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Predictive model identifies strategies to
enhance TSP1-mediated apoptosis
signaling
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Abstract

Background: Thrombospondin-1 (TSP1) is a matricellular protein that functions to inhibit angiogenesis. An important
pathway that contributes to this inhibitory effect is triggered by TSP1 binding to the CD36 receptor, inducing endothelial
cell apoptosis. However, therapies that mimic this function have not demonstrated clear clinical efficacy. This study explores
strategies to enhance TSP1-induced apoptosis in endothelial cells. In particular, we focus on establishing a computational
model to describe the signaling pathway, and using this model to investigate the effects of several approaches to perturb
the TSP1-CD36 signaling network.

Methods: We constructed a molecularly-detailed mathematical model of TSP1-mediated intracellular signaling via the
CD36 receptor based on literature evidence. We employed systems biology tools to train and validate the model and
further expanded the model by accounting for the heterogeneity within the cell population. The initial concentrations
of signaling species or kinetic rates were altered to simulate the effects of perturbations to the signaling network.

Results: Model simulations predict the population-based response to strategies to enhance TSP1-mediated apoptosis,
such as downregulating the apoptosis inhibitor XIAP and inhibiting phosphatase activity. The model also postulates a
new mechanism of low dosage doxorubicin treatment in combination with TSP1 stimulation. Using computational
analysis, we predict which cells will undergo apoptosis, based on the initial intracellular concentrations of particular
signaling species.

Conclusions: This new mathematical model recapitulates the intracellular dynamics of the TSP1-induced apoptosis
signaling pathway. Overall, the modeling framework predicts molecular strategies that increase TSP1-mediated apoptosis,
which is useful in many disease settings.

Keywords: Thrombospondin-1, Biochemical kinetics, Computational modeling, Parameter estimation, Cell heterogeneity

Background
Angiogenesis, the formation of new capillaries from pre-
existing blood vessels, plays a critical role in tumor progres-
sion. Angiogenesis enables the tumor to generate its own
blood supply and obtain oxygen and nutrients from the
microenvironment. This process is regulated by a dynamic
interplay between the angiogenic promoters, such as vascu-
lar endothelial growth factor (VEGF) and fibroblast growth

factor (FGF), as well as angiogenic inhibitors, such as
thrombospondin-1 (TSP1) [1–5].
Due to its importance in tumor development, invasion,

and metastasis, angiogenesis has become a prominent target
for cancer therapies. In addition to strategies targeting pro-
angiogenic species, such as inhibiting VEGF signaling using
antibodies and tyrosine kinase inhibitors, anti-angiogenic
species hold promise in reducing tumor angiogenesis. TSP1
is a well-known, potent endogenous angiogenesis inhibitor.
TSP1 expression is lost in multiple cancer types; however,
its re-expression can delay cancer progression, promote
tumor cell apoptosis, and decrease microvascular density.
For these reasons, it has been of interest to mimic TSP1’s
functions in regulating angiogenesis [3, 6–9].
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TSP1 is a multifunctional matricellular protein that acts
to inhibit angiogenesis in multiple ways [2, 10, 11], which
include altering the availability of pro-angiogenic factors
and promoting anti-angiogenic signaling through its recep-
tors CD36 and CD47. Several studies have shown that
TSP1 mediates its anti-proliferative and pro-apoptotic
effects in a highly specific manner on endothelial cells.
TSP1 primarily promotes these effects by binding to the
CD36 receptor [3, 12, 13], which is associated with capillary
blood vessel regression [10, 12, 14, 15]. TSP1 interaction
with CD36 leads to recruitment of the Src-related kinase
Fyn, activation of p38MAPK, and processing of caspase-3,
a vital protease that mediates apoptosis [12, 15, 16]. TSP1-
CD36 signaling also causes transcriptional activation of Fas
ligand (FasL), a death ligand that also promotes pro-
apoptotic signaling, ultimately inhibiting angiogenesis. This
apoptosis pathway is further enhanced as pro-angiogenic
factors induce increased levels of Fas receptors, sensitizing
the cells to FasL [17].
Unfortunately, therapies that mimic TSP1 activity have

not demonstrated definitive clinical efficacy. For example,
ABT-510, a TSP1 peptide mimetic that binds to CD36,
was previously tested in a Phase II study in 2007 for treat-
ment of metastatic melanoma. However, the drug failed to
reach its primary endpoint (18-week treatment failure
rate), resulting in termination of the study [18]. ABT-510
also showed little clinical effect in a Phase II trial for
advanced renal cell carcinoma [19]. These disappointing
results indicate that there is a need to better understand
the effects of anti-angiogenic agents and develop effective
treatment strategies. This requires a detailed and quantita-
tive understanding of the dynamic concentrations of the
factors involved in angiogenesis signaling.
Computational systems biology offers powerful tools for

studying complex biological processes that involve a large
number of molecular species and signaling reactions that
occur on multiple time- and spatial-scales. Systems biology
aims to study how individual components of biological sys-
tems give rise to the function and behavior of the system
[20]. Additionally, computational modeling aids in the
development of therapeutic strategies that specifically target
tumor angiogenesis to optimally inhibit tumor progres-
sion, complementing pre-clinical and clinical angiogenesis
research [21].
Substantial research has focused on the pro-angiogenic

factors and their extracellular interactions [21–23]. How-
ever, a consideration of the intracellular mechanisms of
anti-angiogenic factors is also needed in order to fully
understand the dynamics of the signaling networks regu-
lated by angiogenesis promoters and inhibitors. In this
study, we focus on TSP1-mediated apoptosis signaling
through the CD36 receptor. Although some aspects of the
TSP1-CD36 pathway have been studied experimentally,
the signaling network has not been quantitatively and

systematically analyzed. We constructed the first compu-
tational model that describes the intracellular signaling
network induced by TSP1-CD36 binding in endothelial
cells, a complex network comprised of biochemical reac-
tions that lead to cell apoptosis. We applied the model to
predict the effects of modulating protein expression and
enzyme activity on apoptosis signaling. The model quanti-
fies the effects of these perturbations and predicts promis-
ing targets, both in terms of the averaged response of a
population of endothelial cells and individual cells within
the population. Thus, the model is a quantitative framework
to predict strategies to enhance TSP1-mediated apoptosis.
Ultimately, the model can be used to identify novel pharma-
cologic targets and optimize therapeutic strategies that pro-
mote apoptosis and, subsequently, inhibit angiogenesis.

Methods
Mathematical model
We constructed a computational model of TSP1-mediated
apoptosis signaling via the CD36 receptor in endothelial
cells. The molecular interactions depicted in Fig. 1 were
translated into biochemical reaction equations, with the as-
sumption that the reactions follow well-established kinetic
laws, including mass-action or Michaelis-Menten kinetics
(Additional file 1: Table S1). A system of nonlinear ordinary
differential equations (ODEs) was formulated to describe
the rate of change of the species’ concentration. The model
is comprised of 53 ODEs to predict the concentrations of
the 53 species in the signaling network over time. The
SimBiology toolbox (MATLAB) was used to implement the
biochemical reaction equations, and the MATLAB stiff
solver ODE15s was used the numerically solve the system
of ODEs. The model file is provided in the Additional file 2.
Solving the set of ODEs with the baseline initial conditions

provides the averaged response of a population of cells.
Additionally, we accounted for heterogeneity in a population
of cells by solving the ODE model 2000 times, each with a
different set of initial conditions. We refer to this as the
“population-based model”.

Cytosolic and nuclear compartments
The model is comprised of two compartments, cytosolic
and nuclear, both assumed to be well mixed. Specific mol-
ecules, such as NF-κB, may move from one compartment
to another at a defined translocation rate. The volume of
the nuclear compartment is estimated to be 14.32% of the
cytosolic compartment [24], and the concentrations of
species transported between the two compartments are
converted using this ratio.

Initial protein concentrations
The initial conditions used in the model are given in
Additional file 1: Table S2. Very few references for initial
concentrations of proteins are available. Therefore, we
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adapted values from a previously published model [25] and
adjusted the initial concentrations of several species in
order for the model to match experimental measurements.
For the CD36 and Fas receptors, we used flow cytom-
etry to quantify the average numbers of receptors on
cultured human microvascular endothelial cells (data
described below; similar to previous work [26], and
converted the receptor numbers to concentrations
using the total cell volume of 1 picoliter [27].
When simulating the population-based model, we

randomly selected the initial conditions from a
gamma distribution. The gamma distribution is char-
acterized by two parameters: the shape factor, a, and
the scale parameter, b. These parameters are related
to the mean, m, and standard deviation, sd, of the
distribution: 1/a = sd2/m2; b = sd2/m. Thus, a × b =m.
We set m to be the baseline value of the initial con-
dition for each species (given in Additional file 1:
Table S2) and assumed a shape factor of 5.5 (based
on previous work [28]).

Rate constants
All baseline model parameter values are listed in
Additional file 1: Table S3.

Production of soluble species
The basal rate at which each species is synthesized (Ksyn_all)
is set to be 10−4 μM/min, with the exception of FasL,
procaspase-8, and procaspase-3, whose production rates
are described below.
The model accounts for FasL production mediated by

TSP1, and we described the production of FasL mRNA
production (DNA transcription) using Michaelis-Menten
kinetics:

V ¼ V max FasL �NF‐κB p= Km FasL þNFκB pð Þ

where Vmax_FasL and Km_FasL are the Michaelis-Menten
kinetic rate constants for FasL mRNA production, and
NF-κB_p is the activated transcriptional factor that cata-
lyzes this process. The molecular details involved in FasL
protein production encompass the mRNA translocation
and translation, and protein secretion. The rates involved
in these reactions are not readily available in published
literature. Therefore, we estimated the values in model
fitting in order to match experimental data.
The synthesis rate of procaspase-8 and procaspase-3 were

assumed to be dependent on the concentration of DISC
present in the system, as a partial effect of Fas ligation. The
synthesis rate is described as:

Fig. 1 Model schematic of TSP1-mediated apoptosis signaling. TSP1 binding to the CD36 receptor recruits p59fyn, which induces activation of
the caspase-3 cascade. The kinase p38MAPK is subsequently phosphorylated and translocated to the nucleus. NF-κB translocates into the nucleus
and is activated in the presence of phosphorylated p38MAPK. This leads to transcriptional activation of FasL. FasL protein binds to its receptor
Fas, forming the DISC complex, which binds to c-FLIP (FL) and procaspase-8 (pro8) to form the p43-FLIP complex. This complex activates IKK,
which releases NF-κB from its inhibitor IκB. Blue arrows indicate transport reactions
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V ¼ F � DISCþ Ksyn all

where F is a hand-tuned coefficient, DISC is the com-
plex formed by FasL binding to Fas, and Ksyn_all is the
basal level synthesis rate assigned to all the other species
except for FasL.

Protein degradation
Protein species are assumed to be degraded at the same
rate, 10−3 min−1, unless there was a degradation rate
available in the literature or from a previous model. This
allows the system to balance and reach steady-state in
the absence of TSP1 stimulation. The degradation rates
of caspase-8, caspase-3, the p43:FLIP:IKK_a complex,
and cytosolic NF-κB have unique values adapted from pre-
vious modeling work by Neumann et al. [25].

Receptor-ligand interactions
The affinity of TSP1 and its receptor CD36 has been
measured experimentally: the Kd value is 230 nM [29].
We assumed that FasL binds to Fas with an affinity of
0.4 nM. In all cases, the dissociation rate for the recep-
tors is 1.2 × 10−2 min−1. Receptors are internalized and
inserted at the cell membrane such that the total num-
ber of receptors (ligated plus unbound) is constant.

FasL cascade
The model includes DISC formation upon FasL binding
with Fas, and the downstream caspase-8 and NF-κB acti-
vation reactions. The molecular details were adapted
from the model established by Neumann et al. [25]. We
altered this portion of their model by adding reversible
binding reactions to ensure the reaction network is con-
sistent with the other parts of our model. We tuned the
universal dissociation rate Koff to be 1.2 × 10−2 min−1 to
match the data presented in their paper. The simulations
of the implemented minimal model are shown in Add-
itional file 3: Figure S1.

Sensitivity analysis
There is limited quantitative experimental data available
to specify the values of the kinetic parameters. However,
the parameters must be set to appropriate values in
order for the model to generate reliable predictions. We
first used sensitivity analysis to reduce the number of
parameters to be estimated. Specifically, to identify the
influential kinetic parameters before each step of model
fitting, we conducted global sensitivity analysis using the
extended Fourier Amplitude Sensitivity Test (eFAST)
method [30], as we have done in previous work [21, 22].
All inputs were allowed to vary simultaneously one
order of magnitude above and below the baseline value,
and the effects of multiple inputs on the model outputs
were quantified. An additional global sensitivity analysis

was performed after model training, in order to quantify
the robustness of the model with respect to varying the
kinetic parameters (Additional file 3: Figure S2). Sensitiv-
ity analysis was also used to determine the effects of initial
protein concentrations to inform perturbation simulations
(Additional file 3: Figure S3).

Quantification of experimental data
The experimental data used in model fitting and validation
are extracted from previously published studies [12, 15].
Jimenez et al. stimulated human microvascular endothelial
cells (HMVECs) with 10 nM TSP1 and used immunoblot-
ting of cell lysates to measure TSP1-induced association of
activated p59fyn with CD36 over 30 min (TSP1:CD36:p59fyn
complex and activated p59Fyn, pp59), and activated p38
(pp38) over 60 min. We analyzed the immunoblots using
ImageJ (https://imagej.nih.gov) and extracted quantitative
data needed for model fitting and validation. The local back-
ground from bands was subtracted and their intensity was
quantified. The intensities of subject species were normalized
to the corresponding control band intensities. One data point
(TSP1:CD36:p59fyn concentration at 30 min) was excluded
due to low image quality.
Two sets of data for caspase-3 activity upon TSP1 stimu-

lation measured with fluorescence assays were extracted:
from Jimenez et al. and Nor et al.. HMVECs stimulated with
5 nM TSP1 over 5 h (300 min), and human dermal vascular
endothelial cells (HDMECs) stimulated with 0.388 nM
TSP1 over 12 h (720 min) were measured in these studies,
respectively. We quantified the caspase-3 activity at each
timepoint directly from the published figures using ImageJ.

Receptor quantification
We measured CD36 and Fas receptor numbers on
HMVECs, following methods previously established [31].
Briefly, HMVECs from Lonza were cultured in flasks and
maintained in Endothelial Cell Growth Media-2 (EGM-2)
supplemented by the EGM-2 Single Quot Kit (Lonza). Cells
were maintained at 37 °C in 95% air and 5% CO2, and we
only use cells at passage numbers 2–4. To dissociate cells
from the culture plate, cells were incubated with a non-
enzymatic cell dissociation solution, CellStripper (Corning),
for 5 min at 37 °C. Cells were centrifuged at 500×g for
5 min to obtain a final concentration of 4 × 106 cells/mL in
stain buffer (PBS, bovine serum albumin, and sodium azide).
Aliquots of cells (25 μL, ~105 cells) were labeled with

phycoerythrin (PE)-conjugated monoclonal antibodies
(Biolegend) and allowed to incubate on ice for 45 min.
The volumes of antibody solution used (15 μL for CD36
receptor; 10 μL for Fas receptor) were the optimal
volumes as determined by saturation experiments. Cells
were then washed with ice-cold stain buffer, centrifuged
twice at 500×g and re-suspended in 200 μL stain buffer
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prior to single-cell analysis via flow cytometry to quan-
tify the number of receptors per cell.
Flow cytometry was performed on a MACSQuant flow

cytometer (Miltenyi), and FlowJo (BD Biosciences) soft-
ware was used to analyze the data. To identify dead cells,
5 μg/mL Sytox Blue (Thermofisher) was added to all
samples, and tubes were vortexed immediately prior to
placement in the flow cytometer. Cells exhibiting very
low Sytox Blue fluorescence were identified as live cells,
and gating was performed to collect 10,000 live cells for
each sample. Finally, the gated cells were examined in a
plot of forward scatter area (FSC-A) versus side scatter
area (SSC-A) to identify the single-cell population.
To determine the number of receptors per cell, the

fluorescence of Quantibrite PE beads (BD Biosciences)
was measured. We measured the fluorescence for beads
with different numbers of binding sites (as specified by
the manufacturer). We applied linear regression to the
fluorescence measurements, constructing a calibration
curve to convert the geometric mean of PE fluorescence
to the number of bound molecules. The average number
of receptors on a cell in the population was then calcu-
lated using the linear regression and the cell fluorescence
data. For each experiment, two biological replicates were
used, and the experiments were repeated 3–4 times. We
report the mean and standard error of the mean of the
measurements of all samples: CD36 = 24,372 ± 2365 re-
ceptors/cell and Fas = 7860 ± 395 receptors/cell. The
receptor distributions of representative samples of each
receptor are shown in Additional file 3: Figure S4.

Parameter estimation
The estimation of the kinetic parameters was achieved
using the “lsqnonlin” function in MATLAB, as done in
our previous work [22, 32, 33]. This algorithm solves the
nonlinear least squares problem using the trust-region-
reflective optimization algorithm, minimizing the weighted
sum of the squared residuals (WSSR). The minimization is
subject to the upper and lower bounds of the free parame-
ters. One hundred runs were performed in each fitting step,
and a global sensitivity analysis was performed with the best
fit parameter values (the parameters that produce the low-
est WSSR). The step-wise iteration was repeated four times
to ensure fine-tuning of the parameter values. Parameter
values used in the implemented model are from the best
fit (lowest WSSR) from the last step. We also report the
mean and standard deviation of the estimated parameter
values in Additional file 1: Table S3 and Additional file 3:
Figure S5.

Definition of apoptotic cells
Cleaved poly(ADP-ribose) polymerase (cPARP) is the out-
put of the model used as an indicator of apoptosis, since
loss of intact PARP results in failure to repair DNA damage.

Our model simulations show that the dynamics of cPARP
follows a switch-like action; however, the range of cPARP
varies widely depending on the initial concentration of
PARP. Previous study [34] has shown that low doxorubi-
cin (DXR) dosage with 10 nM TSP1 stimulation resulted
in approximately 50% of the cells becoming apoptotic in
24 h. Therefore, we simulated this treatment condition
using the population-based model, and determined the
cPARP concentration that results in 50% cell apoptosis.
We then use this concentration, 1.05 μM, as the defined
threshold that needs to be reached for cell apoptosis to
occur. Thus, the definition of which cells are apoptotic is
based on literature evidence.

Simulated perturbations to TSP1-mediated apoptosis
We applied the model to simulate seven specific perturba-
tions to the intracellular signaling network, to find strategies
that enhance apoptosis signaling. Below, we list the motiv-
ation and literature evidence for each of the seven perturba-
tions. We also describe how the perturbation was simulated
in our mathematical model. The abbreviations listed in par-
entheses are also used in the results figures. Generally, per-
turbations are simulated in the ODE model by adjusting the
baseline initial conditions (Additional file 1: Table S2) and
parameter values (Additional file 1: Table S3).

1. XIAP downregulation (“XIAP”): Experimental
studies show that downregulation of X-linked
inhibitor of apoptosis protein (XIAP) can promote
apoptotic signaling [35–38]. We simulated this effect
by reducing XIAP concentration to 0.5-fold of the
baseline value.

2. Low dosage doxorubicin treatment (“DXR”):
Experimental studies [34, 39] have shown that a low
dose of doxorubicin upregulates the expression of
Fas receptor and other protein species. We
simulated this effect by increasing the initial Fas
receptor level by 3-fold and Ksyn_all by 10-fold.

3. Phosphatase inhibition (“Ptase”): Studies have shown
that inhibiting MAPK phosphatase (MKP) activity
can promote apoptosis signaling [40, 41]. We
simulated this effect by decreasing the association
rate (Kon_dephos) of the phosphatase with
phosphorylated p38MAPK (pp38) and the
dephosphorylation rate (Kdephos) by 10-fold.

4. Kinase promotor (“Kp”): Literature evidence suggests
that the tumor microenvironment likely upregulates
many kinases’ activities in the tumor-related endothe-
lial cells [42–44]. We simulated the kinase promoter
by increasing the phosphorylation rates of p59fyn,
p38MAPK, and IκB by 10-fold.

5. Procaspase-3 upregulation (“pro3”): Global
sensitivity analysis (Additional file 3: Figure S3) and
baseline model simulations (Fig. 3) indicate that
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upregulation of procaspase-3 increases the cPARP
level upon TSP1 stimulation. Therefore, we investi-
gated the effect of procaspase-3 upregulation by in-
creasing procaspase-3 concentration by 3-fold.

6. Fas upregulation (“Fas”): Experimental investigation
by Quesada et al. suggests that upregulation of the
receptor Fas promotes TSP1-induced apoptosis [34].
We simulated the effect of Fas upregulation by
increasing Fas concentration by 3-fold.

7. Translocation rate increase (“Ktrsp”): Based on the
structure of the signaling network, we hypothesized
that increasing the cytoplasm-to-nucleus transport
would enhance apoptosis. We simulated the effect of
faster cytosol-to-nucleus translocation by increasing
the translocation rate (Ktrsp) by 10-fold.

Analysis of sensitivity and specificity of a cPARP-based
classifier
Here, we consider binary classification of the cells’
response to TSP1 stimulation based on cPARP levels at
24 h: apoptotic or non-apoptotic. We aim to classify the
cells as apoptotic or non-apoptotic using certain model
variables as predictors (i.e., the initial species’ concentra-
tions). The goal is to determine whether the initial
amounts of one or more species are accurate predictors
of what the response to TSP1 stimulation would be.
That is, whether the cell will become apoptotic or not.
We constructed the ROC curve to determine which model
variables are accurate predictors. Here, the “actual response”
is the classification of a cell as apoptotic or non-apoptotic
based on its cPARP level predicted by the mechanistic model
of TSP1-mediated apoptosis signaling presented above.
For a binary classification system such as this, there are

four possible predicted outcomes for a given cPARP cutoff
value: true positive, a cell predicted to be apoptotic is actu-
ally apoptotic; false positive, a cell predicted to be apop-
totic is actually non-apoptotic; true negative, the predicted
and actual response are both non-apoptotic; false negative,
a cell predicted to be non-apoptotic is actually apoptotic.
This analysis determines the fraction of positives predicted
correctly (sensitivity or the true positive rate) and the frac-
tion of true negatives predicted (specificity or the true
negative rate) for different cutoff values of cPARP.
To evaluate tradeoffs between sensitivity and specificity,

we constructed a receiver operator characteristic (ROC)
curve for cPARP. The ROC curve plots the true positive
rate versus the false positive rate (1-specificity). An ideal
input maximizes true positives, with minimal false posi-
tives (i.e., the (0,1) point on the ROC graph). An ROC
curve that lies on the 45-degree angle line indicates that
the input does not classify the output any better than a
random guess, where the area under the ROC curve
(AUC) is 0.5. Thus, having an AUC value significantly
greater than 0.5 indicates that the input can be used to

classify the data. We performed the ROC analysis using
the custom “roc” function in MATLAB.

Results
Model training and validation
We constructed a model of the signaling network of
TSP1-mediated apoptosis in endothelial cells based on lit-
erature evidence. TSP1 binds to CD36, activating caspase-
3, the core executioner protease. Caspase-3 promotes
apoptosis by cleaving PARP in endothelial cells. Activation
of caspase-3 also mediates intracellular signaling leading
to the production of FasL, a death ligand that binds to its
receptor Fas on endothelial cells and further promotes
apoptosis through activation of caspase-3 [12, 15, 17]. The
signaling network, illustrated in Fig. 1, includes several
important feedback loops involved in TSP1-mediated
apoptosis, including the caspase cascade (caspase-3 acti-
vates its activator, caspase-8) and Fas signaling (TSP-1
promotes the production of Fas, which also activates
caspase-3). We implemented the signaling network math-
ematically to generate an ODE model, assuming that the
reactions follow mass-action or Michaelis-Menten kinetics
rate laws.
The model was trained using quantitative experimental

data and validated with an independent set of measure-
ments. We extracted experimental data from the literature
in order to calibrate the model and estimate the kinetic
parameters. Specifically, the fold-changes in the caspase-3
activity and the levels of three intracellular species
(TSP1:CD36:p59fyn, pp59fyn, and p38MAPK) upon TSP1
stimulation were quantified from Western blot data and
used to train the ODE model.
We used a step-wise strategy comprised of global sen-

sitivity analysis and parameter estimation to ensure that
the model could match the training data (see Methods).
As a result of this approach, we obtained 12 sets of
parameters that enable the model to closely reproduce
the training data (Fig. 2a-e, Additional file 1: Table S3).
After fitting the model to the experimental data, we

used a separate set of measurements to validate the model
predictions. Here, we applied the trained model to predict
the dynamics of caspase-3 activity when p38MAPK is
inhibited, mimicking an experimental study from Jimenez
et al. [12]. This inhibitory effect on p38MAPK is simulated
by setting the phosphorylation rate of NF-κB by active
p38MAPK (pp38MAPK) to be zero. The 95% confidence
interval of the model predictions produced with all 12 sets
of parameters shown in Fig. 2f is not visible. This indicates
that the parameter sets produce similar dynamics of
caspase-3 activity with p38MAPK inhibition. The model
qualitatively matches this independent set of data (Fig. 2f,
Additional file 1: Table S3), where caspase-3 activity is
reduced at 300 min, compared to the case without p38
MAPK inhibition (Fig. 2d). Overall, the model fitting and
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validation produces a trained model that generates reliable
predictions related to the dynamics of TSP1 simulation.
Results from a representative set of parameter values are
shown in Additional file 3: Figure S6, where the baseline
model is simulated to produce the dynamics of all 53 spe-
cies upon 24-h simulation with 10 nM TSP1. Notably,
TSP1 decays rapidly, and cPARP has a sigmoidal shape.
A global sensitivity analysis was performed to reveal the

robustness of the trained model. The sensitivity of all 53
species in the model with respect to changes in the
parameter values (Additional file 3: Figure S2) and species
with non-zero initial concentrations (Additional file 3: Fig-
ure S3) was computed. These results show that the model
output, cPARP, is largely influenced by the concentrations
of its immediate effectors (procaspase-3, XIAP, and
PARP), as well as critical parameters identified and esti-
mated during model training. Upstream or intermediate
species, such as those involved in p38 signaling and FasL
signaling (Additional file 3: Figure S3, bottom panel), are
sensitive to changes in a variety of initial concentrations
and parameters values.

Altering the concentrations of intracellular signaling
species influences the apoptotic response
We first applied the trained and validated model to
investigate the effects of varying the concentrations of
cell surface receptors and intracellular signaling species,
in combination with different TSP1 stimulation levels. In this
study, we specifically focus on predicting the concentration

of cleaved PARP (cPARP) as an indicator of cell apoptosis.
Caspase-3 promotes apoptosis by cleaving PARP, and
cleavage of PARP by caspases is considered a hallmark of
apoptosis [45]. Sensitivity analysis revealed that the concen-
trations of procaspase-3, XIAP, and PARP most significantly
influence the cPARP level throughout the simulated time
course (Additional file 3: Figure S3). This analysis suggests
that varying the concentrations of those intracellular species
can impact TSP1-mediated apoptosis signaling. Since the
receptor concentration influences the initial dynamics of
TSP1 stimulation, we also hypothesized that increasing the
receptor’s availability (i.e., increasing the receptor:ligand ratio)
can amplify the signaling induced by ligand-receptor binding.
Therefore, we ran the model and individually altered the
expression level (initial conditions) of the CD36 or Fas recep-
tors, or intracellular species procaspase-3, XIAP, and PARP,
by 10-fold above and below the baseline values. We applied
this relatively large alteration in the protein expression levels
to explore the extent of changes in the model output. The
initial conditions were varied for each of the 12 fitted param-
eter sets, and we compared the cPARP level at various time
points for each case.
Across the simulated time points, there is a dose-

dependent response to TSP1, where increasing the concentra-
tion of TSP1 increases the predicted cPARP concentration.
Interestingly, altering the expression levels of the CD36 or Fas
receptors does not affect the cPARP level, compared to the
baseline model (Fig. 3a and b). This result holds true for all
TSP1 concentrations investigated, and is in accordance with

a

d

b

e

c

f

Fig. 2 Model training and validation. The ODE model was trained to match experimental measurements of activated species in the TSP1-mediated
apoptosis signaling pathway. (a) TSP1:CD36:p59fyn [12]; (b) pp59fyn [12]; (c) pp38MAPK [12]; (d) caspase-3 activity [12]; and (e) caspase-3 activity [15].
(f) An independent set of data for caspase-3 activity under the condition of p38MAPK inhibition [12] was used to validate the model prediction. Solid
line: mean of 12 best fits. Shaded area: 95% confidence interval. Squares: experimental data

Wu and Finley Cell Communication and Signaling  (2017) 15:53 Page 7 of 17



the findings from the global sensitivity analysis, which identi-
fied CD36 and Fas as non-influential to the cPARP level
(Additional file 3: Figure S3).
In contrast, varying the initial concentrations of the

influential species led to significant changes in cPARP levels.
Increasing the amount of procaspase-3, the unprocessed form

of caspase-3, by 10-fold leads to increased cPARP level at
every simulated time point, as compared to the baseline
model (Fig. 3c, right panel). Downregulation of procaspase-3
to 0.1-fold of the baseline value slightly decreased cPARP level
at intermediate time points (6 to 12 h), but did not affect the
cPARP level at 24 h, compared to the baseline model.

a

b

c

d

e

Fig. 3 Dose-dependent response of apoptosis signaling with varied initial concentrations. Initial concentrations of (a) CD36, (b) Fas, (c)
procaspase-3, (d) XIAP, and (e) PARP were varied 10-fold above (right column) and below (left column) the baseline values (center column). The
model was used to simulate cPARP level in response to four different TSP1 concentrations: 0.1, 1, 10, and 100 nM. The predicted cPARP level at
24 h was generated using the 12 best sets of parameter values for each condition. The mean cPARP concentration is plotted; error bars show the
standard deviation
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Regulation of the caspase-3 inhibitor XIAP reduces
apoptosis signaling. That is, increasing the level of XIAP
by 10-fold dramatically decreased cPARP concentration
to less than 20% of the baseline level, as shown in the
right panel of Fig. 3d. However, decreasing XIAP by 0.1-
fold results in a larger and faster increase in cPARP level
compared to the baseline model (Fig. 3d, left panel). For
example, after 24 h, the decreased XIAP resulted in 41%
and 34% more cPARP than the baseline level, with
0.1 nM and 100 nM TSP1, respectively.
Lastly, the model predicts that increasing PARP levels sig-

nificantly influences cPARP levels (Fig. 3e). When PARP is
increased by 10-fold, the cPARP level at all time points is
approximately nine times higher than the amount produced
in the baseline model. In summary, the apoptotic response
stimulated by TSP1 is sensitive to varying the concentra-
tions of certain intracellular species.

Perturbing the signaling pathway influences the
population response to TSP1 stimulation
Next, we implemented perturbations in the model and pre-
dicted the response of individual cells in a population. We
accounted for heterogeneity in the cell population by vary-
ing the initial concentrations of protein species. Cellular
heterogeneity is observed for multiple dimensions of sin-
gle cell measurements, and detailed molecular differences
can be used to distinguish cell-to-cell variation [46]. In
this population-based model, the initial concentrations of
all starting species are drawn from a gamma distribution
[28, 47] (see Methods for details). Here, we focus on
extrinsic noise (i.e., variability in the protein levels), as
opposed to intrinsic variations (fluctuations in the rates of
the biochemical reactions), since several studies have
demonstrated that the experimentally-observed cell-to-
cell heterogeneity is largely due to extrinsic rather than
intrinsic noise [28, 48–51]. We performed the simulations
with the baseline model and the parameter set that best fit
the data out of the 12 parameter sets obtained from model
training. We then ran the model 2000 times, representing
2000 independent cells, and analyzed the population-level
response to TSP1 stimulation. We simulate the response
to seven conditions (as described in the Methods) at two
TSP1 concentrations (0.1 and 10 nM). Particularly, we
investigated whether the predicted results from solving
the deterministic model with the fixed initial conditions
(Fig. 3) hold true when accounting for heterogeneity at
the population level.
We characterized the population-level response based

on the cells’ cPARP concentration. We extracted predicted
intracellular cPARP concentrations for the 2000 cells at
distinct time points up to 24 h of TSP1 stimulation, and
generated histograms. This provides a direct visualization
of the distribution of cPARP levels in the cell population.
Based on literature data, we defined the threshold of

intracellular cPARP required for apoptosis to occur within
each cell to be 1.05 μM (see Methods). We used the
model to predict the percentage of apoptotic cells, based
on the predicted cPARP concentrations. Cells that have
high cPARP level (greater than 1.05 μM) are classified as
apoptotic, since their cPARP level exceeds the threshold
value. Cells whose intracellular cPARP concentration is
below the threshold value are classified as non-apoptotic.
We also analyzed when cells that have high cPARP level
appear at the simulated time points.
In the baseline model, the apoptotic response initiates

within 6 h after 10 nM TSP1 stimulation (Fig. 4a). The size
of the cPARP-positive population increases throughout the
24-h stimulation. By 24 h, the apoptotic cells make up 41%
of the total population (Fig. 4e). Below, we compare the
population-level response for the baseline model to the
response when particular species in the intracellular signal-
ing network are perturbed.
According to the model with fixed initial conditions,

downregulation of XIAP strongly promotes apoptotic
signaling (Fig. 3d, left panel). To explore whether this con-
clusion still holds with a heterogeneous cell population,
we decreased XIAP expression level by 0.5-fold, a physio-
logically reasonable change to the protein expression, and
simulate the population-based response to 10 nM TSP1
stimulation under this condition. The results show that
with XIAP downregulation, cells with high cPARP level
appear at 4 h (Fig. 4b, f ). By 24 h, 57% of the cell popula-
tion is apoptotic. Additionally, the apoptotic population
exceeds the non-apoptotic population by 0.4-fold (Fig. 4f).
We also considered the effect of doxorubicin (DXR) on

the apoptosis signaling network. A published experimental
study suggest that a low dosage of DXR sensitizes cells to
pro-apoptotic signaling [34]. Specifically, Quesada and
coworkers observed that Fas receptor expression increases
approximately 3-fold following DXR treatment. Thus, we
simulated the effect of such a DXR treatment by increas-
ing Fas expression by 3-fold. Additionally, we increased
the synthesis rates of certain intracellular species, as DXR
has been shown to increase protein expression [39]. Here,
we increased Ksyn_all by 10-fold. Under this simulated
DXR treatment condition, cells with high cPARP level ap-
pear within 2 h, a faster apoptotic response than in the
baseline model or with XIAP downregulation (Fig. 4c).
However, the population of cells with high cPARP is 52%,
which is not as large as what is predicted with XIAP
downregulation (57%). Additionally, with DXR treatment,
the progressive increase in the percentage of apoptotic
cells through 24 h is more gradual than with XIAP down-
regulation (Fig. 4f, g). By 24 h, 52% of the cells are apop-
totic, and there are 0.2-fold more apoptotic cells than
non-apoptotic cells.
Upon examining the structure of the signaling net-

work, we hypothesized that increasing the translocation
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rate of phosphorylated p38MAPK (pp38) and NF-κB
into the nucleus can promote apoptotic signaling. There-
fore, we simulated the model with Ktrsp increased by 10-
fold. The apoptotic response is slower and smaller in
scale than in the baseline model (Fig. 4d). Additionally,
the positive population does not appear until 10 h after
starting TSP1 stimulation, and by 24 h, less than 30% of
the cells are apoptotic (Fig. 4h).
We also simulated the population response with

procaspase-3 upregulation, increased Fas expression, phos-
phatase inhibition, and kinase-activity upregulation. The
results are shown in Additional file 3: Figure S7. These per-
turbations to the signaling network do not dramatically
affect the population response. That is, the speed and mag-
nitude of the response in each case are similar to the base-
line model (Fig. 4a and e). Apoptotic cells begin to appear
by 6 h, and after 24 h of TSP1 stimulation, at least 40% of
the cells are apoptotic (Additional file 3: Figure S7).
Additionally, we predicted the population-based response
for the baseline model and the seven network perturbations
when the cells are stimulated with 0.1 nM TSP1. These
results are shown in Additional file 3: Figure S8. Next, we
present our detailed analysis of the predicted results
for the two TSP1 stimulation levels and compare the
apoptotic response.

Strategies to enhance apoptotic response have differential
effects on the magnitude and time scale of TSP1-mediated
signaling
We applied the model to distinguish the effects of possible
strategies to promote TSP1-induced apoptosis under differ-
ent levels of TSP1 stimulation. Here, we compared three

quantities: the percentage of cells that have reached the
cPARP threshold by 24 h, the maximum cPARP level
reached in each cell, and the time to reach the threshold
cPARP concentration (Tt) within the 24-h simulation time.
Combined with the results shown in Fig. 5, these quantities
provide insight into TSP1-mediated apoptosis signaling.
Below, we compare the results to the baseline case.
In the baseline model, 0.1 nM TSP1 stimulation leads

to 37% of the cells being apoptotic at 24 h. The model
predicts that 49% more cells are apoptotic with XIAP
downregulation than the baseline (Fig. 5a, left panel).
Additionally, phosphatase inhibition and DXR treatment
increased the apoptotic population by 14% and 9%,
respectively, compared to the baseline model. Upregula-
tion of procaspase-3 or kinase activity both increase the
apoptotic population by approximately 7%. Increasing
Fas expression did not have an effect on the percentage
of apoptotic cells, while increasing the translocation rate
decreased the apoptotic cells by 27%.
With 0.1 nM TSP1 stimulation, the median values for

the maximum cPARP attained under each simulated
condition follow the same order of effectiveness as ob-
served with the percentage of apoptotic cells (Fig. 5b, left
panel). Additionally, we performed statistical analyses to
compare the maximum cPARP between the baseline
model and each perturbation (Fig. 5b, left panel, aster-
isks above each column). The maximum cPARP reached
is highly significantly different from the baseline model
when XIAP is downregulated (the maximum cPARP is
higher; p < 0.0001) or when the translocation rate is in-
creased (cPARP decreases; p < 0.0001). Notably, the
effects of altering XIAP or the nuclear translocation rate

a b c d

e f g h

Fig. 4 Distribution of cPARP concentration in population-level model. a-d: Histogram showing the percentage of the 2000 cells with a given
cPARP concentration, in response to 10 nM TSP1 stimulation. (a) Baseline model; (b) XIAP downregulation; (c) DXR treatment; and (d) Increased nuclear
translocation rate. A different color is assigned to each time point. The cPARP threshold is marked by a solid line and the region in the x-y plane beyond
the threshold is shaded as light purple. (e-h): The predicted percentage of non-apoptotic (black) and apoptotic (purple) cells in response to 10 nM TSP1
stimulation. (e) Baseline model; (f) XIAP downregulation; (g) DXR treatment; and (h) Increased nuclear translocation rate
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are more significantly different from the baseline than
all of the other strategies.
Interestingly, the effectiveness of the approaches on time

to reach threshold does not follow the same order as that
of the percentage of apoptotic cells or of maximum
cPARP (Fig. 5c, left panel). Based on our statistical ana-
lysis, compared to the baseline level, the time to reach
threshold is significantly shorter (with high significance
level) with XIAP downregulation, phosphatase inhibition,
DXR treatment or procaspase-3 over-expression (Fig. 5c,
left panel, asterisks above each column). In contrast, the

time to reach threshold is significantly longer when the
translocation rate is increased by 10-fold.
With 10 nM TSP1 stimulation, XIAP downregulation

leads to 40% more apoptotic cells than the baseline model
(Fig. 5a, right panel). Phosphatase inhibition and DXR treat-
ment also lead to a strong response, with 17% and 27% more
apoptotic cells, respectively. Increasing procaspase-3 or kin-
ase activity both increased the relative size of the apoptotic
population by approximately 10%, compared to the baseline.
XIAP downregulation, phosphatase inhibition, DXR treat-

ment, and increase of procaspase-3 expression significantly

a

b

c

Fig. 5 Predicted population-based response to TSP1 stimulation. Comparison of three quantities that characterize the population-level response:
(a) the percentage of cells that have reached the cPARP threshold by 24 h, (b) the maximum cPARP level reached in each cell, and (c) the time
to reach threshold (Tt). Asterisks in panels (b) and (c) indicates the p-value from ANOVA: ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.1; ns,
not significant
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increased the maximum cPARP level and shortened the
time to reach threshold (Fig. 5b and c, right panels).
Increasing the translocation rate significantly decreased
the maximum cPARP reached, and prolonged the time to
reach threshold.
In summary, these results show that XIAP downregula-

tion is more effective than the other approaches in both
increasing the maximum cPARP level attained in the cell
population and shortening the time to reach the cPARP
threshold. This holds true when cells are stimulated with
either 0.1 nM or 10 nM TSP1. Increasing the level of
TSP1 stimulation to 10 nM makes all of the pro-apoptotic
strategies more effective. However, it is interesting to note
that the ordering of the strategies from most effective to
least effective changes with the level of TSP1 stimulation.

Initial protein expression levels influence apoptosis
response
In order to explore the cause for the different responses
to the apoptosis signaling within the population of 2000
cells, we compared the initial conditions of the apoptotic
cells and non-apoptotic cells at 24 h. Statistical analysis
of the distributions of the initial protein concentrations
(normalized to their baseline values) indicate that XIAP
concentration in the apoptotic population is significantly
lower than in the non-apoptotic population (p < 0.0001),
while PARP concentration is significantly higher in the
apoptotic population (p < 0.0001) (Additional file 1:
Table S5). In fact, the relationship between the apoptotic
response and the XIAP and PARP initial conditions is
easily visualized (Fig. 6). This illustrates that apoptotic
cells (Fig. 6a, purple markers) have higher PARP and
lower XIAP than non-apoptotic cells (Fig. 6a, black
markers). The NF-κB concentration in the cytosolic
compartment is also significantly lower in the apoptotic
population compared to apoptotic cells (p = 0.04). Thus,
statistical analysis shows that the initial concentrations
of certain species distinguish apoptotic from non-
apoptotic cells. Moreover, the distribution of the initial
concentrations of XIAP and PARP are significantly dif-
ferent for apoptotic versus non-apoptotic cells (Fig. 6b
and c; Additional file 1: Table S5).
Building on the results from the statistical analysis of the

initial concentrations, we investigated whether the initial
concentrations can be used to classify cells as apoptotic or
non-apoptotic upon 24 h of TSP1 stimulation. Here, we
generated a receiver operator characteristic (ROC) curve.
The ROC curve illustrates the ability of an input descriptor
to classify a response with high sensitivity and specificity
(see Methods). For inputs, we used the initial concentration
of each species that does not start at zero (16 species), the
ratios of XIAP and PARP concentrations ([XIAP]/[PARP]
and [PARP]/[XIAP]), and the absolute value of the differ-
ence between the concentrations of PARP and XIAP (i.e.,

|[PARP]-[XIAP]|). Thus, we considered 19 total inputs that
may possibly predict the response to TSP1-mediated
apoptosis. We used the area under the ROC curve (AUC)
to compare the ability of the inputs to predict the re-
sponse to TSP1.
Constructing the ROC curve for the 19 inputs shows

that the absolute difference between the initial concen-
trations of XIAP and PARP predicts which cells will be
apoptotic. Specifically, the difference between XIAP and
PARP can classify the cells with high sensitivity and spe-
cificity (Fig. 7). In this case, the AUC is 0.97, with a 95%
confidence interval of [0.96–0.98], providing a quantita-
tive measure of the predictive ability of the difference
between the XIAP and PARP concentrations. This AUC
is significantly different than 0.5 (p < 0.0001), which indi-
cates that using the difference between the concentrations
of XIAP and PARP is more predictive than classifying cells
as apoptotic or not based purely on chance. The AUC
values for classifying the apoptotic response using the
initial concentration of XIAP or PARP alone are 0.65 and
0.95, respectively, and in both cases, the AUC values are
significantly different from 0.5 (p < 0.0001). Thus, al-
though using the concentration of XIAP or PARP alone is
better than randomly guessing which cells will respond,
these concentrations are less reliable predictors when con-
sidered individually. The AUC values for the remaining 16
inputs range from 0.48 to 0.54, and are not significantly
different than randomly selecting which cells will be apop-
totic. Quantitative results from constructing the ROC
curve for all of the inputs are provided in Additional file 1:
Table S6. Overall, the results of this analysis demonstrate
that the initial concentrations of PARP and XIAP, and
especially the difference between their concentrations, can be
used to predict which cells will respond to TSP1 signaling.

Discussion
We have developed a molecular-detailed model of the
TSP1-induced apoptotic signaling. The model represents
the reaction network of interactions involved in the
intracellular signaling pathway and includes multiple
feedback loops. Our model captures the feedback from
transcriptional regulation by NF-κB onto Fas signaling,
which allows us to expand the dynamics of the network to
a longer time scale. Predictions from the trained model
match experimental data. We further validated the model
using a separate set of experimental measurements. We
implemented the model using ODEs, which can be solved
once to simulate the average response of a population of
cells. We also accounted for randomness in the protein
concentrations by solving the ODEs 2000 times with var-
ied initial conditions to predict the individual responses of
2000 cells. In this case, the cells each have different initial
concentrations of the molecular species, representing het-
erogeneity of the cell population. This heterogeneity
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influences the responses to TSP1 treatment and the effect-
iveness of strategies aiming to increase apoptosis signaling.
The model provides mechanistic and quantitative

explanations of the effects of several approaches to pro-
mote TSP1-mediated apoptosis. Using the model, we
proposed and simulated the effects of perturbing the
signaling network, including altering receptor and pro-
tein levels, rates of protein synthesis and transport, the
activity of specific phosphatases, and the overall kinase
activity within the cells. These simulations exploit the
power of mathematical modeling to generate quantita-
tive predictions that would otherwise be time- and cost-
consuming to explore experimentally. Overall, our
model provides quantitative insight into the effects of
targeting particular aspects of the TSP1-mediated
apoptosis signaling pathways.

Global sensitivity analyses reveal insight into the ro-
bustness of the structure of the signaling network. We
find that the model output cPARP is most significantly
influenced by the concentrations of its immediate effec-
tors, procaspase-3, XIAP, and PARP. Cleaved PARP is in-
sensitive to changes in the initial conditions of upstream
signaling species in the network; however, its effectors
are influenced by the upstream signaling molecules. One
such example is procaspase-8. The species cFLIP-L (FL)
forms a complex with procaspase-8 involving DISC, and
promotes activation of caspase-8 or NFκB. Caspase-8 then
cleaves caspase-3, which in turn cleaves PARP. Therefore,
cPARP is indirectly influenced by upstream signaling.
However, the multiple feedback loops regulating this net-
work appear to attenuate or buffer the effects of the
upstream signal on the end output cPARP.
The model predicts that downregulation of XIAP is a

promising strategy to enhance TSP1’s apoptotic signaling
effect, sensitizing cells to low-dosage TSP1 treatment.
XIAP is a potent inhibitor of caspase activity [35]. Experi-
mental studies have shown that specific over-expression
of XIAP can rescue cells from apoptosis, and antisense
downregulation of XIAP led to a dramatic decrease in
resistance to radiation-induced cell death [36–38, 52, 53].
Our model simulation shows that in TSP1-mediated apop-
totic signaling, modulating XIAP level also has a similar ef-
fect. Importantly, the model provides quantitative and
mechanistic insight into the effects of targeting XIAP.
Downregulation of XIAP directly leads to an increased
level of active caspase-3, a crucial mediator in the apop-
tosis signaling network. Our simulation results demon-
strated that this approach is the most effective in
promoting endothelial cell apoptosis. The further analysis
based on the ROC curve supports the model simulations
showing the importance of XIAP in influencing the dy-
namics of TSP1-mediated apoptosis. Interestingly, the
ROC curve reveals a relationship between XIAP and PARP

a b c

Fig. 6 Relationship between initial conditions and predicted apoptotic response. (a) Initial concentrations of PARP and XIAP for apoptotic cells
(purple) and non-apoptotic cells (grey). The difference between the initial amounts of PARP and XIAP is larger for apoptotic cells, which reach
higher cPARP levels. (b) Histogram showing distribution of initial XIAP concentration for apoptotic cells (purple) and non-apoptotic cells (grey).
The apoptotic cells have relatively lower initial XIAP concentrations. (c) Histogram showing distribution of initial PARP concentrations for apoptotic
cells (purple) and non-apoptotic cells (grey). The apoptotic cells have higher initial PARP concentrations

Fig. 7 ROC curves for classifying the apoptotic response. Blue: ROC
curve for the difference between the initial concentration of PARP and
XIAP input; AUC is 0.97. Purple: ROC curve for the initial PARP
concentration input; AUC is 0.95. Cyan: ROC curve for the initial XIAP
concentration input; AUC is 0.65. All of three AUC values are significantly
different than 0.5 (given by the gray dashed line, p< 0.0001), indicating
that these inputs are reliable predictors of the cells’ response to
TSP1 stimulation
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that we had not identified using model simulations alone.
The difference between the initial concentrations of those
proteins can accurately predict which cells will undergo
apoptosis in response to TSP1 stimulation, even before the
cells are exposed to TSP1. This highlights one potential
clinical application of our work, to predict the response to
pro-apoptosis signaling. With our model, it may be pos-
sible to determine whether a TSP1-based anti-angiogenic
treatment that targets tumor endothelial cells would be ef-
fective. For example, endothelial cells isolated from a tissue
sample obtained from a cancer patient’s tumor biopsy can
be analyzed to determine the intracellular XIAP and PARP
levels. Those measurements can be input into the model
and used to inform whether the treatment would be ef-
fective. Although validating the model for this pur-
pose is beyond the scope of this study, our work
provides a foundation to pursue such investigation.
In another example, a strategy to increase apoptosis

signaling is supported by experimental studies. We used
the model to quantify the effect of inhibiting MAPK
phosphatase (MKP) activity. We simulated the effect of
this approach by decreasing the binding affinity between
the phosphatase and its substrate, pp38, and the dephos-
phorylation rate. Therefore, the active pp38 level remains
high as the phosphatase activity is inhibited, enabling down-
stream signaling. The results indicate that this approach can
effectively promote the apoptotic response. Our predictions
agree with experimental results that show that modulating
MKPs is a viable option to promote apoptosis mediated by
p38MAPK [40, 41].
The model also generates non-intuitive results. The sim-

ulations show that increasing the rate of translocation
from the cytosol to the nucleus delayed and attenuated
the apoptotic response. This observation is counterintuitive,
as faster translocation of species immediately upstream of
FasL production is expected to accelerate signal transduc-
tion. However, the model simulation suggests that with fas-
ter translocation, the pool of caspase-3 and p38MAPK is
depleted in upstream signal transduction, before DISC for-
mation occurs (data not shown). The effect of a pan-kinase
activity promoter is another example of non-intuitive pre-
dictions. We simulated the kinase promoter by increasing
the phosphorylation rates of p59fyn, p38MAPK, and IκB by
10-fold. Intriguingly, this approach did not affect either the
response time (time to reach apoptosis threshold) or the
percentage of apoptotic cells. The explanation is that in-
creased kinase activity depleted certain species before their
accumulation is achieved, in a similar manner to the faster
cytosol-to-nucleus translocation case.
In addition to proposing strategies to increase apoptosis

signaling, the model provides mechanistic insight into ex-
perimental observations. At low dosages, doxorubicin treat-
ment has been shown to promote TSP1-mediated apoptosis.
Using our model, we propose the potential mechanism of

action of this effect. A study by Quesada et al. showed that
endothelial cell apoptosis was due to a synergistic effect of
the upregulation of FasL induced by TSP1 and upregulation
of Fas by doxorubicin [34]. Our model simulations show
that altering Fas receptor expression level alone does not
affect the apoptotic response; rather, the availability of intra-
cellular signaling species significantly influences apoptosis
signaling as well. Specifically, the model simulations show
that increasing the synthesis of particular molecular species
is required to qualitatively match the effects of DXR
observed experimentally. Based on these modeling results,
we hypothesize that the low dosage doxorubicin treatment
not only regulates the protein expression of Fas, but also
other species. Our predictions agree with other experimental
studies that show translation of multiple proteins increases
when the cells are exposed to stress [25, 30]. Our model
simulation demonstrates the effect of a low dosage of doxo-
rubicin through the proposed mechanism of action, which
can be further tested with experiments.
This work provides a biophysically realistic network that

generates reliable predictions of the population-level
responses. We incorporated variability into the ODE model
to represent a heterogeneous population of cells. This im-
plementation provides a framework to test how molecular-
targeted strategies influence individual cells in a population.
Solving the ODE model only once for a single set of initial
conditions indicates that upregulation of procaspase-3
greatly increases the magnitude of the apoptotic response,
while procaspase-3 downregulation does not affect cPARP
level. This implies that a threshold value of procaspase-3
expression may be needed in order to enhance apoptosis sig-
naling. On the other hand, the population-based model sim-
ulations showed that overexpressing procaspase-3 by 3-fold
has only a mild effect of increasing the apoptotic response.
These conflicting results demonstrate the importance of
accounting for heterogeneity within a cell population. There-
fore, we emphasize the utility of the population-based model
to make predictions, as the deterministic model that repre-
sents the dynamics of an average single cell can be mislead-
ing in certain cases.
To our knowledge, this is the first mechanistic model to

investigate TSP1-mediated apoptosis. The apoptotic sig-
naling in this study is essential to the inhibitory effect of
TSP1 [15]. Notably, TSP1 not only induces apoptosis
through the CD36 receptor, but also has many other anti-
angiogenic functions, possibly making it more potent than
a single apoptosis inducer for regulation of angiogenesis.
The framework established in our study can be readily
adapted and combined with models describing other
interactions of TSP1 [54], or pro-angiogenic signaling net-
works [22, 23] for future modeling studies. The model can
also be expanded to include cell-cell interactions with
both exogenous and endogenous FasL signaling. Future
work can improve the model framework in various ways,
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for example, by adding the downstream function of PARP
to address the balance between survival and apoptotic
effects as PARP loses its repair function upon cleavage;
specifying initial concentrations from different cell types;
including more detailed reaction mechanisms (such as
NF-κB activation by p38MAPK); or accounting for the
mitochondrial feed-forward loop, which provides the link
to the intrinsic apoptotic pathway. Finally, we note that
strategies to increase apoptosis of diseased cells may also
impact normal endothelial cells. We can expand the
model to study both normal and diseased cells, which may
have differential receptor expression levels, as observed
for VEGF receptors in normal versus tumor cells [26, 55].
In this way, we can predict strategies that more specifically
target the diseased population of cells.
Our model complements other studies that focus on

apoptosis signaling promoted by death ligands and their
receptors [24, 25, 56]. We adapted the model for Fas-
mediated apoptotic and NF-κB signaling established by
Neumann et al., which served as a foundation for the FasL
signaling cascade in our work. In other work, Albeck et al.
established a model to describe TNF-related apoptosis-
inducing ligand (TRAIL) induced apoptosis in HeLa cells
(an ovarian cancer cell line), with a focus on the “variable-
delay, snap-action” switching mechanism of extrinsic apop-
tosis. Both the Albeck model and our model exhibit the
cells’ response of switching to a high apoptotic response.
However, one key difference between our model and theirs
is how the switching arises. In the Albeck model, all-or-
none switching of the cell death response is achieved by a
network that does not include feedback. They concluded
that this snap-action arises from interplay between the bio-
chemistry of protein-protein interaction and translocation
between the cytosol and mitochondria. We have simplified
this extrinsic apoptosis pathway in our model; however, the
snap-action behavior of apoptosis is still evident, shown by
the fast accumulation of cPARP. This switching is a direct
result of the reaction between caspase-3 and PARP, ampli-
fied by the feedback loops. Another difference between the
two models is how stochasticity is implemented. The time
to reach threshold (Tt) in our model is analogous to the
delay time (Td) in Albeck model. Albeck and co-workers
impose a distribution in the delay time by randomly select-
ing Td from a defined range. In contrast, in our model, cell-
to-cell differences in the switching delay emerge solely
based on the variation in intracellular protein concentra-
tions. This is a more realistic framework that represents an
actual population of cells. Thus, our model is a tool to
analyze the population-level responses to TSP1 stimulation
and perturbations to the signaling network.

Conclusions
In summary, our model quantitatively describes the TSP1-
mediated intracellular signaling via the CD36 receptor,

which leads to endothelial cell apoptosis. This model pre-
dicts that downregulation of XIAP is the most promising
way to effectively promote TSP1-mediated apoptosis. In
addition, we propose an alternative mechanism of action
for the effect of low dosage doxorubicin treatment in sen-
sitizing cells to TSP1 stimulation. This model framework
can be ultimately used to generate and optimize TSP1-
based therapeutic strategies for promoting apoptosis.
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