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Abstract

The p38 and extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) participate in
cytokine-stimulated inflammatory gene expression in airway smooth muscle cells. The following study was
undertaken to determine whether Src tyrosine kinases are signaling intermediaries upstream of cytokine-stimulated
MAPK activation and gene expression. Treating human airway myocytes with interleukin (IL)-1B, tumor necrosis
factor (TNF) o and interferon (IFN) vy caused a rapid 1.8-fold increase in Src family tyrosine kinase activity within

1 minute that remained 2.3 to 2.7 fold above basal conditions for 15 minutes. This activity was blocked by addition
of 30 uM PP1, a pyrimidine inhibitor specific for Src family tyrosine kinases, in immune-complex assays to confirm
that this stimulus activates Src tyrosine kinase. Addition of PP1 also blocked cytokine-stimulated expression of IL-18,
IL-6 and IL-8, while decreasing phosphorylation of ERK, but not p38 MAPK. Since this inflammatory stimulus may
activate additional inflammatory signaling pathways downstream of Src, we tested the effects of PP1 on
phosphorylation of signal transducers and activators of transcription (STAT). PP1 had no effect on cytokine-
stimulated STAT 1 or STAT 3 phosphorylation. These results demonstrate that Src tyrosine kinases participate in the
regulation of IL-1f, IL-6 and IL-8 expression and that these effects of Src are mediated through activation of ERK
MAPK and not p38 MAPK or STAT1/STAT3 phosphorylation.

Findings

Our laboratory has examined signaling pathways regu-
lating secretion of inflammatory mediators by human
airway smooth muscle cells. The synthesis and secretion
of Th1/Th2 cytokines, along with CC and C-X-C che-
mokines, chemotactic proteins, peptide growth factors
and their receptors can be induced in these myocytes by
exposure to, among others, interleukin (IL)-1B, tumor
necrosis factor (TNF) a, interferon (IFN) vy, or trans-
forming growth factor B [1,2] and contributes to inflam-
matory airway disease. In previous studies, we used a
complementary DNA expression array to analyze
expression of inflammatory mediators following treat-
ment with a pro-inflammatory stimulus consisting of
IL-1B, TNFo and IFNy and established that this stimu-
lus induces expression of multiple inflammatory media-
tors including IL-1pB, IL-6, and IL-8 [3]. Pharmacological
inhibitors of mitogen-activated protein kinase (MAPK)
activation were used to further demonstrate that both
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p38 and ERK MAPK are upstream mediators of IL-6
and IL-8 expression, while ERK MAPK alone was
involved in mediating IL-1B expression.

Src tyrosine kinases are one of the signaling interme-
diaries linking multiple types of receptors to MAPK
activation in smooth muscle. In colonic myocytes, the
G-protein coupled M, muscarinic receptor is coupled to
ERK MAPK through Src activation [4] and expression
of IL-1B, IL-6, IL-8, and cyclooxygenase (COX-2)
mRNA is reduced by inhibition of Src with the pyrimi-
dine inhibitor PP1 [5]. In vascular smooth muscle cells,
angiotensin II stimulates Src-dependent p38 MAPK acti-
vation [6] and CD40 ligation initiates Src activation of
p38 and ERK MAPK, resulting in the induction of IL-8
and monocyte chemotactic protein-1 [7]. In airway myo-
cytes, the PDGF receptor signals to ERK MAPK through
Src activation via a pertussis-toxin sensitive mechanism
that suggests the involvement of G;-protein subunits [8]
and sphingosine-1-phosphate stimulation of a Gj-
coupled receptor also stimulates ERK MAPK through
Src [9]. In addition to acting as an upstream mediator
of MAPK, Src may also activate other signaling path-
ways that could affect inflammatory gene expression,
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such as the Janus kinase-signal transducers and activa-
tors of transcription (JAK-STAT). This is supported by
evidence that inhibition of Src in PDGF-stimulated air-
way myocytes with PP2 blocks both ERK MAPK and
JAK?2 activation, resulting in decreased phosphorylation
of STAT1 and STATS3 [10] that requires an interaction
with the small GTPase Racl [11].

The following study was undertaken to determine
whether activation of Src is an event upstream of MAPK
signaling contributing to cytokine-stimulated gene
expression and all methodological details are described in
Additional File 1. In vitro kinase assays initially evaluated
the activity of Src in human airway myocytes isolated
according to previously published protocols using p34°*
(6-20) 45 the substrate. This substrate is specific for Src
tyrosine kinase family members including Src, Lck, Lyn
and Fyn but not non-Src tyrosine kinases such as Abl
[12]. Stimulation of cultures with 10 ng/ml IL-18, TNFo
and IFNy caused a rapid 1.8-fold increase in Src family
tyrosine kinase activity within 1 minute that remained
2.3 to 2.7-fold above basal conditions for 15 minutes
(Figure 1A) and addition of the inhibitor PP1 prevented
cytokine stimulation of kinase activity. This inhibitor,
and the similar compound PP2, have been widely used to
pharmacologically inhibit multiple Src family members
[13-15], and PP1 can also inhibit Abl, which was presum-
ably not measured in our assay with the p34°4? (620
substrate. To confirm the activity measured was attribu-
ted to Src, we performed additional immune-complex
kinase assays using the p344°* 20 gubstrate following
immunoprecipitation with a Src-specific antibody, as
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Figure 1 Effect of cytokine stimulation on Src tyrosine kinase
activity in airway myocytes. A. Cultures were treated at the times
indicated with 10 ng/ml IL-1B, TNFa. and IFNy in the presence of
the 0.1% DMSO vehicle (closed circles) or 30 uM PP1 (open circles).

In vitro Src kinase assays were performed using the synthetic
peptide p34°92 €20 55 the substrate, n = 3 + SEM. B. Cultures were
treated for 5 minutes with 10 ng/ml IL-1B, TNFo and IFNy in the
presence of the 0.1% DMSO vehicle or 30 uM PP1. Immune-
complex kinase assays were performed as above in Src
immunoprecipitates. Data are expressed as the fold change relative
to the absence of stimulus, n = 4 + SEM. * indicates significant
difference from unstimulated or PP1 treated cultures, p < 0.05.
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described [4]. In these assays (Figure 1B), a 2-fold
increase in activity of Src immunoprecipitates within
5 minutes of stimulation was abolished by addition of 30
uM PP1, indicative of Src-specific activity in airway
myocytes.

To determine whether Src activation contributes to
inflammatory gene expression, we chose to evaluate the
expression of genes previously shown to be regulated by
p38 and ERK MAPK, namely IL-13, IL-6 and IL-8 [3].
Gene expression was measured using a relative semi-
quantitative RT-PCR approach in which the target gene
is amplified within the linear range in a multi-plex reac-
tion containing 18S rRNA as an endogenous standard.
We further verified the results of these experiments by
quantifying synthesis of the target protein by Western
blots or ELISA. As shown previously [3], expression of
IL-1B, IL-6 and IL-8 is induced upon stimulation with 10
ng/ml IL-13, TNFo and IFNa for 20 hours (Figure 2).
Treatment with 30 uM PP1 reduces cytokine-stimulated
IL-1B mRNA expression by 53% (Figure 2A), which cor-
relates by a 64% decrease in IL-1f synthesis, as measured
by immunoblotting for the intracellular 33 kDa form of
IL-1B (Figure 2D). This was necessary since high levels of
IL-1P present in the media from the cytokine-stimulus
would hamper results from ELISA. Treatment with PP1
also inhibited IL-6 mRNA expression by 43% (Figure 2B)
and IL-8 mRNA expression by 56% (Figure 2C), which
again corresponded to a 80% decrease in IL-6 secretion
from 160.8 ng/ml to 32.9 ng/ml (Figure 2E) and a 82%
decrease in IL-8 secretion from 155.6 ng/ml to 27.2 ng/ml
(Figure 2F). Thus, the same concentration of PP1 that
effectively blocks Src kinase activity results in inhibition,
but not complete blockade, of inflammatory gene expres-
sion. This suggests that while Src activity is involved in
expression of the genes examined, additional Src-indepen-
dent signaling pathways likely participate.

To determine whether Src is an upstream mediator of
MAPK activation in airway myocytes, we analyzed
MAPK activation by phospho-immunoblot analysis in
cultures treated with PP1. Treatment with 10 ng/ml IL-
1B, TNFa and IFNy for 15 minutes resulted in a 10.2
fold increase in ERK MAPK phosphorylation that was
inhibited 50% by addition of PP1 (Figure 3A). The same
stimulus resulted in a 2.5 fold increase in p38 MAPK
phosphorylation but addition of PP1 had no effect
(Figure 3B). Since previous reports demonstrated that
PDGF stimulation of airway myocytes results in Src-
dependent phosphorylation of STAT1/STAT3 via JAK2
activation [10], we determined whether the inflamma-
tory stimulus used here may activate JAK-STAT signal-
ing pathways to mediate downstream gene expression
(Figure 3C). The combination of 10 ng/ml IL-13, TNFa
and IFNy increased STAT1 phosphorylation 2.5 fold and
STAT3 phosphorylation 3.7 fold above basal levels
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Figure 2 PP1 inhibits cytokine expression and synthesis. Human airway myocytes were treated for 20 hours with 10 ng/ml IL-18, TNFo and
IFNy in the presence of the 0.1% DMSO vehicle + 30 uM PP1. A-C. Relative multi-plex RT-PCR amplifying products of the predicted size for 18S
rRNA (324 bp), IL-1B (291 bp), IL-6 (425 bp), and IL-8 (188 bp) with a graphical summary of expression normalized to 18S rRNA, n = 4 + SEM.
Data is expressed as the % change from cytokine stimulated cultures (100%). D. Western analysis demonstrating intracellular pro-IL-18
immunoreactivity at 33 kDa, n = 5 + SEM. E-F. IL-6 or IL-8 secretion measured by ELISA, n = 3 + SEM; N.D. = not detected; * indicates significant
difference from cytokine stimulated cultures, p < 0.05.

within 10 minutes. However, addition of 30 uM PP1 did
not affect STAT phosphorylation, indicating that this
with this inflammatory stimulus, Src does not mediate
JAK-STAT signaling.

Clearly, the functions of Src tyrosine kinases in
smooth muscle cells are varied and likely involve inter-
actions with multiple signaling pathways. In the airway,
Src mediates serotonin-evoked peak Ca®* responses by
affecting phosphoinositide levels to alter cell contraction
[15]. Src also mediates PDGF and thrombin-induced
proliferative responses, possibly through stimulation of
cyclin D1 expression [10,13]. While previous studies
have established that both ERK and p38 MAPK are
involved in regulating expression of many inflammatory
genes in airway myocytes [3,16,17], this work demon-
strates that Src tyrosine kinases also play a role in regu-
lating inflammatory gene expression by signaling
upstream of ERK but not p38 MAPK. This is supported

by studies of inflammatory gene expression in other cell
types. In pulmonary epithelial cells, both ERK and p38
MAPK contribute to silica-induced IL-8 release but only
ERK MAPK activation is dependent on Src [14]. CD40
stimulation of IL-8 and MCP-1 production in vascular
myocytes is also dependent on ERK and p38 MAPK
activation but the inhibitor PP2 was found to inhibit only
ERK MAPK [7]. In this same study, PP2 also decreased
activation of IxB kinase, indicating that Src stimulates
NF-xB signaling to affect chemokine production and sug-
gesting that NF-xB activation could link cytokine stimu-
lation to MAPK activation. We have previously shown
that IL-1p and TNFo but not IFNy activates NF-xB in
airway myocytes and inhibition of NF-xB activity reduces
expression of IL-1f, IL-6, IL-8 and COX-2 in a manner
independent of p38 MAPK [5,16].

The link between inflammatory signaling and Src-
dependent MAPK activation in our studies remains to
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Figure 3 Effects of PP1 on cytokine-stimulated MAPK phosphorylation. Human airway myocytes were treated for 15 minutes with 10 ng/ml
IL-1B, TNFa and IFNy in the presence of the 0.1% DMSO vehicle + 30 uM PP1. Aliquots of whole cell lysates were separated by SDS-PAGE and
immunoblots performed to examine phosphorylation of ERK (5 ug total protein) and p38 MAPKs (15 g total protein). A. Effect of PP1 on
cytokine-stimulated ERK 1/2 MAPK phosphorylation (pERK 1/2) normalized to non-phosphorylated ERK. B. Effect of PP1 on cytokine-stimulated
p38 MAPK phosphorylation (p-p38) normalized to non-phosphorylated p38 MAPK. Representative immunoblots are shown along with
normalized densitometric data expressed relative to the immunoreactivity seen in DMSO treated control cultures, n = 4 + SEM. * indicates
significant difference from cytokine-stimulated group, P < 0.05.

be determined. One possibility may be the TNF recep-
tor-associated proteins (TRAFs). Binding of IL-1f to the
IL-1 receptor activates IL-1 receptor associated kinases
that recruit TRAFs. TNF receptors also recruit TRAFs
through the TNF receptor DEATH domain (TRADD).
In fibroblasts, Src interacting with TRAF2 links TNFa
stimulation to ERK MAPK [18] and TRAF proteins also
activate NF-xB through recruitment of IxB kinase (see
review by [19]). The contribution of IFNy signaling to
Src-dependent ERK MAPK activation is less clear. Inter-
actions between Src tyrosine kinases and receptor-asso-
ciated JAKs are often required for complete STAT
activation [20] but downstream activation of ERK
MAPK has not been demonstrated. It has been pro-
posed that IFNy can directly activate ERK MAPK path-
ways through MEKK1 [21] but the signaling
intermediates, if any, are unknown. Another possibility
could involve heterotrimeric G; subunits implicated in
Src-dependent activation of ERK MAPK in airway myo-
cytes stimulated with PDGF [8]. The contribution of
these proteins have not been widely examined in the
context of IL-18 TNFa or IFNy signaling, which are
more likely to utilize small GTPases such as Racl [11]
and RhoA [22]. Thus, while these results demonstrate
that Src participate in the regulation of inflammatory
gene expression through activation of ERK MAPK,
further studies will explore the signaling pathways link-
ing Src-dependent cytokine stimulation to MAPK
activation.

Additional material

Additional file 1: The file provided detailed methods described in
the communication [23].
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