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Abstract

Background: Uric acid (UA) is an antioxidant found in human serum. However, high UA levels may also have
pro-oxidant functions. According to previous research, aldose reductase (AR) plays a vital role in the oxidative
stress-related complications of diabetes. We sought to determine the mechanism by which UA becomes
deleterious at high concentrations as well as the effect of AR in this process.

Method: Endothelial cells were divided into three groups cultured without UA or with 300 uM or 600 UM
UA. The levels of total reactive oxygen species (ROS), of four ROS components, and of NO and NOX4
expression were measured. Changes in the above molecules were detected upon inhibiting NOX4 or AR, and
serum H>O, and VWF levels were measured in vivo.

Results: Increased AR expression in high UA-treated endothelial cells enhanced ROS production by activating
NADPH oxidase. These effects were blocked by the AR inhibitor epalrestat. 300 uM UA decreased the levels of
the three major reactive oxygen species (ROS) components: O, «OH, and 'O,. However, when the UA
concentration was increased, both O« levels and downstream H,O, production significantly increased. Finally,
an AR inhibitor reduced H,O, production in hyperuricemic mice and protected endothelial cell function.

Conclusions: Our findings indicate that inhibiting AR or degrading H,O, could protect endothelial function

and maintain the antioxidant activities of UA. These findings provide new insight into the role of UA in

chronic kidney disease.
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Background

Uric acid (UA) is the final enzymatic product in the deg-
radation of purine nucleosides and free bases in humans
and the great apes [1-3]. UA is a powerful antioxidant
that scavenges singlet oxygen (*O,) molecules, oxygen
radicals, and peroxynitrite (ONOO™) molecules. UA also
chelates transition metals to reduce ion—mediated ascor-
bic acid oxidation [4-7]. UA is responsible for
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approximately 50% of serum antioxidant activity [2, 4].
However, in vivo and cellular studies have demonstrated
that depending on its chemical microenvironment, UA
may also be a pro-oxidant [8]. Strong epidemiological
evidence suggests that the prevalence of gout and hyper-
uricemia is increasing worldwide [9]. High UA levels are
strongly associated with and often predict the develop-
ment of hypertension, visceral obesity, insulin resistance,
dyslipidemia, type II diabetes, kidney disease, and car-
diovascular events [10, 11]. Although endothelial dys-
function generally occurs in the initial stages of these
diseases, few studies on the effect of UA on human
endothelial cells have been performed [12]. UA dose-
dependently decreases nitric oxide (NO) production in
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intact bovine aortic endothelial cells [13], and hyperurice-
mia induces endothelial dysfunction via mitochondrial Na
*/Ca** exchange-mediated mitochondrial calcium over-
load [14]. However, how the effects of UA become dele-
terious at high concentrations is unknown. Although the
pathogenesis of these diseases is extremely complex and
incompletely understood, oxidative stress clearly plays a
central role. The urate oxidant-antioxidant paradox led us
to investigate the point at which urate becomes an oxidant
and the pathway through which this occurs. Although UA
may have protective effects under certain conditions [15,
16], it cannot scavenge all radicals. Additionally, UA and/
or its downstream radicals can trigger intracellular oxidant
production via the ubiquitous NADPH oxidase-dependent
pathway, thereby resulting in oxidative stress.

Aldose reductase (AR) is the rate-limiting enzyme in
the polyol pathway, and NADPH acts as a cofactor [17].
AR plays an important role in the pathogenesis of dia-
betic complications [18] and atherosclerosis [19]. In dia-
betic rats, AR expression was increased, and inhibiting
AR ameliorated renal function [20]. The AR inhibitor
epalrestat suppresses the progression of diabetic compli-
cations such as retinopathy, nephropathy and neur-
opathy [21]. Genetic AR deficiency also prevented the
progress of diabetic nephropathy [22]. The elevation of
AR may be related to higher oxidative stress levels in
diabetic rats [23]. In our previous research, AR expres-
sion was increased in endothelial cells treated with high
uric acid concentrations [24]. Increased substrate flux
via AR leads to increased ROS production, cell injury,
apoptosis, altered ion regulation, and mitochondrial dys-
function [25-31], and increased ROS production is asso-
ciated with NADPH oxidase activation [32—34].

In this study, we detected the different ROS types gener-
ated in HUVECs cultured with different UA concentrations
as well as the changes in ROS production upon transfecting
HUVECs with siRNA against AR. We then investigated the
role of AR in UA-induced endothelial injury in vitro and in
vivo. Our results suggest a novel mechanism underlying the
endothelial dysfunction caused by high UA levels.

Methods

Cell culture and uric acid preparation

Human umbilical vein endothelial cells (HUVECs) were
purchased from YRbio (Cat#NC006, Changsha, China)
and cultured in RPMI-1640 media supplemented with
10% fetal bovine serum (FBS) at 37 °C in a humidified
incubator in a 5% CO, atmosphere.

Uric acid was purchased from Sigma-—Aldrich (Carls-
bad, CA). Uric acid powder was dissolved in a 1 mol/L
NaOH solution at a concentration of 40 mmol/L. Then,
the uric acid solution was added to the serum containing
medium at a final concentration and at a pH 7.2-7 4.
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Intracellular reactive oxygen species (ROS) assays

Cells were seeded onto 35-mm confocal dishes (with a
cover glass) and classified into control, normal uric acid
(UA), and high uric acid (HUA) groups (n =3). Cells in
the UA and HUA groups were cultured in medium con-
taining 300 or 600 uM uric acid, respectively, for 24 h
followed by incubation with the total oxidative stress in-
dicator chloromethyl derivative dichlorodihydrofluores-
cein diacetate (CM-H,DCFDA, Beyotime, Nanjing
China, 5 uM) for 30 min in the dark at 37 °C. After three
washes in PBS, green fluorescence was visualized using a
laser scanning confocal microscope at an excitation
wavelength of 488 nm and an emission wavelength of
515 nm.

Before HUA treatment, the HUA group was pretreated
with 0.5 mM apocynin (Santa Cruz Biotechnology) or
0.1 uM epalrestat (Santa Cruz Biotechnology). Pyocyanin
(100 pM; Sigma) was used as a positive control in the
comparisons of ROS production.

Detection of intracellular ROS components

For the total intracellular ROS levels, method was refer-
enced previously by the oxidant-sensing fluorescent
probe CM-H 2 DCFDA [14]. Briefly, this probe was
loaded into previously subcultured HUVEC-Cs at a final
concentration of 10 pmol/L, and the cells were then cul-
tured for 30 min at 37 °C. After incubation, the culture
medium was washed twice with PBS and analyzed by
laser confocal microscopy with an excitation wavelength
of 488 nm and an emission wavelength of 515 nm.

The detection of intracellular ROS components oc-
curred as follows. For O5 (Mitochondrial): cells were in-
cubated with 4 pmol/L Mito-SOX Red (Invitrogen) in
the dark at 37 °C for 10 min, and red fluorescence was
observed at an excitation wavelength of 510 nm and an
emission wavelength of 580 nm. For H,O,: cells were in-
cubated with 30 umol/L BES-H,O, (Seebio, China) in
the dark at 37 °C for 1 h, and green fluorescence was ob-
served at an excitation wavelength of 485 nm and an
emission wavelength of 515 nm. For- OH: cells were in-
cubated with 100 pmol/L proxylfluorescamine (Invitro-
gen) in the dark at 37 °C for 30 min, and green
fluorescence was observed at an excitation wavelength of
488 nm and an emission wavelength of 520 nm. For 'O:
cells were incubated with 20 pmol/L trans-1-(2'-meth-
oxyvinyl)pyrene (Invitrogen) in the dark at 37 °C for
10 min, and blue fluorescence was observed at an excita-
tion wavelength of 405 nm and an emission wavelength
of 460 nm. For ONOO™: cells were incubated with
10 umol/L dihydrorhodaminel23 (Santa Cruz) in the
dark at 37 °C for 30 min, and green fluorescence was ob-
served at an excitation wavelength of 488 nm and an
emission wavelength of 520 nm.
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Generation of inducible and stable cell lines

Reverse transcription was carried out on human kidney
RNA with Superscript II reverse transcriptase, according to
the manufacturer’s instructions. The full-length human
NOX4 was amplified by PCR using the primers NOX4._F,
5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAC
CATGGCTGTGTCCTGGAGG-3', and NOX4_R, 5'-GGG
GACCACTTTGTACAAGAAAGCTGGGTCTCA GCTG
AAAGACTCTTTATTGTATTC-3". The PCR product was
cloned into a pcDNA3.1 vector according to the manufac-
turer’s instructions, obtained pcDNA-NOX4. HUVECs were
transfected with the pcDNA-NOX4 plasmid using
Lipofectamine 2000 (Invitrogen). Clones were selected 10—
16 days after transfection using 400 pg/ml neomycin (G418)
to obtain HUVEC: stably expressing NOX4.

Measurement of nitric oxide levels in culture
supernatants or serum

Before treatment with chemicals or UA, media were re-
placed with Dulbecco’s modified Eagle’s medium (DMEM).
The supernatant or serum was centrifuged and subjected to
NO level evaluation using the Nitric Oxide Assay Kit
(Applygen Technologies, China) according to the
manufacturer’s instructions. The end-point measured for-
mula was NO3.

Real-time PCR

RNA was extracted from tissues and cells using TRIzol re-
agent (Invitrogen) and reverse transcribed into cDNA using
M-MLYV reverse transcriptase (Invitrogen). The cDNA was
used as a template in quantitative real-time PCR reactions
performed using SYBR green I PCR Master Mix and an
ICycler system (Bio-Rad). The following primers were de-
signed from the full-length AR and Nox4 mRNA sequences
and synthesized by SBS Biotechnology Corporation
(Beijing, China): AR sense, 5'- CCTATGGCCAAGGACA
CACT-3’ and antisense, 5'-CTGGTCTCAGGCAAGGAA
AG-3’; NOX4 sense, 5-TTGCCTGGAAGAACCCAAGT
-3" and antisense, 5'- TCCGCACAATAAAGGCACAA-3".
As an internal control, mouse GAPDH was amplified using
the following primers: sense, 5'-GGCATGGACTGTGGT-
CATGAG-3" and antisense, 5'-TGCACCACCAACTGCT-
TAGC-3'. Relative expression (fold change vs. control) was
quantified using the 224" method.

Western blotting

For Western blotting, proteins were extracted from tis-
sues or cells using RIPA lysis buffer (50 mM Tris-HCl,
pH 7.5, 150 mM NaCl, 0.5% deoxycholate, 1% Nonidet
P-40, 0.1% SDS, 1 mM PMSEF, and protease cocktail at
1 pg/ml). Protein concentrations were measured using a
BCA kit (Pierce). Protein samples (60 pg per lane) were
separated by 12% SDS-PAGE and transferred to nitrocellu-
lose (NC) membranes. After staining with Ponceau S, the
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membranes were incubated overnight at 4 °C in 5% non-fat
milk followed by incubation with a primary antibody
against AR (Santa Cruz Biotechnology) or B-actin (Sigma).
Immunoreactive bands were visualized using ECL reagent
(Santa Cruz Biotechnology) according to the manufac-
turer’s instructions and were then exposed to X-ray film.
Protein band intensities were quantified using the Quantity
One software (Bio-Rad). The assay was repeat 3 times.

Aldose reductase activity assays

AR activity was measured spectrophotometrically as pre-
viously described [35, 36]. Briefly, AR activity was mea-
sured as the decrease in the absorbance of NADPH at
340 nm using DL-glyceraldehyde as the substrate. The
assay mixture contained 30 mM potassium phosphate
buffer (pH 6.5), 5 mM DL-glyceraldehyde, 0.2 M ammo-
nium sulfate, and 1.0 mM NADPH. The results are pre-
sented as pmol NADPH:-min-1-g-1 protein. All
reagents were from Sigma. The assay was repeat 3 times.

Establishment of hyperuricemic mouse models
Hyperuricemic mouse models were established as de-
scribed by Yang et al. [37] with slight modifications. The
animal protocol was reviewed and approved by the Insti-
tutional Animal Care and Use Committee of the Chinese
PLA General Hospital. Wild-type C57BL/6 mice obtained
from the Experimental Animal Center of the Academy of
Military Medical Sciences (China) were used as controls.
The mice were housed in temperature-controlled cages on
a 12-h light-dark cycle and given free access to water and
normal chow. After one week of breeding for adaptation,
the mice were grouped into control (n = 6) and hyperuri-
cemic model (n = 24) groups. Mice were intraperitoneally
injected with 250 mg/Kg-d oxonic acid potassium salt
(Sigma) and 250 mg/Kg- d uric acid (Sigma). After receiv-
ing intraperitoneal injections for 3 days, the hyperuricemic
model group was sub-classified into hyperuricemic mice
(n=6), hyperuricemic mice treated with epalrestat
(100 mg/Kg-d, Dyne, China) (n=6), and hyperuricemic
mice treated with polyethylene glycol catalase (PEG-cata-
lase, 12000 U/Kg - d, Sigma) (n = 6). The antioxidant treat-
ments PEG-catalase and epalrestat were intragastrically
administered. After 10 days of modeling, the levels of UA,
NO, H,0,, and von Willebrand factor (vWF) in the blood
were evaluated.

Measurement of serum UA, H,0, and vWF levels

The serum UA level was assayed using an enzymatic
method that measures the end production of quinonimine
using an automatic biochemical analyzer (Hitachi, Japan).
Serum H,0, levels were assayed using a hydrogen peroxide
assay kit (NJJCbio, Nanjing, China) with the end formula
Mn**. vWF was detected using a von Willebrand Factor
ELISA kit.
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Statistical analyses

All data are expressed as the means + SD. Mean compar-
isons among multiple groups were conducted using one-
way analysis of variance (ANOVA). Comparisons of the
means between two groups were conducted using ran-
domized controlled ¢-tests. A p value < 0.05 was consid-
ered statistically significant.
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Results

High UA increased intracellular ROS production, AR
activity and endothelial cell impairment but decreased
NO release

To confirm the impairment of endothelial cells by UA
treatment, we evaluated the effect of different UA con-
centrations on ROS production and NO release in
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Fig. 1 Effect of different UA concentration on intracellular oxidative stress, NO release and AR activity. Endothelial cells were cultured in the
presence of 300, 600 uM UA or without UA for 24 h. a Total ROS was reduced in cells treated with 300 pM UA (*P < 0.05 vs. control, n = 3), but
increased in cells treated with 600 uM UA (*P < 0.05 vs. control, n = 3). b Compared to the control, the NO level was not significantly different in
the 300 uM UA-treated group, but was reduced in the 600 uM UA-treated group (*P < 0.05 vs. control, n =6). ¢ Cells were treated with 600 uM
UA at 6, 12, 24, and 48 h; total ROS production increased (*P < 0.05 vs. control, n=6), ROS production was saturated at 24-48 h (#P < 0.05 vs. 6 h
or 12 h, n=6), and (d) NO levels decreased at 6 h (*P < 0.05 vs. control, n=6). @ AR expression increase at 24 h (*P < 0.05 vs. control, n=3) in the
high concentration of uric acid. There is no significate change at the 6 h or 12 h. f, g After intraperitoneal injection with oxonic acid potassium
salt and UA for 10 days, serum UA levels in wild-type C57BL/6 mice increased significantly (*P < 0.05 vs. control, n =6), whereas serum NO levels
declined (*P < 0.05 vs. control, n=6). g AR activity increased in endothelial cells cultured in the presence of 600 uM UA for 24 h, but there was
no change upon treatment with 300 uM UA (*P < 0.05 vs. control, n =6)
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HUVECs UA (300 pM) reduced total ROS levels in
endothelial cells, whereas high UA (600 pM) treatment
increased intracellular ROS production (Fig. 1a). NO re-
lease was reduced after high UA treatment in vitro with
the turning point of 500 umol/L, An additional file
shows this in more detail [see Additional file 1] but un-
changed after UA treatment (Fig. 1b). Additionally, total
ROS production increased and NO levels decreased in a
time-dependent manner in cells treated with high UA,
AR protein expression increased at 24 h and 48 h of
high concentration uric acid treated (Fig. 1c, d and e). In
male hyperuricemic C57BL/6 mice after modeling in
vivo serum UA levels significantly increased (Fig. 1f),
whereas NO levels decreased (Fig. 1g). Furthermore, AR
activity increased in endothelial cells (Fig. 1h). Our re-
sults showed that AR activity increased upon treatment
with high UA concentrations but not with normal UA
concentrations.

High UA increased AR expression via p38/MAPK pathway
In order to assay how UA trigger AR expression. P38
and extracellular signal-regulated kinase (ERK) 42/44
MAPK phosphorylation are involved in the UA-induced
cell proliferation and activation in the UA-induced
HUVEC [12]. Therefore we determined the effect of
blocking p38 and ERK44/42 MAPK in UA-induced AR
expression using specific inhibitors of the p38
(SB203580, 5 pM) and ERK44/42 (PD 98059, 10 puM)
MAPK pathways respectively. Also, we used the organic
anion transporter inhibitor, probenecid (Sigma-Aldrich,
St. Louis, MO, USA), to block the uric acid transport
into cells. We found AR expression increased when
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HUVECs were treated with high UA for 48 h, p38 and
p-ERK42/44 were activated simultaneously [Fig. 2a].
When blocking p38 and MAPK by specific inhibitor
S$B203580 and PD 98059 respectively, or blocking the or-
ganic anion transporter that could transport uric acid
into intracellular by probenecid, AR protein expression
decreased [Fig. 2b].

Increased AR expression enhances ROS production by
activating NADPH oxidase

NOX4 is the main NOX as well as the main source of
ROS in endothelial cells under oxidative stress [38—40].
NOX4 mRNA and protein expression levels increased in
endothelial cells following challenge with high UA
(Fig. 3a and b), but not NOX2, An additional file shows
this in more detail [see Additional file 2]. However, when
pretreated with the NOX inhibitor apocynin, ROS pro-
duction induced by high UA levels was reduced (Fig. 3c).
However, NOX4 expression was downregulated follow-
ing pretreatment with the AR inhibitor epalrestat before
high UA treatment, (Fig. 3a and b), suggesting that the
enhanced AR expression induced by high UA activates
NOX, thereby upregulating ROS expression and ultim-
ately impairing endothelial cells. The AR inhibitor en-
hanced NO production compared with that in the high
UA group (Fig. 3d), suggesting that inhibiting ROS pro-
duction protected endothelial cells. However, when
NOX4 was overexpressed in combination with AR
knockdown, high UA treatment significantly decreased
ROS production compared with that of cells overex-
pressing NOX4 alone. Furthermore, NO secretion con-
comitantly increased (Fig. 3e—g).

a Con HUA

Total p38

B-Actin |

44 (PD 98059, 10 uM), MAPK, and probenecid (PN)

Fig. 2 High UA increased AR expression via p38/MAPK pathway. Effect of UA on mitogen-activates protein kinase (MAPK) pathway activation (a).
UA activated p38 and extracellular signal-regulated kinase (ERK) 44/42 MAPK pathway in HUVEC. Western blots shown are representative of four
experiments for phosphorylated and total p38 and phosphorylated and total ERK44/42. Effect of co-stimulation of UA with MAPK inhibitors and
probenecid on AR protein expression (B). UA-induced expression of AR (600 uM, 48 h) was blocked by inhibitors of p38 (SB203580, 5 puM), ERK42/

b
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(See figure on previous page.)

Fig. 3 The AR inhibitor alleviated oxidative stress and impaired HUVECs by inhibiting NADPH oxidase activity. a and b Nox4 production was
up-regulated in endothelial cells cultured in the presence of 600 uM UA for 24 h (*P < 0.05 vs. control, n = 6), but down-regulated in Epalrestat
+ HUA cells pretreated with epalrestat (0.1 uM) for 30 min, followed by incubation with UA (600 uM) for 24 h (*P < 0.05 vs. HUA group, N =6).
¢ ROS production increased in endothelial cells incubated with UA (600 uM) for 24 h (*P < 0.05 vs. control, n = 6), was similar to that in cells
treated with pyocyanin, decreased in endothelial cells when pretreated with apocynin/epalrestat (* P < 0.05 vs. HUA group, n =6), and was
reduced significantly in cells pretreated with the AR inhibitor epalrestat (P < 0.05, Apocynin + HUA group vs. Epalrestat + HUA group, n=6). d
NO levels in supernatant in the Epalrestat + HUA group were enhanced compared to those in the high UA group after endothelial cells were
pretreated with epalrestat for 30 min followed by UA (600 uM) for 24 h (*P < 0.05 vs. HUA group, n =6). e-g Cells were transfected with siRNA

or pcDNA3-NOX4, and treated with high uric acid for 24 h. AR siRNA knocked-down AR protein expression and downregulated NOX4
expression (*P < 0.05 vs. siCon group, n=6). ROS production decreased and NO production increased (*P < 0.05 vs. siCon group, n =6).
However, overexpression of NOX4 did not affect AR. If cells were treated with AR RNAi and overexpressed NOX4, ROS production and NO
concentration significantly decreased and increased, respectively, compared to the NOX4 overexpression group (AP < 0.05, n=6)

High UA impaired endothelial cells by enhancing H,0,
production but inhibited other ROS components

We then assessed the production of four ROS compo-
nents after treatment with various UA concentrations.
UA partially eliminated superoxide anion (O3"), 10,, and
hydroxyl radical (-OH) production and subtly increased
H,0, production. However, high UA treatment in-
creased O3 and H,O, production but reduced 10, and -
OH production (Fig. 4a).

After high UA treatment, O; and H,O, levels in-
creased. Although O3 is highly dynamic, it soon became
disproportionate to H,O,. Therefore, we inferred that
H,0, is the major ROS contributor to endothelial cell
impairment induced by high UA treatment. H,O, levels
significantly decreased in endothelial cells pretreated
with epalrestat followed by high UA treatment, but
ONOOQO" levels did not change (Fig. 4b). When PEG-
catalase was applied to eliminate intracellular H,O,,
total intracellular ROS levels were reduced, and NO
levels increased compared with the high UA group that
did not receive PEG-catalase treatment (Fig. 4c, d).

PEG-catalase and AR inhibitor epalrestat reduce H,0,
production in hyperuricemic mice and effectively protect
mouse endothelial cell function

Elevated H,O, can lead to vascular endothelial dysfunc-
tion [41]. H,O, production increased in endothelial cells
after high UA treatment in vitro (Fig. 3a). Upon endothe-
lial dysfunction, cells release more vWFE, which is a marker
of endothelial dysfunction [42—44]. To estimate vascular
endothelial function in vivo, we detected serum vWF con-
centrations. Serum H,O, and vWF (Fig. 5b ~ d) levels in-
creased in the hyperuricemic model, while the NO
concentration decreased. We concluded that AR, O3, and
H,0, are the major contributors to impaired endothelial
cell function. Inhibiting these could reduce the number of
impaired endothelial cells induced by high UA treatment.
After treatment with PEG-catalase or epalrestat, serum
H,0, (Fig. 5b) and vWF (Fig. 5¢) levels decreased com-
pared with those of the untreated group, while NO con-
centration increased (Fig. 5d). Based on the PEG-catalase

treatment results, H,O, may be the final ROS product re-
sponsible for endothelial cell impairment. Our data sug-
gest that PEG-catalase and epalrestat decrease H,O,
production, thereby protecting endothelial function.

Discussion

Uric acid (UA), which is generated in mammalian sys-
tems as an end product of purine metabolism, is the
most abundant antioxidant in human plasma and pos-
sesses free radical scavenging properties. In humans and
other higher primates, uric acid is the final compound of
purines catabolism, but all other mammals converts uric
acid to allantoin with enzyme uricase which is deficient
in humans and other higher primates [2], and is the
main reason why serum UA levels in adult males are
350 pmol/L, compared with the majority of mammals
who have UA levels <30-60 mg/dl [45]. Evidence has
demonstrated Western diet could elevate serum uric
acid [46]. However, it may also act as a pro-oxidant
under oxidative stress conditions. Markedly increased
UA levels cause gout and nephrolithiasis [47], and high
UA concentrations are also associated with an increased
risk of developing cardiovascular disease (CVD), particu-
larly hypertension, obesity/metabolic syndrome, and
kidney disease [10, 11, 48-51]. Jia et al. verified hyper-
uricemia is related with the development of obesity/
metabolic cardiomyopathy [46]. However, the role of UA
in CVD pathogenesis is still debated. UA is one of the
most important antioxidants in body fluids and effect-
ively eliminates ROS [52]. Other risk factors exist in
CVD patients in addition to the superoxide generation
that accompanies UA production by xanthine oxidore-
ductase [53]. Whether UA is a causative risk factor or
plays a protective role with respect to its antioxidant
properties is not known [54, 55]. The mechanism (s) by
which UA acts as a “double-edged sword” remain to be
determined.

Mounting evidence indicates that hyperuricemia in-
duces heart and kidney injury by promoting free radical
generation and subsequent endothelial dysfunction [56],
which are regulated by NO bioavailability and activity
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24 h (*P <0.05 vs. HUA group, n =6)

Fig. 4 H,0, production increased in endothelial cells treated with various concentrations of UA, and impaired endothelial cells were reduced
after elimination of H,0, (A) O3, '0,, -OH, and ONOO™ levels decreased in endothelial cells (*P < 0.05 vs. control, n = 6), but H,O, was up-
regulated in endothelial cells treated with 300 uM UA for 24 h (*P < 0.05 vs. control, n = 6). '0, and - OH levels were down-regulated in endothelial
cells treated with 600 uM UA for 24 h (*P < 0.05 vs. control, n = 6), whereas O3, H,05, and ONOO™ levels were up-regulated in endothelial cells
treated with 600 uM UA (*P < 0,05 vs. control, n =6). b H,0, production decreased in epalrestat + HUA cells that were pretreated with epalrestat
for 30 min followed by treatment with 600 uM UA for 24 h (*P < 0.05 vs. HUA group, n=6), but ONOO™ levels in Epalrestat + HUA cells did not
change compared to the HUA group. ¢ Tntracellular H202 and total ROS levels were reduced by using PEG-catalase in the high UA cells, and NO
production was enhanced in PEG-catalase + high UA cells pretreated with PEG-catalase for 30 min followed by treatment with 600 uM UA for

changes [57, 58]. UA possesses the potential to downreg-
ulate NO production and induce endothelial injury
through at least three mechanisms, namely modulating
the eNOS phosphorylation status, potentiating arginase
activity, and increasing intracellular superoxide levels
[59]. Because UA is a powerful free radical scavenger, we
first investigated changes in levels of the major free radi-
cals in the presence of different UA concentrations in
the endothelium. The four major cellular ROS compo-
nents are Mito-O3, -OH, 'O,, and H,O,, all of which
can be interconverted [38, 60—63]. Here, we observed

that under normal UA concentrations (300 pM), UA
suppresses O3, -OH, and 'O, release and slightly in-
creases HyO,. The slight increase in HyO, levels (Fig. 4a)
may not be harmful because low H,O, concentrations
can protect endothelial function [64, 65] and affect vaso-
dilation [66]. When the UA concentration was increased
to 600 pM, 'O, and - OH release remained suppressed,
whereas O3 and H,0, levels significantly increased. Be-
cause H,O, is generated from reduced O3 by superoxide
dismutase (SOD), high UA levels likely did not suppress
O3 release but rather stimulated O3 generation. This
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Fig. 5 The AR inhibitor reduced H,O, production and protected endothelial function. a After intraperitoneal injection with oxonic acid potassium salt
and UA for 10 days, serum UA levels in wild-type C57BL/6 mice increased significantly (*P < 0.05 vs. control, n = 6), (b) Serum H,0, levels increased in
non-treated hyperuricemic mice (*P < 0.05 vs. control, n = 6). AfterPEG-catalase or epalrestat treatment, serum H,0O, levels declined significantly
compared to the non-treated hyperuricemic group (*P < 0.05 vs. HUA group, n = 6). ¢ Serum VWF levels increased in the hyperuricemic mouse model
(*P < 0.05 vs. control, n = 6). After treatment with PEG-catalase or epalrastat, serum VWF levels declined significantly compared to the non-treated
hyperuricemic group (*P <005 vs. HUA group, n=06). d NO levels decreased in the hyperuricemic model (*P < 0.05 vs. control, n = 6). After treatment
with PEG- catalase or epalrastat, serum NO levels increased significantly compared to the non-treated hyperuricemic group (# P < 0.05 vs. HUA

group, n=6)
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result is similar to previous reports [3, 67]. Although it
is not a free radical, we also measured ONOO™ levels, ~
which is a highly toxic molecule that can cause harmful
effects. Under normal conditions, the ONOO™ level re-
mains low due to the low level of O3 generation. How-
ever, if Oy generation is enhanced, ONOO™ production
also increases [68-70]. Because UA can scavenge
ONOO7, ONOO™ levels decreased in the presence of
normal UA concentrations. The increase in ONOO™
levels resulting from high UA treatment was likely due
to elevated Oy levels. These results suggest that en-
hanced O3 generation plays a central role in high UA-
induced endothelial dysfunction.

Our previous study demonstrated high concentration
uric acid could induce AR mRNA and protein expres-
sion level of HUVECs [24]. Johnson et al. reported that
p38 and ERK44/42 MAPK pathways are activation in rat
VSMC incubated with uric acid [71, 72]. Later, they con-
firmed the activation of p38 and ERK44/42 MAPK path-
ways were involved in HVSMC and endothelial cells
treated with uric acid [12]. In order to try to clarify
whether high UA mediate AR expression increase via
above signal pathway. We observed AR expression could
be repressed when using p38 or MAPK inhibitor re-
spectively, or the organic anion transporter blocker pro-
benecid. It implied that high UA might mediated AR
expression via p38/MAPK pathway (Fig. 6). Researchers
demonstrated p38 could activate osmotic response
element-binding protein/tonicity-responsive enhancer-
binding protein (OREBP/TonEBP), transcriptional fac-
tors, which bind AR promoter then induce its expression
[73]. We also measured the activity of the two protein.
Yet in the high concentration uric acid environment, the

Uric Ad
o

— GEEZIEID
¢

TN

Cell dysfunction: NO decrease

Fig. 6 The mechanism of uric acid inducing endothelial dysfunction.
OAT: organic anion transporter. AR: aldose reductase, NOX4:
nicotinamide adenine dinucleotide phosphate oxidase 4, ROS:
reactive oxygen species, NO: nitric oxide
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expression or the activity of OREBP/TonEBP did not in-
crease (data was not shown). The mechanism of the ele-
vated AR expression and activity induced by uric acid
does not depend on the p38-OREBP/TonEBP. Nishikawa
et al. considered that ROS production also can activated
AR expression [74]. We observed that ROS produced at
early time but AR expression obviously changed at 24 h.
Our previous study proved high concentration of uric
acid caused abnormal sodium-calcium exchanger of
mitochondria then induced the ROS production [14],
which will further increase AR expression and these may
be locked into a destructive cycle. There might be other
pathway mediate ROS production in the high concentra-
tion of uric acid.

When an AR inhibitor was added to the high UA-
treated HUVECs, total ROS levels significantly de-
creased, and NO levels recovered. AR-induced ROS pro-
duction is associated with NADPH [32, 33]; our results
also suggested the involvement of NOX4 activation, but
not NOX2 (Additional file 1). Upon blocking NOX4
with apocynin, ROS levels decreased, and NO levels re-
covered. When NOX4 was overexpressed In AR-
knockdown HUVECs overexpressing NOX4 treated with
high UA, ROS production and NO levels were the in-
verse of those resulting from NOX4 overexpression
alone. Additionally, the AR inhibitor epalrestat affected
H,05 but not ONOO™ levels and increased NO levels.
These results confirm that AR activation plays an im-
portant role in high UA-stimulated HUVECs.

The above results suggest that the high UA-induced
increased O3 generation was associated with the switch
of UA functioning as an antioxidant to a pro-oxidant in
vitro. Because O3 is catalyzed to H,O, by SOD in vivo,
H,0, is likely the major contributor to endothelial dys-
function. Additionally, serum UA levels correlate with
plasma H,O, in preeclampsia [75]. Therefore, blocking
AR, reducing H,O,, or decreasing O5 would protect the
endothelium from high UA-induced injury. In this study,
epalrestat and PEG-catalase recovered NO secretion
levels and decreased vWF levels.

Previously, we measured blood pressure in hyperurice-
mic wild-type mice and reported no difference between
the two groups (data not shown). Endothelial dysfunction
resulting from hyperuricemia would not impact blood
pressure in the two-week model. However, if the duration
of exposure to high UA concentrations was extended, the
accumulation of endothelial dysfunction would cause ar-
tery dysfunction and dysarteriotony. These data are similar
to the report by Johnson et al. [51, 76].

Conclusion

Our study confirmed that the levels of ROS components
changed in HUVECs cultured in media containing
different UA concentrations. In particular, H,O,
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significantly increased in the high UA group compared
with the control group. The elevated ROS levels were re-
versed when AR was inhibited in vivo or in vitro. Thus,
the pro-oxidant activity of UA when present at high con-
centrations likely plays an important role in endothelial
dysfunction via AR.

Additional files

Additional file 1: ROS and NO production induced by uric acid. (PDF
104 kb)

Additional file 2: NOX2 and NOX4 expression induced by high uric
acid. (PDF 107 kb)
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