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Abstract

Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more
cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins,
such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and
translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes
has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern
with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock
proteins in disease development and progression is summarized. Furthermore, the potential application of cold
shock proteins for diagnostics and as targets for therapy is elucidated.

Background
Imagine proteins that are conserved in both structure
and function, that can be found in almost all organisms
from bacteria to humans (except yeast), and have been
detected in almost every cellular compartment. Add to
this the ability to regulate not only their own expression,
but the expression of a number of disease-associated
genes, and to orchestrate multiple cellular processes, in-
cluding proliferation and differentiation. Who are these
jack-of-all-trades? Enter our protagonists, the cold shock
proteins.

Members of the cold shock protein family
Cold shock proteins are among the most evolutionarily
conserved proteins [1–3]. Their distinguishing character-
istic is the presence of one or more cold shock domains
(CSD), which possess nucleic acid binding properties
(see Fig. 1 and Table 1). This endows these proteins with
pleiotropic functions, such as the regulation of transcrip-
tion, translation, and splicing [4, 5].
Cold shock proteins were initially identified in bacteria,

where a sudden drop in temperature (from 37 °C to 10 °C)
induced a 200-fold increase in cold shock protein A

(CspA) expression within minutes, which was independ-
ent of transcriptional activity [3, 6]. This rapid inducibility
is conserved amongst species [7]. A recent study revisited
the original observation using genome-wide methods to
analyze the global changes occurring in bacteria during
the cold shock response [8]. The authors identified RNase
R and CspA to be the major players. RNase R appears to
be responsible for degrading misfolded RNAs, while CspA
melts double-stranded RNAs to enable translation.
In humans, the predominant group of cold shock do-

main proteins is denoted the Y-box protein family. The
prototypic member is Y-box binding protein-1 (YB-1),
also known as DNA binding protein B (DbpB), encoded
by the gene YBX1. Two additional family members exist,
DNA binding protein A (DbpA) and C (DbpC), which
are encoded by the genes YBX3 and YBX2, respectively.
Whereas Ybx2 expression is restricted to germ cells

[9], Ybx1 and Ybx3 are ubiquitously expressed during
development. However, following birth the expression
of Ybx3 (DbpA) is down-regulated in most tissues,
the exceptions being heart, skeletal muscle, blood ves-
sels, and testis [10, 11]. In humans, two isoforms of
DbpA are reported (DbpA_a and DbpA_b), which dif-
fer by an alternatively spliced exon that encodes the
69 amino acid long unique domain located adjacent
to the CSD [12, 13].
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The Ybx1 knockout mouse is embryonic lethal indi-
cating an important role during development [14].
The Ybx3 knockout is viable, however the Ybx1/Ybx3
double knockout shows a more severe developmental
phenotype indicating overlapping activities during de-
velopment [15].
Another developmentally important cold shock protein

expressed in humans is Lin28, which was first characterized
as a developmental factor in C. elegans [16]. However, it
was its potential for cellular reprogramming that brought it
into the spotlight, as together with Oct3, Sox2, and Nanog,
Lin28 is able to revert differentiated cells into their pluripo-
tent state [17]. In addition to the cold shock domain,
Lin28A/B are unique in that they also possess two CCHC

type zinc fingers, which form a knuckle domain that also
participates in nucleic acid binding [18]. Of particular note
is the ability of Lin28 to repress let-7 miRNAs, e.g. thereby
regulating glucose metabolism [18, 19]. let-7 also targets
Lin28 creating a double-negative feedback loop [20]. In
addition to miRNAs, Lin28 also binds to mRNAs, partici-
pating in a number of ribonucleoprotein complexes, such
as P-bodies and stress granules, to regulate translation [21].
A further member of the human cold shock protein

family is the calcium-regulated heat-stable protein 1
(CARHSP1); a 24 kDa protein also known as CRHSP-24.
Originally identified as a substrate of the calcium/calmo-
dulin-regulated protein phosphatase calcineurin [22],
CARHSP1 is a paralog of the brain-specific cold shock
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Fig. 1 The human cold shock domain proteins. The five groups of human cold shock proteins are presented. The number of proteins in each
group is indicated within the brackets. The cold shock domain (CSD) is presented in blue. Lin28 contains two additional zinc finger domains (grey
bars). The numbers below indicate the approximate number of amino acids. Structure predictions were performed using the SMART software [215]

Table 1 Nomenclature of the human cold shock domain proteins.

Gene Gene synonym Protein Alternative names

YBX1 MSY1 YB-1 CSDB, DbpB, NSEP1, EF1A

YBX2 MSY2 DbpC Contrin

YBX3 MSY3/MSY4 DbpA* CSDA, ZONAB, oxyR, NF-GMB, YB-2

CARHSP1 CARHSP1 CSDC1, CRHSP-24, CHSP1

CSDC2 PIPPin

CSDE1 UNR*

LIN28A LIN28A CSDD1

LIN28B LIN28B CSDD2

The gene names (italics), common names (bold), as well as commonly used alternative names are presented for each protein. Abbreviations are as follows: Y-box
binding protein 1, 2, 3 (YBX1, YBX2, YBX3), mouse Y-box protein 1, 2, 3, 4 (MSY1, MSY2, MSY3, MSY4), cold shock domain A, B, C1, C2, D1, D2, E1 (CSDA-CSDE1),
calcium-regulated heat stable protein 1 (CARHSP1, CHSP1), calcium regulated heat stable protein 24 kDa (CRHSP-24), abnormal cell lineage protein 28 homolog A,
B (LIN28A), DNA binding protein A, B, C (DbpA, DbpB, DbpC), Y-box binding protein 1, 2 (YB-1, YB-2), upstream of N-Ras (UNR), nuclease sensitive element binding
protein 1 (NSEP1), enhancer factor I subunit A (EF1A, rat), ZO-1-associated nucleic acid-binding protein (ZONAB), oxidative stress regulatory protein (oxyR), nuclear
factor that binds the GM-CSF promoter b (NF-GMB). *Alternatively spliced protein: DbpA has two isoforms, which differ by a single domain of ~ 70 amino acids,
whereas the UNR isoforms differ by 31 amino acids
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protein PIPPin [23]. CARHSP1 binds to and stabilizes
tumor necrosis factor (TNF) mRNA within P-bodies and
exosomes [24].
PIPPin expression is restricted to brain, where it binds

mRNA to regulate translation [25–29]. PIPPin is found
with ribonucleoprotein complexes, where it interacts
with other RNA binding proteins, e.g. hnRNP A1,
hnRNP K, and YB-1 [30].
The final member of this family is denoted upstream

of N-RAS (UNR) [31, 32]. This gene was initially identi-
fied as a regulator of N-Ras expression [33–36]. Later it
was discovered that UNR encodes a protein possessing
5 cold shock domains, which undergoes alternative spli-
cing (see Fig. 1) [37–39]; the gene was then renamed
cold shock domain containing E1 (CSDE1). Like the
other cold shock proteins, UNR/CSDE1 binds single-
stranded DNA or RNA [37, 40, 41]. UNR works to-
gether with the polypyrimidine-tract-binding protein
(PTB) to regulate translation and mRNA stability [42,
43]. The generation of Unr knockout mice demon-
strated that, like Ybx1, it is essential for mouse develop-
ment. Further characterization demonstrated that Unr
maintains the pluripotent state of embryonic stem cells
[44, 45].
As mentioned above, cold shock proteins are compo-

nents of ribonucleoprotein complexes. Two recent stud-
ies using proximity biotinylation to map components of
the stress granules identified YB-1, DbpA, CSDE1, and
Lin28B [46, 47]. Additionally, CHSP1 (a paralog of PIP-
Pin) was shown to colocalize with G3BP1, an initiator of
stress granule formation in human cells [24, 48, 49].

Cold shock proteins: Thinking in regulatory
feedforward and feedback loops
Cells undergo stress in many ways, e.g. via interferon re-
lease in response to viral infection, the presence of
lipopolysaccharide produced by bacteria, or profibrotic
factors released by immune cells during inflammation.
The binding of these factors to their cell surface recep-
tors activates kinases, which phosphorylate the cold
shock proteins; here we use YB-1 as an example (see
Fig. 2). Upon activation, these RNA/DNA chaperones re-
lease specific mRNA, thereby enabling a rapid transla-
tional response and translocate to the nucleus to
regulate gene expression. In many ways this is similar to
the unfolded protein response (UPR) observed for heat
shock proteins [50]. The uptake of YB-1 by cells, which
is secreted as an RNA:protein complex [51, 52], uniquely
positions this cold shock protein to participate in cellu-
lar reprogramming by modulating the expression of nu-
merous target genes. Many of these target genes are
themselves known to regulate various aspects of disease
both intra- and extracellularly (see Table 2) and can
induce cold shock protein expression, e.g. PDGF-B and

TGF-β. This is envisioned to result in a feedforward
amplification loop that prolongs inflammation, promotes
cell proliferation and immune cell infiltration, as well as
drives fibrosis, analogous to an avalanche [5, 53]. Indeed
this scenario has recently been documented, supporting
our goal for targeted intervention. How this circuit is
terminated is unclear, however the development of cold
shock protein targeting “neutralizing” antibodies pre-
sents one possibility [54]. Other potential mechanisms
include the inducible proteolytic degradation of YB-1
protein, microRNA-mediated inhibition of YB-1 expres-
sion, and the induction of protein tyrosine phosphatase
activity to counteract the kinase-mediated phosphoryl-
ation/activation that induces nuclear protein transloca-
tion [55–58].

Cold shock proteins function in the cellular
response to stress
Components of stress granules and P-bodies have been im-
plicated in the cellular stress response [59, 60]. Under ‘nor-
mal’ conditions, stress granules form when translation
initiation is stalled. The RNA binding proteins G3BP1 or
TIA-1 are key components of stress granule formation, as
they possess the ability for self-association. Over-expression
of either protein has been shown to induce stress granule
formation even in the absence of stress [49, 61, 62]. Using
mRNA as a scaffold, these proteins form homo- or hetero
-oligomeric ribonucleoprotein complexes; self-assembly is
mediated by intrinsically disordered regions (IDRs) within
the RNA binding protein(s); also referred to as low com-
plexity regions [63–68]. Several genetic mutations associ-
ated with neurodegenerative diseases have been identified
that influence the self-assembly of RNA binding proteins
(e.g. transactive response DNA-binding protein (TDP-43)
and fused in sarcoma/translocated in liposarcoma
(FUS/TLS)). Both are known to form prion-like protein
aggregates; an activity attributed to their low complex-
ity regions [67, 68]. The more we learn about the mo-
lecular mechanisms underlying protein aggragation
diseases, the greater the number of RNA binding
proteins identified [69–71]. The mutations identified
within these diseaseassociated proteins typically favor
cytoplasmic localization, facilitate protein aggregation,
or prevent granulophagy; the clearance of stress
granules by autophagosomes [49, 66, 70, 72]. Recently,
the expansion of intronic GGGGCC repeats within
C9ORF72 was identified as a common cause of ALS/
FTD [73]. C9ORF72 interacts with endosomes and is
required for normal vesicle trafficking, therefore the
loss of C9ORF72 observed with G4-repeat expansion
may affect granulophagy. Alternatively, the G4-repeats
of C9ORF72 have been proposed to inhibit the neuro-
protective effects mediated by tiRNAs binding to the
cold shock domain of YB-1 [74].
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As a known component of stress granules, YB-1 also
possesses the ability for self-assembly [75]. YB-1 has been
shown to form amyloid-like fibrils, an activity attributed
to its C-terminal domain, which is composed of
alternating regions of positive or negatively charged amino
acids that form a zipper-like structure as well as contrib-
utes to its RNA binding activity [76–81]. Interestingly, the
oligomerization of YB-1 is induced by a select set of RNAs
[79]. In the context of neurodegeneration, YB-1 and
G3BP1 have been shown to compete with TDP-43 and
FUS for mRNA binding and thereby induce the release of
prion-like protein aggregates that have formed [82]. To
complicate matters further, in human sarcoma YB-1 acti-
vates G3BP1 mRNA thereby controlling both the expres-
sion levels of G3BP1 and the subsequent nucleation of
stress granule formation [83]. Indeed cold shock is one
trigger of stress granule assembly in mammals [84]. Stress
granules have been implicated in the pathophysiology for
a number of neurodegenerative diseases, including

Alzheimer’s, amyotrophic lateral sclerosis (ALS), fronto-
temporal dementia (FTD), spinocerebellar ataxia (SCA),
and Huntington’s disease [49, 71, 85]. Here we propose
possible mechanisms where cold shock proteins may play
a critical role in the pathophysiology of these diseases.
When granulophagy is defective either due to an inability
to degrade protein aggregates or to system overload, i.e.
when the rate of production exceeds degradation, stress
granules that would normally undergo autophagy become
lysosomes [64]. The autophagic pathway intersects with
both the classical and the unconventional pathways of
protein secretion [86, 87]. YB-1 is secreted via a non-clas-
sical pathway involving ATP-binding cassette transporters
and microvesicles, as well as post-translational modifica-
tion of two C-terminal lysine residues (K301/K304) [88,
89]. Non-canonical K27-linked ubiquitination of YB-1 was
shown to be required for its interaction with tumor sus-
ceptibility gene 101 (TSG101), a component of multivesi-
cular bodies (MVBs) [90]. Fusion of MVB with the plasma
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Fig. 2 Potential amplification loop for YB-1 in inflammation. (1) Extracellular stimuli (e.g. TGF-β, PDGF-B, LPS) activate cells and induce YB-1
secretion. (2) YB-1 binds to specific membrane associated receptors on the cell surface inducing intracellular signaling cascades that result in
kinase activation. YB-1 can also be endocytosed. (3) Activated kinases (e.g. Akt/PKB, ERK, JAK2, RSK) phosphorylate cytoplasmic YB-1 (indicated by
the yellow circle), inducing its nuclear translocation. (4) In the nucleus, YB-1 activates the transcription of target genes, as well as induces its own
expression and that of DbpA. Cold shock proteins are rapidly induced in response to cell stress, due in part to the existence of preformed
complexes of cold shock proteins with their cognate mRNA. (5) Activated cells may also secrete YB-1, which may then act in either an autocrine
or paracrine manner. Activated cells may also secrete DbpA via the Golgi. (6) Extracellular YB-1 has mitogenic activity that promotes wound
healing/fibrosis. YB-1 also contributes to the recruitment of immune cells to the site of inflammation; directly via its chemoattractant activity or
indirectly via the products of its target genes, e.g. CCL5/RANTES. Extracellular activities for DbpA await elucidation. Abbreviations: acetylation (Ac);
cold shock domain (CSD); DNA binding protein A (DbpA); lipopolysaccharide (LPS); phosphorylation (P); platelet-derived growth factor B
homodimer (PDGF-BB); transforming growth factor beta (TGF-β); tumor necrosis factor (TNF); Y-box binding protein 1 (YB-1)
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membrane is required for the release of exosomes [91].
Since YB-1 is a component of exosomes, required for the
sorting of mRNAs [51, 52, 92–94], it remains to be
determined whether stress granule clearance coincides
with the pathway of exosome formation and YB-1 se-
cretion. If these pathways are indeed one in the same,
does this apply to both cytoplasmic and nuclear stress
granules? Should this hypothesis hold true for YB-1, it

will be of interest to see whether it also applies to other
cold shock proteins, such as DbpA or CSDE1, that have
already been identified as components of both stress
granules and exosomes [95, 96].

Cold shock proteins in disease
The decisive data for a causal relationship between cold
shock proteins and disease comes from cancer. The role

Table 2 Genes regulated by cold shock proteins in disease

Protein Disease Target Cell Mode of Action Target Gene Ref.

YB-1 Sepsis neutrophils,
macrophages

N.D. Toll-like receptor 4
(TLR4) CXCL-1

[123]

T-cell activation Autoimmunity
Inflammation

T-helper cells binding and stabilization
of mRNA

Interleukin 2 (IL-2) [129, 204]

Allergic asthma activated eosinophils stabilization and up-regulation of
mRNA transcripts

GM-CSF [140]

embryonic lung
fibroblasts

suppression of gene transcription GM-CSF [205]

Chronic liver disease activated hepatic
stellate cells

induction of expression;
antagonizes TGFβ signaling

Smad7 [153]

Chronic liver disease rat hepatoma
cells (FAO)

suppression of gene transcription Mrp2 [206]

Kidney transplant rejection primary monocytes activation of gene transcription RANTES/CCL5 [126]

Kidney transplant rejection differentiated
macrophages

suppression of gene transcription RANTES/CCL5 [126]

Neointimal hyperplasia
Atherosclerosis

vascular smooth
muscle cells

activation of gene transcription RANTES/CCL5 [127]

Endometriosis peritoneal
macrophages

activation of gene transcription
and recruitment of inflammatory
cells

RANTES/CCL5* [207, 208]

Chronic kidney disease
Interstial kidney disease

proximal tubular
cells

control of translation TGFβ [132, 209]

Mesangioproliferative
glomerulonephritis

endothelial cells gene transcription PDGF-B [111]

Mesangioproliferative
glomerulonephritis

renal cells gene transcription, secretion PDGF-B [138]

Tubulointerstial nephritis renal cells,
macrophages

gene transcription, secretion,
differentiation, phagocytosis

RANTES/CCL5 MCP-1/
CCL2 IL-10

[124, 203]

Dysregulated angiogenesis repression of VEGF promotor VEGF [210]

Calcineurin inhibitor mediated
kidney fibrosis

mesangial cells binding and stabilization of mRNA Collagen [136]

Anti-Thy1.1 nephritis mesangial cells gene transcription, secretion Notch-3 [54]

Type II diabetes skeletal muscle gene transcription, signal
pathways

PTP1B [55]

T-ALL T cell Cell cycle Cdk6 [181]

CHSP1 Inflammation Sepsis macrophages enhancement of mRNA stability TNF [24]

DbpA Dysregulated angiogenesis fibroblasts repression of VEGF promoter VEGF [130, 210]

Hepatocellular carcinoma hepatocytes
[211–214]

Mesangioproliferative
glomerulonephritis

renal cells gene transcription, secretion DbpA [13]

For the studied cold shock domain proteins, the disease, target cell, mode of action, and target genes are listed, together with the relevant citation. In sepsis, the
mode of action has not been determined (N.D.). Modified from Lindquist et al. [4].
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of YB-1 as an oncoprotein was secured when it was
demonstrated that 100% of YB-1 transgenic mice over-
expressing the protein developed invasive tumors [97].
YB-1 and DbpA expression is upregulated in cancer and
nuclear localization indicates a poor prognosis [57, 98].
In the nucleus, cold shock proteins bind to single- and
double-stranded DNA and serve as transcriptional regu-
lators. In tumors, nuclear YB-1 correlates with enhanced
expression of the multidrug resistance protein 1 (MDR1)
[99–105]. Cells in which YB-1 expression has been ab-
lated using small inhibitory RNA fail to proliferate and
were recently shown to prevent tumor growth by dis-
rupting angiogenesis [106].
YB-1 can also be secreted [88]. Acetylation and ubi-

quitination of YB-1 have both been shown to play roles
in regulating secretion as well as intracellular stability
[58, 90, 107, 108]. YB-1 can be proteolytically cleaved
and extracellular YB-1, and/or fragments thereof, is
found in the serum of patients, binds to cell surface re-
ceptors, and exerts extracellular activities, e.g. enhan-
cing proliferation and induces migration of immune
cells [56, 89, 109–114].
Serum YB-1 levels are increased in cancer patients and

the occurrence of extracellular YB-1 or its fragments
may serve as a useful marker for cancer, as ~ 80% of
patients tested positive for the YB-1/p18 fragment,
whereas inflammatory diseases did not correlate with
positive results [98, 112–115].
Lin28 reactivation is also found in a number of can-

cers, where Lin28 appears to contribute to the formation
of cancer stem cells [18]. The role of Lin28 in cancer
has been extensively reviewed elsewhere [116]. Similar
to Lin28, Unr also regulates the differentiation state of
cells [44]. Due to its ability to regulate the expression of
several proto-oncogenes, UNR has also been investigated
in cancer [117–119]. In prostate cancer, a novel regula-
tory activity of HEPSIN on UNR was identified [120,
121]. UNR expression levels have also been demon-
strated as a prognostic biomarker for survival in pancre-
atic ductal adenocarcinoma [122].
For inflammatory and fibrotic diseases, the data for the

role of cold shock proteins appears more associative. The
initial data came from animal studies on Ybx1 heterozy-
gous mice, which express only half the amount of YB-1
compared to wild type. The induction of disease in experi-
mental models such as sterile sepsis or unilateral ureter
obstruction identified non-redundant roles for YB-1 in the
development of inflammation and fibrosis [123, 124].
These activities are mediated in part by YB-1-dependent
gene regulation of pro-inflammatory factors (PDGF-B,
VEGF, IL-2, GM-CSF, EGF, TGF-β, CCL2, CCL5, and
CXCR4) [111, 125–134] as well as fibrosis-related genes
(MMP2, Col1a1, and Col2a1) (see Table 2) [135–137]. In
mesangioproliferative glomerulonephritis, cold shock

protein expression is clearly induced; an effect mediated
by PDGF-B, and regulates mesangial cell proliferation [13,
138]. In atherosclerosis, YB-1 contributes to neointima
formation by modulating CCL5 expression [126, 127,
139]. In asthma, YB-1 promotes eosinophil survival by sta-
bilizing granulocyte macrophage-colony-stimulating factor
mRNA [140, 141]. Successful approaches to ameliorate
diseases by targeting YB-1 activities have been demon-
strated [124, 142–146].

From molecules to intervention strategies:
Rationale for cold shock protein targeting
We propose that cold shock proteins represent verifiable
targets for therapeutic intervention and envision strat-
egies aimed at targeting cold shock proteins directly or
targeting cold shock protein-dependent mechanisms.
This goal is supported by the following observations that
link the prototypic cold shock protein YB-1 with other
key molecule activities. For the latter, intervention strat-
egies have already proven to be successful.

1. YB-1 regulates NF-κB activation. In the absence of
YB-1, NF-κB activation is defective [147, 148].

2. YB-1 regulates IL-2 production. CD28 co-
stimulation is required for T cell activation and the
induction of autocrine IL-2 production. CD28 sig-
nals stabilize IL-2 mRNA. YB-1 is one of the essen-
tial RNA binding proteins that mediate this activity
[129].

3. YB-1 interacts with p53. Nuclear YB-1 regulates
p53 function by inhibiting its ability to induce
apoptosis, however it does not influence p53’s regu-
lation of cell cycle [149–151].

4. YB-1 and TGF-β counter-regulate one another. It
was recently demonstrated that TGF-β induces
miR-216a, which suppresses YB-1 expression. YB-1
suppresses Tsc22, which serves as an enhancer for
Col1a2 expression [152]. Additionally, we have
shown that YB-1 mediates the anti-fibrotic effect of
interferon-gamma, directly competes for Smad3
binding to p300/CBP [153].

Molecular pathways are not per se pathological, but
rather part of regulatory networks. A prolonged or per-
manent dysregulation results in diseases, especially those
of an inflammatory or malignant nature. Developing tar-
geted therapies requires insight into the molecular path-
ways of underlying diseases, as pivotal cell decisions are
dependent on the “activation” of key molecules. Exam-
ples of such molecules are provided in the following.

NF-κB; diseases: Cancer, inflammatory, and autoimmune
Nuclear factor binding near the kappa-light-chain gene
in B cells (NF-κB) are a family of inducible transcription
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factors that control inflammatory gene expression [154–
157]. In many cancers, NF-κB is constitutively active and
localized to the nucleus. Therefore many anti-tumor
therapies seek to block NF-κB activity as a means to
inhibit tumor growth or to sensitize tumor cells to con-
ventional therapies, such as chemotherapy. The exten-
sive involvement of NF-κB in inflammation and disease
has also established it as a therapeutic target. Indeed,
many common synthetic (e.g., aspirin, ibuprofen, gluco-
corticoids) and traditional medicines (e.g., green tea, cur-
cumin) target the NF-κB pathway. To date, over 800
compounds have been shown to inhibit NF-κB signaling
(such as anatabine, disulfiram, dithiocarbamates, olme-
sartan). Many natural products (including anti-oxidants)
that have been promoted to have anti-cancer and
anti-inflammatory activity have also been shown to in-
hibit NF-κB.

IL-2; diseases: Autoimmune and organ transplantation;
cancer, viral infection, and vaccination
Interleukin-2 (IL-2) is essential for lymphocyte survival,
differentiation, and proliferation [158–161]. Therefore,
many immunosuppressive drugs (such as corticosteroids,
cyclosporine A, and tacrolimus) used to treat auto-
immune diseases or suppress graft rejection work by
inhibiting the production of IL-2 by antigen-activated T
cells. Sirolimus blocks intracellular IL-2R signaling,
thereby preventing the clonal expansion of activated T
cells. The extracellular effects of IL-2 are abrogated by
monoclonal antibody application. The use of antibody
induction after kidney transplantation has increased to
60% in the past decade and roughly one half of the
induction agent used is anti-interleukin-2 receptor alpha
antibody (IL-2RA, i.e. basiliximab or daclizumab). In
combination with calcineurin inhibitors, IL-2RAs have
been shown to reduce the incidence of acute rejection
without increasing risks of infections or malignancies in
kidney transplantation.
Recombinant IL-2 has been approved for the treat-

ment of cancers (malignant melanoma, renal cell cancer)
and has been tested in clinical trials for the treatment of
chronic viral infections, and as an adjuvant for vaccines.

p53; disease: Cancer
Tumor protein p53 (p53) is a tumor suppressor and the
most frequently mutated gene in human cancers [162–
165]. People who possess only one functional copy of the
p53 gene have a higher incidence of tumor development.
The p53 gene can also be damaged by chemical mutagen-
esis or radiation, as well as p53 protein inactivated by
viruses (e.g. human papillomavirus). p53 itself does not
bind to DNA, but rather exerts its influence via its com-
plex interactions with transcription factors and regulators.
p53 mutants are associated with changes in chromatin

structure, leading to genetic instability and alterations in
cell cycle regulation as well as cellular metabolism. Mu-
tant p53 has been shown to act downstream of the TNF
receptor to prolong and enhance NF-κB activation thereby
driving tumor-promoting inflammation and enhancing
chemokine secretion. The p53 pathway inhibitors nutlin
and PRIMA-1 reactivate p53 function, enhancing its anti-
proliferative activity and thereby sensitizing cancer cells to
apoptosis [166].

TGF-β; diseases: Organ fibrosis, cancer, immune
suppression
Transforming growth factor-β (TGF-β) promotes fibro-
blast proliferation, differentiation, and survival. In
addition to inducing cytokine secretion, TGF-β upregu-
lates the synthesis of collagens and extracellular matrix,
making it a therapeutic target in fibrotic diseases [167].
TGF-β also induces the epithelial-mesenchymal xtran-
sition (EMT); an important step in tumor progression,
thus making it a target for anti-cancer therapy [168].
Strategies to target TGF-β include neutralizing monoclo-
nal antibodies targeting TGF-β, monoclonal antibodies
targeting the integrin αvβ6 are aimed at preventing the ac-
tivation of latent TGF-β, and small molecules targeting
TGF-β receptor activity. Additionally, some commonly
used drugs, e.g. the kinase inhibitor imatinib mesylate, ap-
pear to also block TGF-β activities and abrogate fibrotic
responses [169, 170]. However, inhibiting TGF-β can also
have unwanted effects, such as enhanced immune cell
activation (due to the loss of TGF-β-mediated inhibition),
hindering implantation during pregnancy, and impaired
wound healing (within a normal response to injury).

Outlook
Diagnostics and therapy with interventions targeting cold
shock proteins
Cold shock protein expression is a suitable biomarker
for diverse disease activities [112–114]. The presence of
extracellular cold shock proteins, and/or fragments
thereof, may serve diagnostic purposes. Beyond their
diagnostic potential, we envision that therapeutic inter-
ventions targeting cold shock proteins may reduce
disease burden, as YB-1 is expected to target pathways
distinct from those targeted by current therapies. There-
fore, we anticipate at least in some cases synergistic ac-
tivity with existing therapies.
At present cold shock protein research is on the

verge of entering clinical trials in different fields, espe-
cially for advanced cancer disease (ongoing trials adopt
a vaccination strategy against YB-1 epitope in HER2-
negative stage III-IV breast cancer or an oncolytic vir-
otherapy in bladder cancer). In experimental disease
models intervention strategies targeting YB-1 reduced
inflammation and organ fibrosis [124, 142, 143, 171].
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HSc025 was identified in a natural products screen for
compounds that suppressed collagen gene expression,
i.e. fibrosis [172]. HSc025 promotes nuclear transloca-
tion of YB-1, which acts as a suppressor of the gene
COL1A2 (collagen type I alpha 2) thereby reducing fi-
brosis [137, 142, 153, 171, 173–175].
Another compound is the natural product fisetin

(3,7,3′,4′-tetrahydroxyflavone); a polyphenolic compound
found in plants, also called a flavonoid, that demonstrated
anti-cancer as well as anti-inflamatory activity [176, 177].
Fisetin blocks the Akt-mediated phosphorylation of Ser102

within the CSD [144, 178]. However, an inhibition of
p70S6K, a member of the ribosomal S6 kinase (RSK) fam-
ily, has also been reported [179]. Molecular modeling pro-
posed that fisetin binds to the CSD of YB-1; if such binding
prevents YB-1 from being phosphorylated then this pro-
posal would unify these reports, as both kinases phosphor-
ylate Ser102 [144, 180, 181]. Regardless of the mechanism of
action, fisetin prevents the nuclear translocation of YB-1 by
preventing phosphorylation of the CSD.

Developing topics in the cold shock protein field
Pro-inflammatory factors, like TNF, activate NF-κB,
which induces miR-155 expression. Increased miR-155
suppresses CARHSP1, which stabilizes TNF mRNA;
thus, this negative feedback loop relieves chronic inflam-
mation and was shown to play a protective role during
atherosclerosis [182].
The modulation of tumor necrosis factor receptor

signaling by extracellular cold shock proteins is rele-
vant to a number of diseases, including preeclampsia,
diabetic nephropathy, systemic lupus erythematosus,
liver fibrosis, and infectious diseases where TNF plays
a central role in disease pathology [183]. Additionally,
TNF promotes expansion of JAK2V617F positive cells
in myeloproliferative neoplasms [184]. Extracellular
cold shock proteins are also topics of interest, as is
their potential role in fetal-maternal communication
during implantation.
Receptor Notch-3 is a developmental receptor that

plays an important role in stem cell maintenance as
well as in cell differentiation. Known roles include the
development thymocytes as well as hepatocellular car-
cinoma. Strong expression is also found in the placenta
and uterus suggesting an important role in pregnancy.
Extracellular YB-1 serves as a noncanonical ligand for
receptor Notch-3 and therefore its ability to modulate
receptor Notch-3 signaling is of relevance [88, 89].
Progranulin has recently been demonstrated as a
Notch ligand [185] and therefore YB-1/progranulin
may also modulate Notch signaling, which may be of
relevance in a number of diseases, e.g. diabetic ne-
phropathy, systemic lupus erythematosus, liver fibrosis,
and infectious disease.

The participation of extracellular cold shock pro-
teins in inter-organ communication is another import-
ant emerging idea (i.e. endocrine activity). Liver-
kidney interactions have recently been described for
nonalcoholic fatty liver disease (NAFLD) [186]. Here,
the liver is an important source of pro-inflammatory
cytokines, which modulate inflammation and renal
injury [187, 188]. Chronic kidney disease induces in-
testinal dysbiosis, which contributes to systemic in-
flammation (via the production of uremic toxins)
thereby promoting NAFLD. Inflammation also drives
renal fibrosis, which further reduces kidney function,
in so doing enhances the levels of uremic toxins
within the blood, creating a self-perpetuating multior-
gan disease [189]. Several pro-inflammatory cytokines
as well as bacterial toxins, e.g. lipopolysaccharide, in-
duce cold shock protein secretion, which binds to
TNF receptors and receptor Notch-3 [89]. Therefore
we believe that extracellular cold shock proteins are
intimately involved in this cycle.
Finally, evidence is emerging that cold shock proteins

may regulate the formation of protein aggregates in neu-
rodegenerative diseases [82]. The role of exosomes in
the spreading of neurodegenerative and prion diseases is
well documented [190–192]. However, it remains to be
determined whether stress granules do indeed serve as
precursors for exosomes and if so, to what extent they
contribute to the spread of neurodegenerative diseases
versus the detoxification of cells by removing protein ag-
gregates or perhaps both. Additionally, it remains to be
shown whether the targeting of cold shock proteins in
this context might be of therapeutic benefit.
Since many components of stress granules and P-

bodies are also targets of autoantibodies, the question
remains as to whether this pathway contributes to the
generation of autoantibodies against YB-1 [193–196].
Certainly the RNA:protein complexes described as
“beads on a string” possess the essential elements (i.e.
multiple repeating epitopes) required for the success-
ful activation of B-cells [80, 197].

Post-translational modifications of cold shock
proteins
The number of post-translational modifications identified
within cold shock proteins is continually growing [198]. A
recent paper described O-GlcNAcylation of YB-1; a
post-translational modification linking nutrient and stress
sensing to transcriptional and translational regulation
[199, 200]. This novel modification was shown to contrib-
ute to the oncogenic potential of YB-1 in hepatocellular
carcinoma (HCC) and appears to exert its activity within
the nucleus, since it also requires phosphorylation of
Ser102 within the CSD. O-GlcNAcylation is mediated by
the enzyme O-GlcNAc transferase (OGT), which is
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known to promote liver cancer as well as a number of
diseases, such as diabetes and neurodegeneration [200,
201]. Since O-GlcNAcylation of NF-κB potentiates its
acetylation [202], it will be interesting to see whether a
similar effect is also found for the acetylation of YB-1. As
you see from this example, there is still much work to be
done in linking a particular post-translational modification
to specific protein activities. To extrapolate this idea fur-
ther, it remains to be seen whether there are cell-specific
modifications or activities of the cold shock proteins and
whether these apply to particular compartments within
the cell (e.g. nucleus, mitochondria, exosomes, etc.). Here,
it is anticipated that CRISPR/Cas technology will help in
creating and characterizing cell lines with specific point
mutations targeting a particular modified amino acid.
However, there is still much work to be done in identify-
ing and characterizing cell-specific activities of the cold
shock proteins. Our recent study demonstrating cell-spe-
cific activities of YB-1 in monocytes and macrophages is
likely merely the tip of the iceberg [203]. There are still
numerous organs, cell types, and cell subsets (e.g. Th1
versus Th2 cells) awaiting characterization. Therefore
strategies aimed at deleting Ybx1 in specific tissues and/or
cell types must consider possible developmental effects
when characterizing the phenotypes of such cells. Add to
this the presence of cold shock proteins within exosomes
and thus their extracellular activities and we have a long
road ahead to fully understand the complex behavior and
activities of these fascinating proteins in both health and
disease. Here, the application of high-throughput omics
technologies will be essential to keep track of the changes
going on within such cells on both the transcriptional as
well as translational levels.
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