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Abstract

TCR/CD28 co-stimulation.

Background: The CARMA1-BCL10-MALT1 (CBM) complex bridges T cell receptor (TCR) signaling to the canonical
IkB kinase (IKK)/NF-kB pathway. The CBM complex constitutes a signaling cluster of more than 1 Mio Dalton. Little
is known about factors that facilitate the rapid assembly and maintenance of this dynamic higher order complex.

Findings: Here, we report the novel interaction of the aryl hydrocarbon receptor (AHR) interacting protein (AIP)
and the molecular scaffold protein CARMAT. In T cells, transient binding of CARMAT and AIP enhanced formation
of the CBM complex. Thereby, AIP promoted optimal IKK/NF-kB signaling and IL-2 production in response to

Conclusions: Our data demonstrate that AIP acts as a positive regulator of NF-kB signaling upon T cell activation.
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Findings

Assembly of the CARMA1-BCL10-MALT1 (CBM) com-
plex is an essential step in the signal transmission from
the T cell receptor (TCR) to the activation of canonical
IkB kinase (IKK)/NF-«kB signaling [1]. After TCR/CD28
co-stimulation, receptor-proximal signaling events at the
immunological synapse lead to activation of protein
kinase C 6 (PKCO), which in turn phosphorylates the
scaffold protein CARMAIL. Hereby a conformational
change of CARMAL is induced that enables the recruit-
ment of pre-assembled BCL10-MALT1 complexes [2,3].
This process is accompanied by the association of many
other factors to the CBM complex such as TRAF6,
Caspase8, CKla, CSN5, A20 and PP2A that control
CBM activity and downstream signaling [4]. CARMA1
belongs to the family of MAGUK (membrane-associated
guanylate kinase) proteins comprising PDZ, SH3 and
GUK domains in its C-terminus. CARMA1 expression is
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restricted to lymphoid cells where it is associated to the
cytosolic membrane.

To identify novel CARMALI interaction partners, we
had previously performed yeast-two-hybrid (Y2H)
screens using C-terminal CARMAL1 constructs as baits
[5]. Besides the protein phosphatase PP2A, we identified
the aryl hydrocarbon receptor (AHR) interacting protein
(AIP) as a new interaction partner of the C-terminal
PDZ-SH3 domain of CARMAL in yeast (data not shown).
Using co-immunoprecipitation (co-IP) after transfection
of HEK293 cells, we confirmed the association of CARMA1
and AIP (Figure 1A-C; see Additional file 1 for detailed
Methods description). Full length HA-CARMAI and
FLAG-AIP interacted after anti-HA or anti-FLAG ID, re-
spectively. In agreement with the data from the Y2H screen,
AIP bound to C-terminal CARMAL fragments that contain
the PDZ-SH3 domains, but not to the CARMAl N-
terminus (Figure 1A). Vice versa mapping of the CARMA1
interaction surface on AIP revealed that the N-terminal
peptidyl-prolyl cis/trans isomerase (PPI) domain is binding
to the CARMA1 PDZ-SH3, while the C-terminal tetratrico-
peptide repeats (TPRs) are dispensable (Figure 1B).
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Figure 1 AIP interacts with CARMAT in overexpression experiments and thereby competes with intramolecular CARMA1 association.
(A) Interaction of overexpressed CARMA1 aa 600-946 (PDZ-SH3), CARMAT aa 600-1147 (C-term) and CARMAT1 full length with AIP full length,
while CARMAT aa 1-623 (N-term) is not interacting with AIP. HEK293 cells were co-transfected with FLAG-AIP and different HA-tagged CARMA1
constructs as indicated. After lysis, co-immunoprecipitation (co-IP) was carried out using anti-HA antibody and analysed by Western Blotting.

(B) Interaction of overexpressed AIP full length, AIP aa 49-330 (Y2H interactor) and AIP aa 1-130 (PPl domain) with CARMAT1 aa 600-946. AIP

aa 130-230 (TPR1) and AIP aa 230-330 (TPR2 and 3) are not interacting. Experiment was performed analogous to (A) as anti-FLAG IP. Asterisk
indicates migration of IgGs. (C) Schematic summary of the interaction between CARMA1 and AIP fragments. (D) Interaction of HA-CARMA1 aa
932-1147 (GUK) with Strep-FLAG-CARMAT1 aa 600-946 (PDZ-SH3). HEK293 cells were co-transfected with both CARMAT constructs and the
binding was analyzed by Western Blotting after Strep-Tactin PD. (E, F) AIP and CARMAT aa 932-1147 (GUK) bind to CARMAT1 aa 600-946 (PDZ-SH3)

in a competitive manner. (E) HEK293 cells were co-transfected with Strep-FLAG-CARMAT aa 600-946, HA-AIP and rising concentrations of HA-CARMA1
aa 932-1147. Strep-Tactin PD was performed as in (D). (F) HEK293 cells were co-transfected and analyzed essentially as in (E), however using constant
amounts of HA-CARMAT1 aa 932-1148 and rising concentrations of HA-AIP.
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Initially, AIP has been proposed to regulate the aryl
hydrocarbon receptor (AHR) localization, stability and
ligand receptivity [6,7]. AIP was shown to bind Hsp90
and AHR primarily through the TPR and suggested to
act in complex with Hsp90 to regulate ligand-triggered
AHR responses [8-10]. The N-terminal FKBP-like PPI
domain of AIP that we identified as the CARMAI1
interaction surface does not confer enzymatic activity
[11-13]. Since extensive intramolecular restructuring of
the CARMA1 MAGUK region is required to initiate
downstream signaling after T cell stimulation [14], we
asked if AIP can support conformational changes in-
volved in CBM formation. For MAGUK proteins like
DLG (discs large) and PSD95 an inhibitory intramolecu-
lar association between the SH3 domain and the C-
terminal GUK domain has been demonstrated [15,16].
Strep-Tactin pull-down (PD) revealed that the CARMA1
GUK domain directly binds to the PDZ-SH3 domain in
HEK293 cells (Figure 1D). Since no direct association
between AIP and CARMA1 GUK was obtained, we asked
whether the CARMA1 GUK and AIP may compete for the
same binding surface on CARMA1 and co-expressed HA-
GUK and HA-AIP together with Strep-FLAG-PDZ-SH3
(Figure 1E and F). Again, CARMA1-GUK or AIP alone
interacted with CARMA1-PDZ-SH3. Upon co-transfection,
increasing concentrations of HA-GUK or HA-AIP led to a
dose dependent loss of PDZ-SH3 association to AIP or
CARMA1 GUK, respectively. Thus, AIP and CARMA1
GUK compete for the same surface on CARMA]I, suggest-
ing that their binding is mutually exclusive. In this setting,
the CARMA1 GUK seemed to have a higher affinity for
PDZ-SH3, which could keep CARMAL in an inactive state.
However, AIP binding may either facilitate an opening of
this intramolecular interaction or stabilize the open con-
formation to alleviate CARMA1 activation and downstream
signaling.

To investigate if the CARMA1-AIP association is rele-
vant for T cell signaling, we first confirmed an endogen-
ous interaction in Jurkat T cells (Figure 2). Co-IPs using
anti-CARMAL1 or anti-AIP antibodies showed a transient
interaction in the initial phase of T cell stimulation
after PMA/Ionomycin (P/I) treatment or by CD3/CD28
co-ligation (Figure 2A-C). CARMAI1 recruits BCL10-
MALT1 to assemble the CBM complex and we asked if
AIP is associated with the CBM holo-complex by per-
forming anti-BCL10 IPs (Figure 2D). Indeed, AIP is also
precipitated with BCL10 after T cell stimulation and this
interaction was not seen in CARMAL1 deficient JPM50.6
Jurkat T cells [17], revealing that the AIP - CBM associ-
ation is mediated through CARMAIL. To obtain further
evidence that AIP could be involved in CBM regulation,
we performed parallel time course analyses of AIP-
CARMA1 and BCL10-CARMALI association after P/I
stimulation of Jurkat T cells (Figure 2E). CARMALI co-
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precipitated with AIP and BCL10 at early time points
after T cell stimulation. CARMA1-AIP binding was lost
after pro-longed treatment, when the CBM complex was
destroyed due to BCL10 degradation [18,19]. Next we
asked if the CARMAI1-AIP association is also relevant in
primary T cells. AIP is expressed in primary human as
well as mouse T cells as detected by Western Blotting
(Additional file 2A-B) and AIP mRNA levels did not sig-
nificantly change in response to CD3/CD28 stimulation
(Additional file 2C). By co-IPs we could verify a stimulus
dependent interaction of CARMA1 and AIP in murine
CD4 T cells (Figure 2F). Thus, just like the competition
experiments of AIP and CARMA1 GUK for CARMA1
PDZ-SH3, the endogenous association studies suggest
that AIP is predominantly bound to the open and active
CARMA1 conformation within the CBM complex.

To address if AIP is involved in CBM complex forma-
tion and downstream signaling in Jurkat T cells, we per-
formed knockdown experiments of AIP using a panel of
three independent siRNAs (siAIP1, siAIP2 and siAIP3).
A crucial step to initiate CBM assembly represents PKC
dependent phosphorylation at Ser645 within the linker
region of CARMAL [3,5]. We downregulated AIP and
detected Ser645 phosphorylated CARMA1 by a phospho-
specific antibody (Figure 3A) [20]. There was no difference
in the extent of CARMA1 S645 phosphorylation upon
CD3/CD28 stimulation, implying that AIP did not impair
initial PKC-mediated CARMA1 linker phosphorylation. To
see if AIP knockdown has an influence on CBM complex
formation, we directly determined CARMAL association
after anti-BCL10 co-IP in response to P/I or CD3/CD28
stimulation (Figure 3B and C). In all cases there was a sig-
nificant decrease in CARMA1-BCL10 association after AIP
knockdown, demonstrating the necessity of AIP for proper
CBM complex formation after T cell stimulation.

CBM complex formation is the key step for activation of
canonical IKK/NF-«B signaling in response to TCR/CD28
co-engagement [1]. To assess if AIP also affects canonical
NF-kB signal transmission downstream of the CBM
complex, we determined IKK activation (Figure 3D), IkBa
phosphorylation and degradation (Figure 3E) and NF-xB
activation (Figure 3F) in AIP knockdown cells using differ-
ent siRNAs. Clearly, IKKa/B T loop phosphorylation and
thus IKK activity was severely reduced in AIP depleted Jur-
kat T cells. Further, less IKK activation was accompanied by
reduced IkBa phosphorylation and degradation and de-
creased nuclear NF-kB DNA binding in response to P/I or
CD3/CD28 stimulation. To address if AIP controls select-
ively TCR signaling, we compared NF-«B activation after
CD3/CD28 and TNFa stimulation in AIP knockdown cells.
Indeed, reduction of AIP selectively diminished NF-kB
activity after CD3/CD28, but not after TNFa stimulation
(Figure 3G), suggesting that AIP is modulating IKI/NF-«B
upstream of IKK by regulating CBM-complex formation.
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Figure 2 AIP interacts with CARMAT after T cell stimulation. (A, B) Interaction of CARMA1 and AIP in Jurkat T cells after P/I stimulation.
(A) Cells were left untreated or P/I treated as indicated prior to anti-CARMAT1 or IgG control IP, respectively. Co-IP was analyzed by Western
Blotting. (B) Jurkat T cells were treated as in (A) and after lysis subjected to anti-AIP or IgG control IP. (C) Transient interaction of CARMA1
and AIP after CD3/CD28 co-stimulation. Jurkat T cells were stimulated as indicated prior to anti-AlP IP and analyzed by Western Blotting.
(D) AIP — CBM complex association requires CARMAT. Jurkat T cells or CARMA1 deficient JPM50.6 T cells were stimulated with P/I as indicated
and subjected to anti-BCL10 IP. Western Blots were stained for AIP co-precipitation. (E) AIP and BCL10 show similar binding kinetics to
CARMAT after T cell stimulation. Jurkat T cells were in parallel stimulated with P/I as indicated and after lysis subjected to anti-AlP or
BCL10 IP, respectively. Western Blots were stained for CARMAT1 co-precipitation. (F) Transient interaction of CARMAT and AIP in primary
mouse CD4 T cells. Cells were left untreated or stimulated with P/I as indicated prior to anti-CARMAT IP. Co-IP was analyzed by

S e CARMAT

Further, we determined the role of AIP for activation of the
MAPKinases ERK and JNK in response to P/I stimulation
(Additional file 3). Whereas ERK phosphorylation was
largely independent of AIP, phosphorylation of JNKp54 iso-
form was slightly decreased, which is in line with previous
findings that CARMA1-BCL10 are involved in JNKp54
activation [21].

To assess the downstream consequences of dimin-
ished TCR signaling, we determined interleukin-2 (IL-2)

production as a hallmark of T cell activation after
siRNA mediated AIP downregulation. As measured by
quantitative RT-PCR, upregulation of IL-2 mRNA in
response to T cell stimulation by P/I or CD3/CD28
stimulation was significantly impaired by AIP knock-
down (Figure 4A). Congruently, P/I induced IL-2 pro-
duction and secretion was also decreased in AIP
depleted Jurkat T cells as determined by ELISA
(Figure 4B). IL-2 induction in T cells does not only rely
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Figure 3 AIP positively regulates CBM complex formation and NF-kB activity in Jurkat T cells. (A) AIP knockdown does not affect CARMA1
Ser645 phosphorylation. Jurkat T cells were transfected with GFP or AIP targeting siRNAs 1 and 3 and stimulated with CD3/CD28 as indicated.
After anti-CARMAT1 1P, CARMAT phosphorylation was detected by a phospho-Ser645-specific antibody. (B, C) AIP is required for CARMAT-BCL10 association.
Jurkat T cells were transfected with siRNAs targeting GFP or AIP (siAIP1, 2, 3) and stimulated with P/l (B) or siAIP1 and 3 and stimulated with CD3/CD28 (C)
as indicated. Cells were lysed and subjected to anti-BCL10 IP. (D) AIP knockdown impairs IKK T-loop phosphorylation. Jurkat T cells were transfected with
siRNAs as in (B) and after P/l stimulation subjected to anti-IKKa IP. After Western Blotting, T-loop phosphorylation was detected with a phospho-specific
antibody. (E) IkBa phosphorylation and degradation is reduced after AIP knockdown. Jurkat T cells were transfected with siRNAs as in (A)
and stimulated by CD3/CD28 co-ligation as indicated. IkBa phosphorylation and degradation was analyzed by western blotting. (F) AIP
knockdown diminishes NF-kB activation. Jurkat T cells were transfected with siRNA against GFP or siAIP1 and 2 and stimulated with anti-CD3/
CD28 antibodies as indicated. NF-kB DNA binding was assessed by EMSA. (G) AIP does not influence TNFa induced NF-kB activity. Jurkat T cells
were transfected with siRNAs against GFP and AIP (siAIP1), respectively, and stimulated with TNFa or CD3/CD28 for the indicated time points.
NF-kB DNA binding was assessed by EMSA.

on IKK/NEF-kB signaling, but also on activation of the
transcription factors NF-AT and AP-1 [22]. Therefore,
we also assessed NF-AT and AP-1 DNA binding in nu-
clear extracts of Jurkat T cells after AIP knockdown
(Figure 4C). NF-AT was severely reduced and AP-1

was slightly diminished in AIP downregulated Jurkat T
cells, highlighting that AIP augments TCR/CD28
downstream pathways that contribute to optimal IL-2
induction. Effects on AP-1 may be downstream of
NF-kB, because NF-kB activation can contribute to
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Figure 4 AIP regulates optimal T cell signaling responses. (A) IL.-2 mRNA levels are decreased in AIP knockdown cells. Jurkat T cells were
transfected with siGFP or siAIPT and 3 and stimulated with P/l or CD3/CD28 for 3 h. RNA was isolated and IL-2 transcript levels were analyzed

by quantitative RT-PCR. Bars show average and standard deviation of three independent experiments. (B) Downregulation of AIP reduces IL-2
production. Jurkat T cells were transfected with siRNAs (siAIP1, 2 and 3) as in (A) and stimulated with P/I. Secreted IL-2 was measured by ELISA. In
A and B bars show average and standard deviation of three independent experiments. Significance was evaluated using Student t-test (one star:
p < 0,05; three stars p < 0,001). (C) AIP knockdown diminishes NF-kB and NF-AT activation, while AP-1 activation is only slightly affected. Jurkat

T cells were transfected with siRNAs against GFP and AIP (siAIP1 and 3), respectively, and stimulated with P/I or CD3/CD28 for 3 hours. NF-kB,
NF-AT and AP-1 DNA binding was assessed by EMSA. (D) Working model how AIP affects CARMAT. Upon CARMAT linker phosphorylation by
PKCB, AIP binding to PDZ-SH3 can compete for intramolecular GUK-SH3 interaction, which may facilitate structural rearrangements to transfer

expression of Jun/AP-1 transcription factors such as
JUNB and JUND [23]. Intriguingly, the MAGUK family
member DLGH1 was shown to be an essential factor
for TCR-triggered NF-AT activation, which may indi-
cate that AIP could be a general regulatory factor for
MAGUK dependent signaling events [24].

Taken together, our data reveal a novel and unex-
pected role of AIP as a positive regulator of CBM
complex formation and canonical IKK/NF-kB as well as
NE-AT signaling in activated T cells. The observed ef-
fects of AIP are independent of AHR, as we and others
could not detect AHR expression in Jurkat T cells [25].
In its inactive state, CARMA1 was suggested to adopt a
double-closed conformation with the N-terminal CARD
bound to the coiled-coil and the C-terminal GUK associ-
ated to the SH3 [14] (scheme Figure 4D). Whereas

BCL10-MALT1 association to the CARD opens up the
N-terminus of CARMAI, AIP interacts with the PDZ-
SH3 and may thereby facilitate loss of C-terminal GUK-
SH3 interaction to support opening of the C-terminal
MAGUK region and downstream signaling. In this model,
AIP binding may support the opening of CARMA1 or
stabilize the signal competent active conformation.
Since CARMAL1 conformation is regulated by a multi-
step process, AIP may also function in signal amplifica-
tion and/or positive feedback loop [26]. Recent data
reveal that within the CBM complex CARMAL1 acts as
a molecular seed that initiates the assembly of BCL10
filamentous fibers [27]. It is tempting to speculate that
AIP as a cofactor may guide the complex assemblies of
such higher order molecular clusters that are initiated
by rearrangements of MAGUK family members.
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