and worse
survival than MSI-H2. Further examination of the immune landscape showed that macrophages of the M2
phenotype were enriched in MSI-H1, which may be associated with poor prognosis in this subgroup.

Conclusions: Our results illustrate the genetic heterogeneity in MSI-H CRCs and macrophages may serve as good
targets for anticancer therapy in MSI-H1.

Keywords: Colorectal cancer, Microsatellite instability-high, Subtyping, Tumor-associated macrophages, Tumor-
infiltrating lymphocytes

Background
Much effort has been devoted to the molecular subtyp-
ing of colorectal cancer (CRC) based on gene expression
profiles [1–3]. According to the current widely accepted
consensus molecular subtype (CMS) classification sys-
tem, microsatellite instability-high (MSI-H) samples be-
long to the CMS1 subtype and are characterized by
hypermutation and CpG island methylator phenotype
(CIMP). The MSI-H status (commonly linked to a high
mutational burden) may be associated with a better
prognosis due to the accumulation of somatic mutations
[4, 5]. However, we previously found that even in a
hypermutated subpopulation can be further divided into
two groups with either a high or low prognostic index
[6]. In addition, MSI-H tumors generally respond well to

immunotherapy by anti-PD-1 immune checkpoint inhib-
ition [7]. Nevertheless, JAK1 loss-of-function mutations,
with a prevalence of 20% in MSI-positive CRC are asso-
ciated with the upregulation of genes associated with re-
sistance to anti-PD-1 treatment [8]. Thus, the MSI-H
population may also display different expression patterns
that are masked by higher variations relative to other
subtypes, such as CMS2–4.
In this study, we used nonnegative matrix factorization

(NMF)-based consensus clustering to define MSI-H
CRC subtypes. Intriguingly, we found that MSI-H CRC
can be separated into two different subtypes with dis-
tinct molecular profiles, which help us better understand
the heterogeneity within MSI-H.

Materials and methods
Somatic mutation data retrieval and processing
CRC somatic mutation data and clinical information
were downloaded from The Cancer Genome Atlas
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(TCGA) data portal (05/03/2015). Silent mutations,
RNA mutations, and any mutation in the intron, 5′ un-
translated region (UTR), and 3’UTR were discarded.
Retained mutational profiles of each case were used to
refine the list of mutated genes in a total of 59 MSI-H
tumors [9]. Lastly, clinical information of each patient
(Additional file 1: Table S1) was added to mutational in-
formation via unique patient ID.

Gene expression data processing and normalization
Level 3 tumor mRNA expression data sets (RNASeqV2)
were obtained from TCGA (October 2015). The
GSE39582 (Affymetrix HG U133 Plus 2.0 arrays) dataset
was downloaded from the Gene Expression Omnibus
(GEO). Raw CEL files were processed using the affy
package of BioConductor [10]. Then, MAS5 algorithm
was used for background correction, normalization and
summarization of single probes for all probe sets. Ana-
lysis of differentially expressed mRNA was performed
using the DEGSeq package for R/Bioconductor [11].
Genes with expression levels < 1 (RNA-Seq by Expect-
ation Maximization (RSEM)-normalized counts) in more
than 50% of samples were removed. Significant differen-
tially expressed mRNAs were selected according to a
false discovery rate (FDR)-adjusted P value < 0.05 and
fold change > 2 conditions. NMF was performed using
the NMF package for R [12].

HM450k data retrieval and processing
DNA methylation data (HumanMethylation450) were
downloaded from TCGA data portal (11/13/2016). The
methylation level of each probe was measured with a
beta value ranging from 0 to 1; this value is calculated as
the ratio of the methylated signal to the sum of the
methylated and unmethylated signals. Probes with an
“NA” value in more than 10% of the CRC samples were
discarded. Next, the Bioconductor package limma was
used to identify differentially methylated sites (DMSs) in
the remaining probes [13]. Significant DMSs were se-
lected according to FDR-adjusted P value < 0.01 and
beta value change > 0.2. All heatmaps were generated
using the pheatmap package in R (64-bit, version 3.0.2).

Gene ontology (GO) and Kyoto encyclopedia of genes
and genomes (KEGG) enrichment analyses
GO and KEGG enrichment analyses were performed
using the clusterProfiler package from BioConductor
[14]. Significantly enriched GO terms and pathways were
selected according to an FDR-adjusted P value < 0.01.

Network construction and hub gene definition
Coexpression network construction was performed as
described in our previous work [15]. Hub genes were
those with an extremely high level of connectivity in a

given network. Connectivity reflects how frequently a
node interacts with other nodes and the sum of the
weights across all edges of a node. Here, the top 50
genes with the highest connectivity in each module that
were reasonable to display were defined as hub genes as
previously described [16].

Survival analysis
Survival differences between MSI-H1 and MSI-H2 were
tested by the Kaplan-Meier method and analyzed with
the log-rank test with functions survfit and survdiff in
the survival package for R [17]. Cox univariate model
was carried out with function coxph in the R package
survival. A P value < 0.05 was considered significant.

Deciphering lymphocytes in tumor tissue in MSI-H
populations
To accurately quantify the relative amount of distinct
lymphocytes in tumor tissue, CIBERSORT was used to
calculate the proportions of 22 lymphocytes in tumor
tissue [18]. The permutations were set to > = 100, and
quantile normalization (QN) of the input expression
mixture was set to FALSE for TCGA RNAseq data.

Immunohistochemistry (IHC) of Zhejiang University
cancer institute (ZUCI) dMMR samples
Subtyping of 28 ZUCI dMMR frozen tissue samples was
based on RNA-seq dataset. Matched formalin fixed paraf-
fin-embedded (FFPE) samples were collected from path-
ology department. IHC staining and semi-quantitative
analysis were performed as our previous work [19]. The
four μm sections were incubated with the anti-CD68 (1:
500 dilution, Cell Signaling Technology, 76437) and
CD163 (1:500 dilution, Cell Signaling Technology, 93498)
antibody, respectively.

Results
MSI-H CRC clusters into two distinct subtypes
A stochastic NMF algorithm was used to assess whether
any clusters were present in the MSI-H CRC cases. To
determine the best factorization rank r, a critical param-
eter in NMF, different values two to six was calculated.
Then, the best r value was chosen according to some
quality measures, such as the first value of r for which
the cophenetic coefficient starts decreasing, the first
value where the residual sum of squares (RSS) curve
presents an inflection point [20], and direct visual in-
spection of the consensus matrix. Notably, r = 2 met all
of these quality criteria, in other words; the MSI-H tu-
mors fell into two separate subgroups (Fig. 1a). Of the
59 MSI-H samples annotated in TCGA, 11 were classi-
fied into MSI-H group 1 (MSI-H1) and 48 were classi-
fied into MSI-H group 2 (MSI-H2). The ratio of MSI-H1
to MSI-H2 was approximately 1:4 (Fig. 1b).
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To validate the MSI-H subtypes found in TCGA data-
set, we used the GSE39582 dataset [21] with 77 dMMR
(deficient in DNA mismatch repair system (MMR)) sam-
ples to explore clustering (Additional file 2: Figure S1).
Consistent with the two subtypes of MSI-H CRC in
TCGA, two clusters were also observed in the French
multicenter cohort (MSI-H1: MSI-H2 was approximately
1:3, Additional file 3: Figure S2). MSI-H CRC has a rela-
tively good prognosis when diagnosed as stage II and a
poor prognosis when diagnosed as advanced stages, sug-
gesting that stage IV MSI-H CRC may differ consider-
ably at the molecular level from stage II MSI-H CRC. As

stage II CRC has the highest prevalence of MSI (81% in
TCGA and 69% in GSE39582), a separate MSI subtyping
was performed for stage II CRC only. Results showed that
MSI subtyping remained basically unchanged (MSI-H1 and
MSI-H2), suggesting that MSI-H CRC molecular subtyping
was independent of tumor stages (Additional file 4: Figure
S3 and Additional file 5: Figure S4).

MSI-H1 harbors a lower BRAF mutational frequency and a
higher frequency of chromosomal instability
The ratio of MSI-H1: MSI-H2 closely corresponds to
Lynch syndrome-related tumors and sporadic MSI

a

b

Fig. 1 MSI-H CRC cases clustered into two gene expression-based subtypes. a, Clustering of 59 MSI-H CRC cases in TCGA by NMF. Correlation
matrix heatmaps correspond to ranks 2 to 6. b, The association of clinicopathologic factors and MSI-H subtypes is shown on the top. Heatmap
displaying the expression pattern of MSI-H subtypes
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tumors, which are two major classes of CRC. To test this
hypothesis, we extracted the methylation probes specific
to MLH1 and BRAF (V600E) status and found that
MLH1 hypermethylation was always accompanied by
BRAF mutations in both MSI-H1 and MSI-H2, indicat-
ing that MSI-H1 did not correspond to Lynch syndrome,
because MLH1 deficiency and BRAF mutations rarely
occur simultaneously in this disorder. Additionally, con-
sistent with previous findings, a mutual exclusivity was
observed between BRAF and KRAS mutations (Fig. 1b).
In addition, there was no significant association between

MSI-H subtypes and tumor locations, sex or American
Joint Committee on Cancer (AJCC) stages according to
Fisher’s exact test (Fig. 1b). Both subtypes were enriched
in stage II/III (75%) and right-sided colon (80%). However,
we found that MSI-H1 was enriched in POLE mutations
(55% in MSI-H1 vs. 30% in MSI-H2). Interestingly, a lower
BRAF mutational frequency was observed in MSI-H1
(36%) than in MSI-H2 (56%), while no difference was
found in the KRAS status. This was also the case in
GSE39582, with a BRAF mutational frequency of 35% and
43% for MSI-H1 and MSI-H2, respectively. However, ap-
proximately two-fold higher chromosomal instability was
observed in MSI-H1 than in MSI-H2 (50% vs. 29%,
GSE39582).

The tumor immune regulatory network was disrupted in
MSI-H1 subtype
To better understand the molecular difference between
MSI-H1 and MSI-H2, it is necessary to determine spe-
cific genes that are enriched in each subtype. Differential
expression analysis between MSI-H1 and MSI-H2 iden-
tified 1,669 and 944 differentially expressed genes
(DEGs) in TCGA and GSE39582, respectively, with 298
shared between the two datasets (Fig. 2a, Additional file 6:
Table S2). Intriguingly, only 130 genes were down-regu-
lated in MSI-H1. A remarkable 11-fold increase in up-
regulated genes found in MSI-H1 inspired us to examine
their functional enrichment. GO revealed that these
genes were mainly enriched in the immune response,
such as regulation of cell adhesion, T cell activation, and
lymphocyte differentiation (Fig. 2b). For example, a
much higher expression level of CCL2/5, CXCL12,
CD86, and CD163 was observed in MSI-H1. KEGG
pathway enrichment analysis revealed that MSI-H1 was
enriched in genes corresponding to the PI3K-Akt (P =
1.7E-7, FDR adjusted), Ras (P = 7.8E-4), Rap1 (P = 6.2E-
7), and Chemokine (P = 1.1E-3) signaling pathways (Fig.
2c). We also performed gene set enrichment analyses
(GSEA) to decipher the molecular signatures underlying
MSI-H1 and MSI-H2 by using the much broader
landscape of signatures of hallmark processes collected
in the MSigDB database [22]. Notably, epithelial to
mesenchymal transition, apical junction, myogenesis,

inflammatory response, and KRAS signaling up were
enriched in MSI-H1 (Additional file 7: Figure S5 a~d).
While E2F targets, MYC targets, G2M checkpoint, glycoly-
sis, mtorc1 signaling, and oxidative phosphorylation had
high scores in MSI-H2 (Additional file 7: Figure S5 e~j).
Considering the substantial difference in expression

profiles between MSI-H1 and MSI-H2, we speculated
that the intrinsic regulatory network also differs to a
great extent. To this end, we used weighted correlation
network analysis (WGCNA) to determine core gene
regulatory modules. Interestingly, seven modules con-
sisting of at least 100 genes were discovered in MSI-H2.
Notably, the yellow module represented by CCR1,
CD163, CD2, CD52, CD53, and CD86 specific to MSI-
H2 was linked to the immune response (Fig. 2d). This
observation indicated that the subtle immune regulatory
network was lost in MSI-H1, although thousands of im-
mune-related genes were switched on.

MSI-H subtypes have distinct methylation patterns
The transcriptome may be too volatile to be affected by
some driver mutations. Thus, global DNA methylation
pattern was also interrogated between MSI-H subtypes to
determine whether the discrepancy between subtypes
extended beyond driver mutations. Consistent with the ex-
pression pattern, the methylation pattern fell into two main
clusters (Fig. 3). A slight global hypomethylated status was
observed in MSI-H1. Further in-depth analysis revealed
that 3,101 CpGs that covered 1,353 genes were differentially
methylated between MSI-H1 and MSI-H2 (Additional file 8:
Table S3). Among them, 310 genes overlapped with DEGs
identified in TCGA (Fig. 2a). Interestingly, the abovemen-
tioned immune-related DEGs were rarely associated with
epigenetic regulation (P > 0.05, χ2 test).
In CRC, the dMMR status is strongly associated with

the CIMP [21]. Therefore, we wanted to determine
whether the CIMP is associated with MSI-H subtypes.
Notably, in contrast to chromosomal instability, a much
higher frequency of samples with the CIMP was observed
in MSI-H2 (67%) than in MSI-H1 (42%, GSE39582),
which, to an extent, was consistent the global hypomethy-
lated status of MSI-H1 samples assembled in TCGA. Add-
itionally, no MLH1-associated CpGs were differentially
methylated; in other words, MSI-H subtypes had little as-
sociation with MLH1 methylation status. In addition, the
extent of MLH1 hypermethylation was even higher in
MSI-H2 (71%) than in MSI-H1 (55%).

MSI-H1 has a much poorer prognosis than MSI-H2
Previous studies commonly propose that BRAF mutations
are associated with a poor prognosis [23, 24]. We thus
compared overall survival (OS) between MSI-H subtypes
using the Cox proportional hazards model. Interestingly,
patient survival in MSI-H1 was significantly poorer than
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that in MSI-H2 (Additional file 9: Figure S6, hazard ratio
(HR) = 2.464, 95% confidence interval (CI), 1.13–5.37, P =
0.019). The 5-year OS rates were 61% (95% CI, 45 to 84%)
and 82% (95% CI, 73 to 93%), respectively. As stage II
CRC would be clinically most relevant to MSI-H subtypes,
we also compared OS between stage II MSI-H subtypes.
The findings held true even after adjusting for stages likely
to influence the results (Fig. 4). Nonetheless, it is not

known why MSI-H2 CRCs with a higher BRAFmutational
frequency have a better outcome.

Worse prognosis of MSI-H1 may be associated with the
enrichment of M2 macrophages and PD-L2 expression
The lower frequency of BRAF mutations in MSI-H1
accompanied by a relatively worse prognosis inspired
us to identify the potential tumor microenvironment

a

d

b c

Fig. 2 Characterization of functional enrichment of DEGs reside in the MSI-H subtypes. a, Venn diagram displaying the number of genes that
overlapped within DEGs and DMSs identified in TCGA and GSE39582 datasets. b, GO enrichment of up-regulated DEGs found in MSI-H1. c, KEGG
pathway enrichment of up-regulated DEGs found in MSI-H1. d, Coexpression regulatory network identified by WGCNA. Genes that were not
coexpressed were assigned to the gray group. Each vertical line corresponds to a gene, and branches are expression modules of highly
interconnected groups of genes. In total, seven modules ranging from 146 to 2,939 genes in size were identified in MSI-H2. The yellow module
associated with the immune response was selected for visualization
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Fig. 3 Clustering of 59 MSI-H CRC samples based on DNA methylation profiles. Although the methylation clusters were not identical to the MSI-
H subtypes based on expression data, the main trend was preserved

Fig. 4 Survival status of stage II MSI-H CRC subtypes. Kaplan-Meier curves showing OS according to MSI-H subtypes. Clearly, a better prognosis
was observed for MSI-H2 than for MSI-H1
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component underlying this contradictory association.
First, we compared the tumor mutational burden
(TMB) between MSI-H1 and MSI-H2 because it has
a direct impact on the abundance of neoantigens.
However, MSI-H1 harbored a similar TMB to MSI-
H2 (median mutational frequency ~ 31/million bases,
P = 0.28, Wilcoxon’s test). Thus, the difference may be
related to the participating cell population in the tumor
immune microenvironment (TIME), which plays an im-
portant role in the poor outcomes in MSI-H1. Deconvolu-
tion of 22 lymphocytes in tumor tissue using CIBERSORT
revealed a significant enrichment of M2 macrophages in
MSI-H1 (Fig. 5a and b, Additional file 10: Table S4, P <
0.001). Tumor-associated macrophages (TAMs) of the M2
phenotype are well-known to promote tumor proliferation
and are associated with a poor prognosis in different can-
cer types [25, 26]. CD163 and CD206, two canonical

markers of M2 TAMs, had a much higher expression level
in MSI-H1 compared to MSI-H2 both in TCGA and
GSE39582 (Fig. 5c-f, P < 0.001). We then examined the
expression of TAM markers (CD68 and CD163) in serial
FFPE sections from selected dMMR CRC cases. Notably,
we found that CD68 and CD163 had a much higher ex-
pression level in MSI-H1 than in MSI-H2 (Fig. 5g-j). This
trend also held true for CCL2 and CCL5 (Additional file 11:
Figure S7, P < 0.01). Tumor-derived CCL2/5 are signifi-
cant indicators of early relapse and infiltration of TAMs,
which contribute to cancer cell proliferation, inflamma-
tory microenvironment of tumors, immune response eva-
sion and angiogenesis [27, 28].
Furthermore, we found that the expression of the im-

mune checkpoint molecule PD-L2 (Programmed cell
death 1 ligand 2, also known as PDCD1LG2 or CD273)
was significantly higher (> 3-fold) in MSI-H1 than

a b c d

e f g h

i j k l

Fig. 5 Identification of underlying molecular profiles associated with worse outcomes in MSI-H1. The infiltration of M2 macrophages was more
pronounced in MSI-H1 than in MSI-H2 using TCGA (a) and GSE39582 (b) data. For c~f, boxplot distribution of CD163 and CD206 expression levels
using TCGA and GSE39582 data. As for g~j, representative IHC staining for M2 TAM markers (CD68 and CD163) of serial sections from MSI-H1 and
MSI-H2. For k and l, boxplot distribution of PD-L2 expression levels using TCGA and GSE39582 data
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inMSI-H2 (Fig. 5k and l, P < 0.001). However, no signifi-
cant difference was observed in other immune check-
point molecules such as CTLA-4, PD-1/PD-L1, and
LAG-3.

Discussion
To the best of our knowledge, this is the first systematic
subtyping of MSI-H CRC. Both transcriptome and DNA
methylome uncovered that two major subtypes were
presented in MSI-H CRC, suggesting that MSI-H sub-
types was not associated with specific driver mutations.
The MSI-H status is well known to confer good progno-
sis in CRC [2, 29, 30]. Nevertheless, in this study, we
found that one-quarter of the MSI-H CRC cases dis-
played distinct molecular features and poor prognoses.
As patients with MSI-H2 CRC had a higher frequency of
BRAF alterations but a better outcome, we believe that
the BRAF status is nonsignificant in MSI samples. By
evaluating 477 MSI CRC cases, Taieb et al. [31] found
that no prognostic role of BRAF mutations in patients
with MSI CRC. Barras et al. [32] found that CRC cases
with BRAF mutations can be classified into two subtypes
and should not be regarded as having a unique biology
that may be exploited for drug targeting. Furthermore,
Shimada et al. [33] demonstrated that patients with non-
V600E mutant-type cancer had a better OS than patients
with V600E mutant-type cancer, which is in line with
previous observations [34, 35]. In addition, Laura et al.
[36] found that height is a stronger risk factor for CRCs
with BRAF mutations or MSI, suggesting that molecular
pathological epidemiology (MPE) demonstrates the
strengths of interdisciplinary integration to study CRC
because more and more evidence indicates that diet,
smoking, lifestyle, and the microbiome may influence
the genome, epigenome, transcriptome, proteome, and
metabolome of tumor [37]. Thus, more careful attention
should be paid in the treatment of heterogeneous MSI-
H population.
Due to defects in DNA MMR, MSI-H tumors have a

much higher rate of nonsynonymous mutations, leading
to an increased number of neoepitopes and cytotoxic
tumor-infiltrating lymphocytes (CTLs). This is the reason
why patients with MSI-H CRC generally have more favor-
able outcomes with immune checkpoint-blockade treat-
ment than patients with microsatellite instability low
(MSI-L) or microsatellite stable (MSS) CRC [38]. How-
ever, this phenomenon alone can hardly explain the worse
survival in MSI-H1 because these tumors also possess
huge somatic mutations. In fact, unlike in early-stage dis-
ease, MSI is even linked to poorer survival in metastatic
CRC [39]. It is tempting to believe that some underlying
differences exist in the TIME. Bernhard et al. [40] found
that immunoscore was superior to microsatellite instabil-
ity in predicting patients’ disease-specific recurrence and

survival. Coexpression subnetwork construction suggested
that the immune regulatory equilibrium in MSI-H1 is off
kilter. Further deconvolution of immune infiltrates re-
vealed the enrichment of immunosuppressive M2 TAMs
in MSI-H1. M2 TAMs are good targets for anticancer
therapy through either ablation or redifferentiation away
from protumoral towards antitumoral states because they
express canonical markers [41, 42].
PD-L2, which resembles PD-L1, the other ligand of

PD-1, is an inhibitor of effector T cells, had a much
higher expression in MSI-H1 than in MSI-H2. Overex-
pression of PD-L2 is associated with poor survival in
CRC [43]. Although PD-L2 expression is generally corre-
lated with the expression of PD-L1, PD-L2 is also
present in the absence of PD-L1 in subsets of tumor
samples [44]. The response rates of a clinical trial in-
cluding 172 pembrolizumab-treated head and neck
squamous cell carcinoma (HNSCC) patients with recur-
rent or metastatic disease were 23.0% (95% CI, 16.0–
31.4) and 26.6% (95% CI, 18.0–36.7) in PD-L1- and PD-
L2- positive patients, respectively. These were both
much higher than the response rates in the PD-L1- and
PD-L2-negative patients (5.9%; 95% CI, 0.1–28.7). Add-
itionally, the overall response rate (ORR) was greatest in
patients who were positive for both PD-L1 and PD-L2
and was 2-fold higher (27.5%; 95% CI, 18.6–37.8) than
that in patients whose tumors were positive only for PD-
L1 (11.4%; 95% CI, 3.2–26.7) [44]. Thus, nominate PD-
L2 as a potential novel therapeutic target may be more
effective in MSI-H1 CRC.

Conclusions
In summary, our study showed that not all MSI-H CRC
cases share the same molecular characteristics and clin-
ical outcomes. M2 macrophages and PD-L2 reside in the
TIME may counteract the prognostic benefit offered by
the large amount of neoantigens produced by dMMR
tumors. Finally, the heterogeneity in MSI-H tumors
indicates that PD-1/PD-L1 does not fit all and that more
clinical measures should be addressed for selected
patients to improve survival.
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