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Abstract

The normal function of poly (ADP-ribose) polymerase-1 (PARP-1) is the routine repair of DNA damage by adding
poly (ADP ribose) polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated
that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms
of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory,
synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cere-
bral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also
a preferred substrate for several ‘suicidal’ proteases and the proteolytic action of suicidal proteases (caspases, cal-
pains, cathepsins, granzymes and matrix metalloproteinases (MMPs)) on PARP-1 produces several specific proteoly-
tic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized
biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific
suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases
and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments

and their associated binding partners in the control of different forms of cell death are also discussed.

Introduction

PARP-1 is a nuclear protein with a wide range of phy-
siological as well as pathological functions. Initially iden-
tified as an enzyme that performs central roles in the
repair of damaged DNA, PARP-1 participates in initiat-
ing base excision repair (BER) (PARP-17" cells have
impaired BER activity) [1,2], nucleotide excision repair,
single strand base repair mediated by DNA ligase III,
XRCC1, poly nucleotide kinase, proliferating cell nuclear
antigen and flap endonuclease-1, and contributes to
double strand base (DSB) repair in an alternate non-
homologous end joining pathway with DNA ligase III
[3-6]. Interestingly, over-expression of PARP-1 or DNA
binding domain of PARP-1 (lacking catalytic domain)
decreased DSB repair, indicating that its enzymatic
activity is not essential in all repair processes [7]. Many
additional functions of PARP-1 have now been demon-
strated in biochemical and molecular signaling [8].
Apart from its role in repairing DNA damage, PARP-1
also plays important roles in transcription, cardiac
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remodeling, vasoconstriction, regulation of astrocyte and
microglial function, long term memory and aging [9-17].
Progressive DNA damage and decreased PARP-1 activity
in aging neurons eventually leads to programmed neuro-
nal death and loss of memory consolidation. PARP-1’s
role in neuronal BER indicates that it may influence
age-related memory deficits and dementia. Further,
over-expression of PARP-1 and telomeric repeat binding
factor-1 were also associated with age dependent telo-
mere shortening in ‘Duchenne muscular dystrophy’ [18].
PARP-1 influences ~3.5% of the total transcriptome of
embryonic liver and stem cells and regulates ~60-70% of
genes controlling cell metabolism, cell cycle and tran-
scription. Gene expression is dysregulated in PARP-1
deficient fibroblasts and PARP-1 deficient mice are more
susceptible to skin diseases [19-21] reflecting the role of
PARP-1 against UV-induced DNA damage. PARP-1 also
interacts with, and modulates the function of several
transcription factors including NF-xB, NFAT, E2F-1, and
ELK-1 [22-28]. PARP-1 is also involved in modulating
endothelial cell adhesion molecule expression (e.g. during
atherogenesis) via its binding partner NF-xB [16,29,30].
PARP-1, 2 and 3 can activate CNS immune responses by
promoting astrocyte production of inflammatory
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cytokines like TNF-a, IL-1f, nitric oxide and the chemo-
kine CCL2 after challenge with Staphylococcus aureus, a
common CNS infectious agent [14].

The PARP family consists of 17 members which have
different structures and diverse functions in cells [31].
PARP-1, the canonical representative of this superfamily
has become the major focus of research due to its multi-
faceted roles in many cellular activities. This review
focuses on the interactions between PARP-1 and suici-
dal proteases like caspase, calpain, granzyme, and
MMPs that lead to the formation of PARP-1 proteolytic
signature fragments associated with particular pathologi-
cal conditions.

PARP-1 is an abundant nuclear enzyme with approxi-
mately 1-2 million copies in the cell which account
for ~85% of total cellular PARP activity [31-34]. Post-
translation modification involving poly (ADP-ribosyl)
ation plays a central role in cellular homeostasis [35].
Protein modifications involving phosphorylation, acetyla-
tion, methylation and poly (ADP ribosyl)ation are vital
cellular processes that are required for cell signaling,
survival and functioning [34,36-39]. This form of post
translational modification is mainly mediated by PARP-
1 which catalyzes the formation of chains approximately
200 units long linear or branched poly (ADP ribose)
units from donor NAD" molecules frequently linked by
esterification to glutamate, and less commonly to aspar-
tate or lysine resides on target molecules [34,40]. Poly
(ADP-ribosyl)ation is therefore an important mechanism
for maintaining genome integrity, replication, transcrip-
tion, protein degradation, differentiation and in the
repair process following DNA damage [13,34,41-43].

PARP-1 has several important domains: a 54-kD cataly-
tic domain (CD) at the carboxyl terminus that poly-
merizes linear or branched poly-ADP ribose units (from
NAD") on target proteins, a 46-kD DNA binding domain
(DBD) containing 2 zinc finger motifs (at the NH, termi-
nus), and 22-kD auto-modification domain (AMD) that
functions as a target for direct covalent auto-modification
in its central region [34]. For example, high affinity bind-
ing of PARP-1 to specific DNA motifs like double-strand
breaks, cruciforms, cross-overs and nucleosomes require
the DBD for active modification [44-46]. While the 2
zinc finger motifs at the N-terminus facilitate tight bind-
ing of PARP-1 to DNA and promotes the activation of
the catalytic domain at the C-terminus, a 3™ zinc finger
motif located between 2™ zinc finger motif and AMD
also plays an important role in the inter-domain interac-
tions and is vital for PARP-1 enzymatic action [47].
AMD contains a BRCT fold (a motif also found in many
DNA repair proteins) that is involved in protein-protein
interactions which promotes the recruitment of
DNA repair enzymes to the site of DNA damage [48,49].
These PARP-1 domains play different roles in various
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pathological cell death processes mediated by PARP-1
cleavage by suicide proteases. These suicidal proteases
(caspases, calpains, cathepsins, granzymes and MMPs)
cleave PARP-1, creating PARP-1 fragments with diverse,
exposed structural domains mediating specific forms of
cell death. The present review focuses on the different
actions of these proteases towards PARP-1, the produc-
tion of a variety of different PARP-1 signature fragments,
and the specific patterns of cell death linked with particu-
lar PARP-1 fragments.

PARP-1 and Caspases

Apoptosis, the process of programmed cell death is
essential for proper homeostatic maintenance and survi-
val in multi-cellular organisms. Physiological apoptosis
controls cell numbers, tissue and organ morphology and
patterning, and removes injured or mutated cells
[50,51]. Dysregulated apoptosis results in elevated or
decreased cell death often leading to neurodegenerative
disorders, cancer and other hyper-proliferative disorders
[52,53]. One of the most common signaling cascades
involved in apoptosis is the activation of a highly specia-
lized family of cysteinyl-aspartate proteases (caspases)
which are usually present as inactive zymogen forms.
Once activated, caspases initiate cell death by cleaving
and activating effector caspases which drive the process
of apoptosis [54]. Interestingly, recent reports have
shown the involvement of caspases not only in apopto-
sis, but also in forms of cell proliferation in a Drosophila
model. One of the 2 distinct forms of ‘apoptosis induced
compensatory proliferation” (AICP) depends on initiator
caspase Dronc (initiator caspase in Drosophila, caspase-
9-like); the other is dependent on execution caspase
DrICE and Dcp-1 (effector caspases in Drosophila; cas-
pase-3-like) [55-58]. Moreover, apart from their primary
function in executing apoptosis, non-apoptotic functions
of caspases include hematopoiesis (erythropoiesis,
monocyte, lymphocyte differentiation, platelet matura-
tion) [59] and regulation of neuronal synaptic plasticity
in long-term potentiation [60,61]. Caspase mediated
apoptotic cell death is accomplished through the clea-
vage of several key proteins required for cellular func-
tioning and survival [62]. PARP-1 is one of several
known cellular substrates of caspases. Cleavage of
PARP-1 by caspases is considered to be a hallmark of
apoptosis [63,64]. Almost all caspases including caspase-
1, are known to modify PARP-1 in vitro [65]. Lazenbik
et al., have observed protease activity resembling inter-
leukin converting enzyme (prICE: caspase-3) which
cleaves PARP-1 after aspartate (glutamate-valine-aspar-
tate-glycine), a substrate specificity identical to one of
ICE cleavage sites in vitro to yield an 85-kD PARP-1
fragment [66]. Cleavage of PARP-1 by caspase-3 has
been implicated in several neurological diseases e.g.
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cerebral ischemia, Alzheimer’s disease, multiple sclerosis,
Parkinson’s disease, traumatic brain injury, NMDA-
mediated excitotoxicity and brain tumors, especially
gliomas [67-74]. Besides caspase-3, caspase-7 also
cleaves PARP-1 in vivo. The cleavage of PARP-1 by
these caspases results in the formation of 2 specific frag-
ments: an 89-kD catalytic fragment and a 24-kD DBD
[65,66]. The 89-kD fragment containing AMD and the
catalytic domain of the enzyme has a greatly reduced
DNA binding capacity and is liberated from the nucleus
into the cytosol [75]. The 24-kD cleaved fragment with
2 zinc-finger motifs is retained in the nucleus, irreversi-
bly binding to nicked DNA where it acts as a trans-
dominant inhibitor of active PARP-1. Importantly,
irreversible binding of the 24-kD PARP-1 fragment to
DNA strand breaks inhibits DNA repair enzymes (includ-
ing PARP-1) and attenuates DNA repair (also conserving
cellular ATP pools) [76-78]. Poly (ADP-ribosyl)ation of
PARP-1 following DNA breaks changes PARP-1 targeting
from caspase-3 from caspase-7 in human promyelocytic
leukemia cells (HL-60) treated with etoposide phosphate
(VP-16). However, increased caspase-3 levels (and activ-
ity) might lead to PARP-1 cleavage irrespective of its
auto-modification (by poly (ADP-ribosyl)ation) [79]. In a
similar context, Margolin et al., using the 46-kD DBD of
PARP-1 (lack which auto-modification sites) reported an
increased affinity of caspase-3 for PARP-1, indicating a
prominent role for PARP-1 automodification sites in cas-
pase-3 mediated proteolytic cleavage [65].

Under basal conditions, the primary function of
PARP-1 is to detect and repair DNA damage. However,
cells with severely damaged DNA have amplified PARP-
1 activity resulting in high NAD" consumption (deplet-
ing ATP pools). If unchecked, this activity inevitably
leads to passive necrotic cell death (resulting from pro-
longed ATP depletion) [80,81]. This process is blocked
by rapid cleavage and inactivation of PARP-1 by the
action of caspases [81,82]. However, insults which initi-
ate necrosis cause PARP-1 overactivation that proceeds
unchecked due to inadequate caspase activation [82-84],
lower PARP-1 cleavage and less PARP-1 24-kD frag-
ment formation. It is therefore possible that exogenous
addition of PARP-1 24-kD fragments could attenuate
PARP-1 overactivation possibly blocking cell death. Exo-
genous administration of 24-kD PARP-1 fragments
might attenuate PARP-1 overactivation and divert
necrosis towards apoptotic cell death. Taken together,
these findings suggest that the PARP-1 24-kD fragment
can also serve as a powerful therapy for CNS disorders
like cerebral ischemia where necrotic cell death predo-
minates within the infarct core. PARP-1 cleavage by cas-
pases and the resulting specific fragmentation patterns
are indicated in figure 1 and Additional file 1: Table-1.
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Figure 1 PARP-1 interactions with cell death proteases. PARP-1
cleavage by various suicidal proteases like caspases, calpain,
cathepsins and granzymes liberates fragments with specific
molecular weights and are shown in this schematic representation.
Importantly, 21-kD and 55-kD PARP-1 fragments generated by
caspase 3/7 and Gra-A respectively function as an inhibitor of PARP-
1 activity and might also play important roles in reducing necrosis
and/or parthanatos. Further, PARP-1 and PARP-1 fragment's
involvement in various forms of cell death e.g. autophagy, necrosis
and parthanatos are also indicated.

PARP-1 and Calpains

Calpains are a family of 14 Ca**-activated, non-lysosomal
cysteinyl proteases active at neutral pH [85]. Of all the cal-
pain isoforms, m-calpain and p-calpain (activated at puM-
mM Ca®* concentrations) are the best understood. Altera-
tions in intracellular calcium levels are known to initiate
calpain activation often exacerbating pathological condi-
tions [86]. For example, pathologic calpain activation
aggravates neurodegenerative disorders like cerebral ische-
mia, neonatal hypoxia, cerebral malaria, Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, multiple
sclerosis, and also contributes to injury in brain tumors,
such as gliomas [68-70,87-92]. Translocation of calpains to
the plasma membrane is required for optimal calpain acti-
vation. However in neurons, NMDA-mediated excitotoxi-
city involves calpain activation without a requirement for
membrane translocation [93,94]. Calpains also play promi-
nent roles in normal physiology e.g. neuron synaptic sig-
naling, myoblast differentiation, cell migration, embryonic
development (where m-calpain deficiency is embryonic
lethal) and angiogenesis [95-98]. VEGF mediated angio-
genesis involves increased Ca>* uptake in cells to activate
m-calpain and VEGF induced retinal angiogenesis in vitro
could be reversed by the calpain inhibitor SNJ-1945
[99,100]. Interestingly, PARP-1 inhibition also been shown
to decrease VEGF induced angiogenesis [101]. Hence,
even though calpain mediated PARP-1 proteolysis can
decrease angiogenesis; calpains might still promote angio-
genesis by augmenting VEGF expression [100] indicating
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that a bimodal activation pattern of calpain activation pro-
portional to the magnitude of calpain mediated PARP-1
proteolysis is possible. More studies are still required to
address this issue and understanding the roles played by
PARP-1, calpains and VEGFs in post-ischemic cerebral
angiogenesis is an area of drug development, particularly
for stroke therapy.

Calcium, apart from activating calpains, also promotes
PARP-1 hyper-activation through production of ROS
and peroxynitrite [102]. The anti-tumor drug p-lapa-
chone induces PARP-1 dependent cell death indepen-
dent of caspases via metabolic starvation. $-lapachone
treated cells also exhibit increased cytosolic Ca** (by
release of endoplasmic reticulum Ca** stores) and ROS,
resulting in PARP-1 hyper-activation. PARP-1 hyper-
activation by B-lapachone was blocked by BAPTA-AM
(a cytosolic Ca** chelator) indicating that Ca** induced
ROS generation leads to PARP-1 hyper-activation and
cell death [103]. Conversely, cellular Ca** levels were
altered by PARP-1 in doxorubicin-induced myocardial
injury. Szenczi et al., have shown that both cardiac con-
tractile capacity and intracellular Ca®* loading was
reduced in doxorubicin-treated hearts, an effect blocked
by PARP-1 inhibition. These responses may be indirect
through the effects of PARP-1 on the transcription of
proteins involved in Ca®>* handling and Ca** pumps
[104]. PARP-1 has also been shown to modulate neuro-
nal mitochondrial Ca** levels [105]. PARP-1 activity
raises intra-mitochondrial Ca* levels, activating p-cal-
pain to release mitochondrial apoptosis inducing factor
(AIF) [106]. However, because activated calpains med-
iate proteolytic breakdown of PARP-1, the temporal
association of PARP-1 and calpain in AIF nuclear trans-
location may be phase-dependent, more studies will be
required to address this. The roles of PARP-1 in Ca**
handling and excitotoxicity point towards pleiotropic
functions of PARP-1 in pathological settings.

Calpains play crucial roles in both caspase-dependent
and independent forms of apoptotic cell death and are
key mediators of necrotic cell death [107,108]. A variety
of cellular insults can activate calpains including
increased cytosolic Ca?*, decreased calpastatin levels,
interactions with calpain activator protein, phospholi-
pids, and caspase activation [109-112]. Several cell sub-
strates have been identified as calpain targets resulting
in proteolytic breakdown to signature fragments of spe-
cific molecular weights [69,91,113]. Appearance of dis-
tinctive cleavage (‘'signature’) fragments is considered to
represent specific forms of calpain activation. Among
the various cellular substrates of calpain, PARP-1 clea-
vage gives rise to a 40-kD N-terminal fragment in neu-
roblastoma cells (SH-5YSY) challenged with maitotoxin
[114]. p-calpain isolated from calf thymus generates
~40-70-kD N-terminal PARP-1 fragments [115]. Calpain
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induced 40-kD fragments were recognized by both C-2-
10 and N-20 antibodies (which detect PARP-1 fragments
bearing the N-terminal domain/DBD). Depending on
observed molecular weight and immunoreactivity it can
be presumed that this PARP-1 fragment might have
DBD domain, but not AMD or catalytic domains.
Whether this 40-kD fragment plays any role in PARP-1
auto-modification (as shown in studies on the 24-kD
PARP-1 DBD fragment) is not yet known. This fragment
appears specifically when PARP-1 is digested with cal-
pain, and p-calpain inhibitor reduces its appearance,
indicating that it is a p-calpain-specific PARP-1 signa-
ture fragment. We don’t know whether this fragment
represents a byproduct formed during calpain mediated
necrotic cell death or if it can actively attenuate necro-
sis. Based on the findings that the zinc finger motifs
present in the DBD domain of PARP-1 can facilitate
irreversible binding of DBD to DNA nicks and promote
transdominant inhibition of activated PARP-1, the
appearance of this fragment would be consistent with its
ability to attenuate PARP-1 activity during calpain
mediated necrosis. Calpains are known to mediate apop-
totic cell death. Whether this fragment appears only
during necrotic conditions or also during calpain-
mediated (caspase independent) apoptosis is unknown.
Future studies on the molecular biology of this fragment
and its roles in specific cell death pathways will be
needed to determine its role in neuronal pathologies. So
far, these fragments remain most convincingly related to
necrotic modes of cell death mediated by calpain.

Apart from PARP-1, caspase-7 has also been shown to
be a target of p-calpain. p-calpain cleaves caspase-7 to
active 18.5 and 17.2-kD fragments. This calpain gener-
ated caspase-7’s 17.2-kD fragment is ~18 fold more
active than the 20-kD caspase-3 generated fragment of
caspase-7 [116]. Whether these fragments are involved
in preferential PARP-1 processing over caspase-3 is not
yet known. PARP-1 cleavage by calpains results in speci-
fic fragmentation patterns which are described in figure 1
and Additional file 1: Table-1.

PARP-1 and Cathepsins

Lysosomes were initially described as participants in
catabolic autophagic cell death when exhausted or
damaged organelles were digested and secreted into the
cytoplasm [117]. Lysosomes and lysosomal proteases
also participate in apoptotic and necrotic forms of cell
death [118-120]. Cathepsins belong to the family of lyso-
somal proteases which are active at acidic pH. These are
stored in lysosomes as inactive precursors and activated
by stimuli that lower cell pH, resulting in the release of
their catalytically active forms which cleave multiple tar-
gets [121]. Cathepsins can initiate apoptotic cell death
independent of caspases, and are known to be key
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proteases in necrosis and autophagy. Increased autopha-
gic protease levels can aggravate post-ischemic neuro-
pathologic with injury [122]. Recent reports clearly show
that the biogenesis of lysosomal cathepsins is required
for necrotic cell death [118]. One of the important dif-
ferences between apoptotic and necrotic forms of cell
death is the protein synthesis pattern. During apoptotic
cell death, normal protein synthetic processes are
rapidly shut down, an event which conserves ATP,
which is used to accomplish apoptosis. Conversely, the
persistence of protein synthesis during necrotic cell
death can deplete energy reserves accelerating necrotic
cell death [118-123]. Since lysosomal biogenesis is
required for necrotic cell death, persistent protein synth-
esis might help in lysosomal-cathepsin synthesis, which
eventually spills into the cytosol, cleaving PARP-1 and
contributing to cell death [118,123]. However, the
numerous targets and temporal specificities of cathe-
psins and PARP-1 contributing to cell death mechan-
isms require further study.

Cathepsins are a large family of lysosomal enzymes
comprising 11 cysteinyl cathepsins (and aspartyl pro-
tease cathepsin-D) which are also active at neutral pH.
These have a relatively short biological half-life, but
acidification of the cytosol will increase their residence
time. However, due to the abundance of cathepsin B, D
and L, these are most often used as markers for the
involvement of lysosomes in particular forms of cell
death [119]. Cathepsins B, S and G are also involved in
tumor invasion (glioblastoma multiforme, breast cancer
bone metastasis and colorectal tumors), endothelial pro-
liferation and in angiogenesis (via TGF-B, VEGF and
MCP-1) [124,125]. It is important to note that necrosis
is common in tumor tissue and is usually accompanied
by PARP-1 hyper activation. Considering that PARP-1
inhibition reduces angiogenesis, it is possible that hyper-
activated PARP-1 might in part drive tumor angiogen-
esis and metastasis. Cathepsins and TGF-f are also
involved in caspase-independent PARP-1 cleavage (an
~85-kD caspase independent PARP-1 fragment is pro-
duced by TGF-B) [126]. How these mediators drive
angiogenesis or can be used in diagnosis or therapy
needs further study.

Moreover, TGF-f and cathepsin-G mediated angio-
genesis depends on the upregulation of VEGF [124].
Hence, breakdown of PARP-1 (which would reduce the
angiogenic program) might be balanced by increased
VEGF production by cathepsins. It is important to iden-
tify whether the breakdown products of PARP-1 pro-
duced by calpains or cathepsins can substitute for the
PARP-1 function in angiogenic programs. More impor-
tantly, the effect of transdominant inhibition of PARP-1
by DBD in modulating angiogenic programs is worth
investigating. These findings indicate that angiogenesis
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associated with PARP-1 signaling is highly complex,
tightly controlled and pathology specific. The extent of
PARP-1 and PARP-1 cleavage products’ involvement in
modulating angiogenic programs has yet to be fully
determined.

Cysteine cathepsins also share several common targets
along with PARP-1. PARP-1 was initially found to pro-
duce a 50-kD fragment (necrotic fragment) during
necrotic cell death. Necrotic PARP-1 fragmentation was
later characterized and the appearance of these PARP-1
fragments shown to be mediated by lysosomes and lyso-
somal specific proteases cathepsin-B, -D and -G. During
necrosis, induced by H,O,, 10% ethanol, HgCl,, lysoso-
mal extracts and cathepsin-B, PARP-1 gave rise to frag-
ments ranging from 42-89-kD [127]. Cathepsin-B and D
produce active PARP-1 fragments with molecular weights
of 55-kD and 42-kD, similar to the fragments obtained
from the lysosomal extracts. Inactive PARP-1 fragments
with molecular weights of 74 and 62-kD are also liber-
ated by the action of these proteases. Cathepsin-G,
another lysosomal protease, also produced a similar frag-
mentation pattern, but with lower intensity (requiring
longer incubation periods vs. cathepsin-B and D). More-
over, the 89-kD PARP-1 fragment which appears during
apoptotic cell death could also be produced by cathepsin-
B and D, but is not generated by cathepsin-G [127].
Cathepsin specific PARP-1 fragmentation patterns are
shown in figure 1 and Additional file 1: Table-1.

PARP-1 and granzymes
The immune system maintains an internal homeostasis
by recognizing and reacting to foreign particles, abnor-
mal or infected cells to restrict their further persistence
and penetration within the host. Immune processes use
highly specialized and cell-specific mechanisms and
molecules to accomplish this. Induction of cytotoxicity
in target cells is a multifactorial process accomplished
by cytotoxic T lymphocytes (CTLs) and natural killer
(NK) cells that secrete toxic and lytic proteases of the
serine protease family (granzymes), perforins and granu-
lysin [128]. About 90% of cytolytic granules stored in
CTLs and NK cells contain granzymes. Granzymes are
subdivided into 3 categories based upon their enzymatic
similarity to chymotrypsin (chymase locus), trypsin
(tryptase locus) and those that cleave after unbranched
hydrophilic residues particularly after methionine (Met-
ase-locus). A total of 10 granzymes have been found in
the mouse (granzymes A-G and K-M), 7 in rats (A, B,
C, 1, J, Kand M) and 5 in humans (granzymes A, B, H
which are specific to human, M and tryptase2/gran-
zyme-3). Human homologs of granzymes C-G have still
not been found [129].

Granzymes are secreted from cytotoxic cells upon
recognizing their target cells, with several physiological



Chaitanya et al. Cell Communication and Signaling 2010, 8:31
http://www.biosignaling.com/content/8/1/31

or pathophysiological consequences. Physiologically,
granzymes promote extracellular matrix degradation,
lymphocyte migration, cytokine production and attenu-
ate tumor cell migration[130]. Pathological granzyme
actions are important in inflammatory vascular disorders
(atherosclerosis, transplant vascular disease, systemic
lupus erythrematosus, autoimmune vasculitis) [131-133],
chronic allergic or autoimmune diseases (arthritis,
chronic allergic asthma, hypersensitive pneumonitis)
[134-136] and neurodegenerative disorders (spinal cord
injury, cerebral ischemia, multiple sclerosis, brain
tumors like gliomas) [68,70,137-139]. Of the family of
granzymes, granzyme-B (Gra-B) is considered to be the
most potent apoptogenic molecule, even though gran-
zyme-A (Gra-A) and Gra-B are the most abundant pro-
teases in lytic granules [140]. Other members of the
granzyme family perform functions outside of apoptosis
and independent of caspases.

Gra-A has been shown to induce caspase-independent,
but morphologically indistinguishable apoptosis. Induc-
tion of Gra-A mediated apoptosis involves activation of
Gra-A activated DNase to induce single stranded nicks
in DNA, breakdown of oxidative repair protein ‘apuri-
nic/apyrimidinic (AP) endonuclease’ (APE), KU-70 and
mitochondrial complex I protein [141-144]. Apart from
lamin, which is the common substrate for Gra-A, Gra-B
and caspase-3, PARP-1 is also cleaved by these 3 pro-
teases resulting in different fragmentation patterns
[66,145-147]. Importantly, even though PARP-1 is a
direct substrate for Gra-A it can only cleave intracellular
PARP-1 in the presence of perforins [145]. This finding
also underscores the necessity of perforin for Gra-A to
enter the cell to execute cell death, unlike Gra-B. Gra-A
activity towards PARP-1 results in its breakdown with
high efficiency after Lys**® leading to the formation of a
C-terminal 55-kD inactive fragment and an N-terminal
fragment of similar molecular weight. Cleavage of
PARP-1 at Lys**® residue by Gra-A results in decreased
auto-modification of PARP-1, poly (ADP ribosyl)ation
and DNA repair. Gra-A mediated formation of N-term-
inal active 55-kD PARP-1 (after Lys**®) may cause cells
to undergo caspase-independent apoptotic cell death,
rather than necrotic cell death, by decreasing the effi-
ciency of ADP ribosylation. Since Gra-A cleaves oxida-
tive repair enzymes and increases ROS production, it
will indirectly activate PARP-1; decreased poly (ADP-
ribosyl)ation counteracts these deleterious effects [145].
However, whether Gra-A has any role in ‘parthanatos’
(cell death mediated by poly (ADP ribose) polymers) or
necrosis is a topic for future studies. Even though cathe-
psin-B and Gra-A produce similar 55-kD C-terminal
PARP-1 fragments, they differ in recognized cleavage
sites. For example, cathepsins cleave PARP-1 at leu-
cine®®® residues, but Gra-A cleaves preferentially at
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lysine*®® [127,145] resulting in the formation of N-term-
inal fragments that attenuate PARP-1 depletion of ATP.
Unlike Gra-A, cathepsin mediated PARP-1 cleavage at
Leu®*® results in the formation of 55-kD active C-term-
inal and 62-kD inactive N-terminal fragments [127].
Consequently cleavage-site specificity plays a major role
in the generation of fragments derived from particular
domains that differentially modulate forms of cell death
(apoptosis vs. necrosis).

Gra-B was the first serine protease discovered to
cleave PARP-1 during induction of cell death. Gra-B can
translocate into cells in both a perforin-dependent and
independent manner. Unlike Gra-A, Gra-B shares simi-
lar substrate specificity with caspase-3 (i.e. it cleaves
after aspartate residues) and induces more rapid cell
death [140]. Further, Gra-B can mediate apoptosis inde-
pendent of caspases, or by directly activating caspases or
indirectly by activating Bid [148,149].

Apart from various other cellular substrates, Gra-B
cleaves PARP-1 into 64-kD and 61-kD N-terminal frag-
ments and C-terminal 54-kD and 42-kD fragments. Of
these, the 54-kD and 42-kD PARP-1 fragments were
found to be catalytically active, while the 64-kD and 61-
kD fragments were inactive. This was mainly based on
the presence of intact catalytic domain at the C-termi-
nus [147]. Using activity western blots, it has been
shown that the fragments 54-kD and 42-kD fragments
are catalytically active. The 42-kD fragment was
detected in activity western blots but not when immu-
noblotted with N-terminus specific antibody, indicating
that it is C-terminus fragment. N-terminal analysis of
the 54-kD fragment has shown that the cleavage site fol-
lows Asp®®”. It was further suggested that the appear-
ance of 42-kD fragment is due to the secondary
cleavage of 54-kD and 61-kD fragment was due to the
secondary cleavage of 64-kD fragment [147].

The appearance of PARP-1 fragments with multiple
molecular weights clearly distinguishes these proteases
from each other, and suggests the participation of speci-
fic proteases during different phases and forms of
pathology. The presence of some PARP-1 fragments,
like the 50-kD and 55-kD, which can be formed by
either necrotic cathepsins or by Gra-A, need to be care-
fully interpreted [127,145]. The PARP-1 fragments cre-
ated by granzyme action are indicated in figure 1 and
Additional file 1: Table-1. Based on the roles of PARP-1
in angiogenesis, whether Gra-B cleavage of PARP-1 and
the resulting PARP-1 fragments have any role in modu-
lating angiogenesis during forms of neurodegeneration
is a potential opportunity for therapy.

PARP-1 and matrix metalloproteinases
MMPs are a family of 28 zinc-dependent endopeptidases
that play significant roles in angiogenesis, embryogenesis
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and in several pathological cardiovascular diseases like
myocardial ischemia, cerebral ischemia, and athero-
sclerosis [150-152]. Within this family of MMPs, MMP-
2 has recently been shown to be capable of cleaving
PARP-1. Kwan et al. have reported that MMP-2 along
with MMP-9 is present in the nuclear fraction of heart
and liver, and is able to cleave PARP-1 in a concentra-
tion dependent manner. Cleavage of PARP-1 by MMP-2
produces a 66-kD and a >48-kD fragment (seen in silver
stained gels and western blotting) [153] which differ in
their appearance. MMP-2 produced a 66-kD PARP-1
fragment in a concentration-dependent fashion whereas
there was no difference in levels of other >48-kD forms
from control conditions observed in silver stained gels.
Interestingly western blot analysis did not show any 66-
kD PARP-1 fragments but showed an increase in >48-kD
fragments in a concentration-dependent fashion. The
MMP inhibitors TIMP-2 and doxycycline were able to
block PARP-1 degradation to a 66-kD fragment. The rea-
son for the appearance of a prominent ~66-kD fragment
in TIMP-2 treated conditions and a faint band of the
same molecular weight in doxycycline treated samples is
curious. Why this fragment is specifically detected in
MMP-2 inhibited samples is also unclear. Though the
differences in the appearance of >48-kD and 66-kD frag-
ments may relate to the PARP-1 antibody used (either C-
terminus or N-terminus specific), the reason for the
appearance of ~66-kD fragment in samples with inhib-
ited MMP-2 (but not in untreated controls) are unclear.

MMPs actions are modulated by the cytokines and
endogenous MMP inhibitors in both pro- and anti-
angiogenic programs affecting extracellular and base-
ment membrane remodeling [154]. MMP-2 is known to
be a key protease involved in neovascularization, and
MMP-2"" mice show defects in neovascularization. Con-
versely, MMP-9 may limit collagenase-induced intracer-
ebral hemorrhage [155,156]. Moreover, conditioned
medium enriched in MMP-2 and 9 (from mouse brain
endothelial cells) increases the migration of neural pre-
cursor cells to sites of brain injury via ERK'’* and PI3/
AKT signaling [157]. However, several CNS pathologies
such as cerebral ischemia, multiple sclerosis and Devic’s
neuromyelitis optica are also associated with increased
MMP-2 and-9 levels and MMP-9 inhibition is beneficial
against cerebral ischemia [151,158]. Nicolescu et al.,
have recently reported that PARP-1 inhibitors can also
inhibit MMPs [159], indicating that at least part of the
protection afforded by PARP-1 inhibitors during stroke
might be due to MMP inhibition. PARP-1 inhibition
undoubtedly rescues cells from necrotic cell death, but
the role(s) played by MMP inhibition in stroke clearly
deserve further study.

Although acute PARP-1 and MMP inhibition may effec-
tively attenuate ischemic stroke, the roles of MMPs in
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neuronal progenitor migration, and PARP-1’s role in
angiogenesis programs during restitution need some clari-
fication. Importantly, whether 66-kD and >48-kD PARP-1
fragments produced by MMP proteolysis have activity or
modulate PARP-1 activity is still unknown. Because PARP-
1 also regulates angiogenesis, the effect of PARP-1 proteo-
lysis by MMPs during angiogenesis may be important to
investigate for cancer and chronic inflammation therapy.

Conclusions

The molecular mechanisms involved in balancing life and
death decisions controlled by PARP-1 are highly complex
and incompletely understood. A delicate PARP-1 equili-
brium exists within cells where any deviation, either
hyper- or hypo-activity can induce or exacerbate pathol-
ogy. Many related proteases including caspases, calpains,
cathepsins, granzymes and MMPs also directly and indir-
ectly mediate the effects of PARP-1 in these phenomena.
Recent reports indicate that PARP-1 contributions to cell
death are insult- and context-dependent. PARP-1 can
also promote tissue survival by shifting the balance of cell
death programs between autophagy and necrosis. PARP-1’s
role in driving autophagy from necrosis is distinctive from
its classical role and highlights its importance in cell survi-
val decisions. It also points out an important potential
application through which modulation of PARP-1 may be
applied therapeutically. Because of PARP-1’s dual nature in
life: death control, PARP inhibitors should be used with
great caution. Furthermore, physiological and pathological
roles of poly (ADP-ribosyl)ation in parthanatos and long
term memory suggest that prolonged inhibition of PARP-1
may be ultimately deleterious. Conversely, the 24-kD N-
terminal PARP-1 apoptotic fragment that attenuates necro-
tic cell death might eventually be developed for therapy.
The appearance of specific PARP-1 fragments will not only
help us understand the involvement of specific cell death
proteases in particular processes, but also different types of
cell death. These recent findings clearly indicate that a
great deal remains be defined about PARP-1, the roles of
its fragments and the specific molecular mechanisms they
regulate during various forms of cell death.

Additional material

Additional file 1: Table -1. PARP-1 signature fragments. Action of
various proteases results in the generation of PARP-1 fragments with
specific molecular weights that can be correlated with the action of
specific proteases. PARP-1 signature fragments generated by various
proteases are listed above.

Acknowledgements

The authors are grateful for the excellent editorial help of Ms. Merilyn
Jennings, Department of Molecular and Cellular Physiology, LSUHSC-
Shreveport, LA in the preparation of this review. The authors thank Prof. K.


http://www.biomedcentral.com/content/supplementary/1478-811X-8-31-S1.PPT

Chaitanya et al. Cell Communication and Signaling 2010, 8:31
http://www.biosignaling.com/content/8/1/31

Subba Rao, INSA Senior Scientist, JNTU, Hyderabad, India for critical
suggestions. Post-doctoral fellowship from the Malcolm Feist Cardiovascular
Research Endowment- LSU Health Sciences Center-Shreveport to Ganta Vijay
Chaitanya is acknowledged. Funding from DBT, DST and ICMR, New Delhi,
Government of India to Prof. Prakash Babu is acknowledged.

Author details

'Department of Biotechnology, School of Life Sciences, University of
Hyderabad, Hyderabad, India. 2Department of Molecular and Cellular
Physiology, Louisiana State University Health Sciences Center-Shreveport,
Louisiana-USA.

Authors’ contributions

GVC wrote and edited the manuscript, JSA edited the manuscript and PPB
edited and communicated the manuscript. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 16 July 2010 Accepted: 22 December 2010
Published: 22 December 2010

References

1. Dantzer F, de La RG, Menissier-de Murcia J, Hostomsky Z, de Murcia G,
Schreiber V: Base excision repair is impaired in mammalian cells lacking
Poly(ADP-ribose) polymerase-1. Biochemistry 2000, 39:7559-7569.

2. Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, de La RG, et al.
Involvement of poly(ADP-ribose) polymerase in base excision repair.
Biochimie 1999, 81:69-75.

3. Audebert M, Salles B, Calsou P: Involvement of poly(ADP-ribose)
polymerase-1 and XRCC1/DNA ligase Il in an alternative route for
DNA double-strand breaks rejoining. J Biol Chem 2004,
279:55117-55126.

4. Benjamin RC, Gill DM: Poly(ADP-ribose) synthesis in vitro programmed by
damaged DNA. A comparison of DNA molecules containing different
types of strand breaks. J Bio/ Chem 1980, 255:10502-10508.

5. Fisher AE, Hochegger H, Takeda S, Caldecott KW: Poly(ADP-ribose)
polymerase 1 accelerates single-strand break repair in concert with poly
(ADP-ribose) glycohydrolase. Mol Cell Biol 2007, 27:5597-5605.

6. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, et a: PARP-1 and Ku
compete for repair of DNA double strand breaks by distinct NHEJ
pathways. Nucleic Acids Res 2006, 34:6170-6182.

7. Susse S, Scholz CJ, Burkle A, Wiesmuller L: Poly(ADP-ribose) polymerase
(PARP-1) and p53 independently function in regulating double-strand
break repair in primate cells. Nucleic Acids Res 2004, 32:669-680.

8. Koh DW, Dawson TM, Dawson VL: Poly(ADP-ribosyl)ation regulation of life
and death in the nervous system. Cellular and Molecular Life Sciences 2005,
62:760-768.

9. Albadawi H, Crawford RS, Atkins MD, Watkins MT: Role of poly(ADP-ribose)
polymerase during vascular reconstruction. Vascular 2006, 14:362-365.

10.  Burkle A, Brabeck C, Diefenbach J, Beneke S: The emerging role of poly
(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol 2005,
37:1043-1053.

11, Chiarugi A, Moskowitz MA: Poly(ADP-ribose) polymerase-1 activity promotes
NF-kappaB-driven transcription and microglial activation: implication for
neurodegenerative disorders. J Neurochem 2003, 85:306-317.

12. Hernandez Al, Wolk J, Hu JY, Liu J, Kurosu T, Schwartz JH, et al: Poly-(ADP-
ribose) polymerase-1 is necessary for long-term facilitation in Aplysia. J
Neurosci 2009, 29:9553-9562.

13. Kraus WL, Lis JT: PARP goes transcription. Cell 2003, 113:677-683.

14. Phulwani NK, Kielian T: Poly (ADP-ribose) polymerases (PARPs) 1-3
regulate astrocyte activation. J Neurochem 2008, 106:578-590.

15. Sung YJ, Ambron RT: PolyADP-ribose polymerase-1 (PARP-1) and the
evolution of learning and memory. Bioessays 2004, 26:1268-1271.

16. von Lukowicz T, Hassa PO, Lohmann C, Boren J, Braunersreuther V, Mach F,
et al: PARP1 is required for adhesion molecule expression in
atherogenesis. Cardiovasc Res 2008, 78:158-166.

17. Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, et al: Poly(ADP-Ribose)
polymerase promotes cardiac remodeling, contractile failure, and
translocation of apoptosis-inducing factor in a murine experimental

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 8 of 11

model of aortic banding and heart failure. J Pharmacol Exp Ther 2005,
312:891-898.

Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A, et al:
Telomere shortening is associated to TRF1 and PARP1 overexpression in
Duchenne muscular dystrophy. Neurobiol Aging 2010.

Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, et al:
Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but
are susceptible to skin disease. Genes Dev 1995, 9:509-520.
Simbulan-Rosenthal CM, Ly DH, Rosenthal DS, Konopka G, Luo R, Wang ZQ,
et al: Misregulation of gene expression in primary fibroblasts lacking
poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 2000,
97:11274-11279.

Ogino H, Nozaki T, Gunji A, Maeda M, Suzuki H, Ohta T, et al: Loss of Parp-
1 affects gene expression profile in a genome-wide manner in ES cells
and liver cells. BMC Genomics 2007, 8:41.

Zingarelli B, Hake PW, O'Connor M, Denenberg A, Kong S, Aronow BJ:
Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-kappa B
activation and gene expression of apoptosis regulators after reperfusion
injury. Mol Med 2003, 9:143-153.

Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Samara R, Espinoza LA,
Hassa PO, et al: PARP-1 binds E2F-1 independently of its DNA binding
and catalytic domains, and acts as a novel coactivator of E2F-1-
mediated transcription during re-entry of quiescent cells into S phase.
Oncogene 2003, 22:8460-8471.

Olabisi OA, Soto-Nieves N, Nieves E, Yang TT, Yang X, Yu RY, et al:
Regulation of transcription factor NFAT by ADP-ribosylation. Mol Cell Biol
2008, 28:2860-2871.

Hassa PO, Hottiger MO: A role of poly (ADP-ribose) polymerase in NF-
kappaB transcriptional activation. Bio/ Chem 1999, 380:953-959.

Hassa PO, Hottiger MO: The functional role of poly(ADP-ribose)
polymerase 1 as novel coactivator of NF-kappaB in inflammatory
disorders. Cell Mol Life Sci 2002, 59:1534-1553.

Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh |, Klein R, et al-
DNA-independent PARP-1 activation by phosphorylated ERK2 increases
Elk1 activity: a link to histone acetylation. Mol Cell 2007, 25:297-308.
Cohen-Armon M: PARP-1 activation in the ERK signaling pathway. Trends
Pharmacol Sci 2007, 28:556-560.

Oshima T, Pavlick KP, Laroux FS, Verma SK, Jordan P, Grisham MB, et al:
Regulation and distribution of MAdCAM-1 in endothelial cells in vitro.
Am J Physiol Cell Physiol 2001, 281:C1096-C1105.

Sharp C, Warren A, Oshima T, Williams L, Li JH, Alexander JS: Poly ADP
ribose-polymerase inhibitors prevent the upregulation of ICAM-1 and E-
selectin in response to Th1 cytokine stimulation. Inflammation 2001,
25:157-163.

Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays
2004, 26:882-893.

Yamanaka H, Penning CA, Willis EH, Wasson DB, Carson DA:
Characterization of human poly(ADP-ribose) polymerase with
autoantibodies. J Biol Chem 1988, 263:3879-3883.

Woodhouse BC, Dianov GL: Poly ADP-ribose polymerase-1: an
international molecule of mystery. DNA Repair (Amst) 2008, 7:1077-1086.
D'Amours D, Desnoyers S, D'Silva |, Poirier GG: Poly(ADP-ribosyl)ation
reactions in the regulation of nuclear functions. Biochem J 1999, 342(Pt
2):249-268.

Scovassi Al: The poly(ADP-ribosylation) story: a long route from
Cinderella to Princess. Riv Biol 2007, 100:351-360.

Althaus FR, Richter C: ADP-ribosylation of proteins. Enzymology and
biological significance. Mol Biol Biochem Biophys 1987, 37:1-237.
Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al:
Lysine acetylation targets protein complexes and co-regulates major
cellular functions. Science 2009, 325:834-840.

Perrot R, Berges R, Bocquet A, Eyer J: Review of the multiple aspects of
neurofilament functions, and their possible contribution to
neurodegeneration. Mol Neurobiol 2008, 38:27-65.

Shukla A, Chaurasia P, Bhaumik SR: Histone methylation and
ubiquitination with their cross-talk and roles in gene expression and
stability. Cell Mol Life Sci 2009, 66:1419-1433.

Rolli V, O'Farrell M, Menissier-de Murcia J, de Murcia G: Random
mutagenesis of the poly(ADP-ribose) polymerase catalytic domain
reveals amino acids involved in polymer branching. Biochemistry 1997,
36:12147-12154.


http://www.ncbi.nlm.nih.gov/pubmed/10858306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10858306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10214912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15498778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6253477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6253477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6253477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17548475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17548475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17548475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17088286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17088286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17088286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14757832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15868401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15868401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17150157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17150157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15743677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15743677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12675907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12675907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12675907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19641118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19641118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12809599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18410506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18410506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15551264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15551264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18093987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15523000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20137830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20137830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7698643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7698643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11016956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11016956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17286852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17286852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17286852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14571322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14571322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14571322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14627987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14627987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14627987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18299389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10494847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10494847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12440774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12440774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12440774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17244536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17244536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17950909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11546645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11403206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11403206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11403206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15273990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3126180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3126180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18468963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18468963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10455009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10455009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18278737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18278737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19608861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18649148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18649148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18649148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19370393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19370393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19370393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9315851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9315851?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9315851?dopt=Abstract

Chaitanya et al. Cell Communication and Signaling 2010, 8:31
http://www.biosignaling.com/content/8/1/31

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Chang P, Jacobson MK, Mitchison TJ: Poly(ADP-ribose) is required for
spindle assembly and structure. Nature 2004, 432:645-649.
Herceg Z, Wang ZQ: Functions of poly(ADP-ribose) polymerase (PARP) in

DNA repair, genomic integrity and cell death. Mutat Res 2001, 477:97-110.

Ullrich O, Diestel A, Bechmann |, Homberg M, Grune T, Hass R, et al.
Turnover of oxidatively damaged nuclear proteins in BV-2 microglial
cells is linked to their activation state by poly-ADP-ribose polymerase.
FASEB J 2001, 15:1460-1462.

Kun E, Kirsten E, Mendeleyev J, Ordahl CP: Regulation of the enzymatic
catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+,
Ca2+, histones H1 and H3, and ATP. Biochemistry 2004, 43:210-216.
Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL,
Soldatenkov VA: Specific binding of poly(ADP-ribose) polymerase-1 to
cruciform hairpins. J Mol Biol 2005, 348:609-615.

Wacker DA, Ruhl DD, Balagamwala EH, Hope KM, Zhang T, Kraus WL: The
DNA binding and catalytic domains of poly(ADP-ribose) polymerase 1
cooperate in the regulation of chromatin structure and transcription.
Mol Cell Biol 2007, 27:7475-7485.

Langelier MF, Servent KM, Rogers EE, Pascal JM: A third zinc-binding
domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-
dependent enzyme activation. J Biol Chem 2008, 283:4105-4114.

El Khamisy SF, Masutani M, Suzuki H, Caldecott KW: A requirement for
PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of
oxidative DNA damage. Nucleic Acids Res 2003, 31:5526-5533.

Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de
Murcia G: XRCC1 is specifically associated with poly(ADP-ribose)
polymerase and negatively regulates its activity following DNA damage.
Mol Cell Biol 1998, 18:3563-3571.

Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, et al:
No death without life: vital functions of apoptotic effectors. Cell Death
Differ 2008, 15:1113-1123.

Oberst A, Bender C, Green DR: Living with death: the evolution of the
mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008,
15:1139-1146.

Cotter TG: Apoptosis and cancer: the genesis of a research field. Nat Rev
Cancer 2009, 9:501-507.

Yakovlev AG, Faden Al: Caspase-dependent apoptotic pathways in CNS
injury. Mol Neurobiol 2001, 24:131-144.

Li J, Yuan J: Caspases in apoptosis and beyond. Oncogene 2008,
27:6194-6206.

Fan Y, Bergmann A: Apoptosis-induced compensatory proliferation. The
Cell is dead. Long live the Cell! Trends Cell Biol 2008, 18:467-473.

Fan Y, Bergmann A: Distinct mechanisms of apoptosis-induced
compensatory proliferation in proliferating and differentiating tissues in
the Drosophila eye. Dev Cell 2008, 14:399-410.

Wells BS, Yoshida E, Johnston LA: Compensatory proliferation in
Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr
Biol 2006, 16:1606-1615.

Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M: DRONC coordinates cell
death and compensatory proliferation. Mol Cell Biol 2006, 26:7258-7268.
Droin N, Jacquel A, Guery L, Dufour E, Garrido C, Solary E: Various
functions of caspases in hematopoiesis. Front Biosci 2009, 14:2358-2371.
Gulyaeva NV: Non-apoptotic functions of caspase-3 in nervous tissue.
Biochemistry (Mosc) 2003, 68:1171-1180.

Gulyaeva NV, Kudryashov IE, Kudryashova IV: Caspase activity is essential
for long-term potentiation. J Neurosci Res 2003, 73:853-864.

Fischer U, Janicke RU, Schulze-Osthoff K: Many cuts to ruin: a comprehensive
update of caspase substrates. Cell Death Differ 2003, 10:76-100.

Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG: Specific
proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of
chemotherapy-induced apoptosis. Cancer Res 1993, 53:3976-3985.
Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al:
Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-
inhibitable protease that cleaves the death substrate poly(ADP-ribose)
polymerase. Cell 1995, 81:801-809.

Margolin N, Raybuck SA, Wilson KP, Chen W, Fox T, Gu Y, et al: Substrate
and inhibitor specificity of interleukin-1 beta-converting enzyme and
related caspases. J Biol Chem 1997, 272:7223-7228.

Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC:
Cleavage of poly(ADP-ribose) polymerase by a proteinase with
properties like ICE. Nature 1994, 371:346-347.

67.

68.

69.

70.

71

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

88.

89.

Page 9 of 11

Bhaskara VK, Panigrahi M, Challa S, Babu PP: Comparative status of
activated ERK1/2 and PARP cleavage in human gliomas. Neuropathology
2005, 25:48-53.

Bhaskara VK, Challa S, Panigrahi M, Babu PP: Differential PARP cleavage: An
indication for existence of multiple forms of cell death in human
gliomas. Neurol India 2009, 57:264-268.

Chaitanya GV, Babu PP: Activation of calpain, cathepsin-b and caspase-3
during transient focal cerebral ischemia in rat model. Neurochem Res
2008, 33:2178-2186.

Chaitanya GV, Babu PP: Differential PARP cleavage: an indication of
heterogeneous forms of cell death and involvement of multiple
proteases in the infarct of focal cerebral ischemia in rat. Cell Mol
Neurobiol 2009, 29:563-573.

Gilliams-Francis KL, Quaye AA, Naegele JR: PARP cleavage, DNA
fragmentation, and pyknosis during excitotoxin-induced neuronal death.
Exp Neurol 2003, 184:359-372.

Kanthasamy AG, Anantharam V, Zhang D, Latchoumycandane C, Jin H,

Kaul S, et al: A novel peptide inhibitor targeted to caspase-3 cleavage
site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects
against dopaminergic neuronal degeneration in Parkinson’s disease
models. Free Radic Biol Med 2006, 41:1578-1589.

Lau A, Arundine M, Sun HS, Jones M, Tymianski M: Inhibition of caspase-
mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci
2006, 26:11540-11553.

Peng QL, BuzZard AR, Lau BH: Pycnogenol protects neurons from amyloid-
beta peptide-induced apoptosis. Brain Res Mol Brain Res 2002, 104:55-65.
Soldani C, Lazze MC, Bottone MG, Tognon G, Biggiogera M, Pellicciari CE,
et al: Poly(ADP-ribose) polymerase cleavage during apoptosis: when and
where? Exp Cell Res 2001, 269:193-201.

D'Amours D, Sallmann FR, Dixit VM, Poirier GG: Gain-of-function of poly
(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases:
implications for apoptosis. J Cell Sci 2001, 114:3771-3778.

Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoonde A, et al:
Irreversible binding of poly(ADP)ribose polymerase cleavage product to
DNA ends revealed by atomic force microscopy: possible role in
apoptosis. Cancer Res 1998, 58:3495-3498.

Alvarez-Gonzalez R, Spring H, Muller M, Burkle A: Selective loss of poly
(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase
in nucleoli during alkylation-induced apoptosis of Hela cells. J Biol Chem
1999, 274:32122-32126.

Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG: Cleavage
of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence
for involvement of caspase-7. J Biol Chem 1999, 274:28379-28384.

Eguchi Y, Shimizu S, Tsujimoto Y: Intracellular ATP levels determine cell
death fate by apoptosis or necrosis. Cancer Res 1997, 57:1835-1840.
Lemaire C, Andreau K, Souvannavong V, Adam A: Inhibition of caspase
activity induces a switch from apoptosis to necrosis. FEBS Lett 1998,
425:266-270.

Herceg Z, Wang ZQ: Failure of poly(ADP-ribose) polymerase cleavage by
caspases leads to induction of necrosis and enhanced apoptosis. Mo/
Cell Biol 1999, 19:5124-5133.

Aikin R, Rosenberg L, Paraskevas S, Maysinger D: Inhibition of caspase-
mediated PARP-1 cleavage results in increased necrosis in isolated islets
of Langerhans. J Mol Med 2004, 82:389-397.

Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, et al:
Activation and caspase-mediated inhibition of PARP: a molecular switch
between fibroblast necrosis and apoptosis in death receptor signaling.
Mol Biol Cell 2002, 13:978-988.

Huang Y, Wang KK: The calpain family and human disease. Trends Mol
Med 2001, 7:355-362.

Verkhratsky A: Calcium and cell death. Subcell Biochem 2007, 45:465-480.
Bhupanapadu S, Swain U, Babu PP: Cell death is associated with reduced
base excision repair during chronic alcohol administration in adult rat
brain. Neurochem Res 2008, 33:1117-1128.

Bizat N, Hermel JM, Boyer F, Jacquard C, Creminon C, Ouary S, et al:
Calpain is a major cell death effector in selective striatal degeneration
induced in vivo by 3-nitropropionate: implications for Huntington'’s
disease. J Neurosci 2003, 23:5020-5030.

Goni-Oliver P, Avila J, Hernandez F: Memantine Inhibits Calpain-Mediated
Truncation of GSK-3 Induced by NMDA: Implications in Alzheimer's
Disease. J Alzheimers Dis 2009, 18:843-848.


http://www.ncbi.nlm.nih.gov/pubmed/15577915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15577915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11376691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11376691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11387257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11387257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14705947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14705947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14705947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15826658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15826658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17785446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17785446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17785446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18055453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14500814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9584196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9584196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18309324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19550425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18931687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18774295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18774295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16920621?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16920621?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16980627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16980627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19273205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19273205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14640958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12949912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12949912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12655297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12655297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8358726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8358726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8358726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7774019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7774019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7774019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9054418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9054418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9054418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8090205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8090205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15822818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15822818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19587465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18338260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18338260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19225880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19225880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19225880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14637106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14637106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17045926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17045926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17045926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17045926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17093075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17093075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11570811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11570811?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11707529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9721847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9721847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9721847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10542247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10542247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10542247?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10497198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10497198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10497198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9157970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9157970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9559663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9559663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10373561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10373561?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15105993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15105993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15105993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11907276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11907276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11516996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18193648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18259862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18259862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18259862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19661623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19661623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19661623?dopt=Abstract

Chaitanya et al. Cell Communication and Signaling 2010, 8:31
http://www.biosignaling.com/content/8/1/31

90.

9.

92.

93.

94.

95.

96.

97.

98.

99.

104.

105.

106.

107.

108.

109.

110.

Samantaray S, Ray SK, Banik NL: Calpain as a potential therapeutic target
in Parkinson'’s disease. CNS Neurol Disord Drug Targets 2008, 7:305-312.
Shukla M, Rajgopal Y, Babu PP: Activation of calpains, calpastatin and
spectrin cleavage in the brain during the pathology of fatal murine
cerebral malaria. Neurochem Int 2006, 48:108-113.

Zhou M, Xu W, Liao G, Bi X, Baudry M: Neuroprotection against neonatal
hypoxia/ischemia-induced cerebral cell death by prevention of calpain-
mediated mGluR1alpha truncation. Exp Neurol 2009, 218:75-82.

Michetti M, Salamino F, Tedesco |, Averna M, Minafra R, Melloni E, et al:
Autolysis of human erythrocyte calpain produces two active enzyme
forms with different cell localization. FEBS Lett 1996, 392:11-15.

Hewitt KE, Lesiuk HJ, Tauskela JS, Morley P, Durkin JP: Selective coupling of
mu-calpain activation with the NMDA receptor is independent of
translocation and autolysis in primary cortical neurons. J Neurosci Res
1998, 54:223-232.

Dutt P, Croall DE, Arthur JS, Veyra TD, Williams K, Elce JS, et al: m-Calpain is
required for preimplantation embryonic development in mice. BMC Dev
Biol 2006, 6:3.

Liang YC, Yeh JY, Forsberg NE, Ou BR: Involvement of mu- and m-calpains
and protein kinase C isoforms in L8 myoblast differentiation. Int J
Biochem Cell Biol 2006, 38:662-670.

Wu HY, Lynch DR: Calpain and synaptic function. Mol Neurobiol 2006,
33:215-236.

Franco SJ, Huttenlocher A: Regulating cell migration: calpains make the
cut. J Cell Sci 2005, 118:3829-3838.

Ma H, Tochigi A, Shearer TR, Azuma M: Calpain inhibitor SNJ-1945
attenuates events prior to angiogenesis in cultured human retinal
endothelial cells. J Ocul Pharmacol Ther 2009, 25:409-414.

. Su'Y, Cui Z, Li Z, Block ER: Calpain-2 regulation of VEGF-mediated

angiogenesis. FASEB J 2006, 20:1443-1451.

. Rajesh M, Mukhopadhyay P, Batkai S, Godlewski G, Hasko G, Liaudet L, et al:

Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits
angiogenesis. Biochem Biophys Res Commun 2006, 350:352-357.

. Virag L, Scott GS, Antal-Szalmas P, O'Connor M, Ohshima H, Szabo C:

Requirement of intracellular calcium mobilization for peroxynitrite-
induced poly(ADP-ribose) synthetase activation and cytotoxicity. Mo/
Pharmacol 1999, 56:824-833.

. Bentle MS, Reinicke KE, Bey EA, Spitz DR, Boothman DA: Calcium-

dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular
metabolism and DNA repair. J Biol Chem 2006, 281:33684-33696.

Szenczi O, Kemecsei P, Holthuijsen MF, van Riel NA, van der Vusse GJ,
Pacher P, et al: Poly(ADP-ribose) polymerase regulates myocardial
calcium handling in doxorubicin-induced heart failure. Biochem
Pharmacol 2005, 69:725-732.

Duan Y, Gross RA, Sheu SS: Ca2+-dependent generation of mitochondrial
reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-
1 activation during glutamate excitotoxicity. J Physiol 2007, 585:741-758.
Vosler PS, Sun D, Wang S, Gao Y, Kintner DB, Signore AP, et al: Calcium
dysregulation induces apoptosis-inducing factor release: Cross-talk
between PARP-1- and calpain- signaling pathways. Exp Neurol 2009,
218:213-220.

Liu L, Xing D, Chen WR: mu-Calpain regulates caspase-dependent and
apoptosis inducing factor-mediated caspase-independent apoptotic
pathways in cisplatin-induced apoptosis. Int J Cancer 2009,
15;125(12):2757-66.

Liu X, Van Vleet T, Schnellmann RG: The role of calpain in oncotic cell
death. Annu Rev Pharmacol Toxicol 2004, 44:349-370.

Melloni E, Michetti M, Salamino F, Minafra R, Pontremoli S: Modulation of
the calpain autoproteolysis by calpastatin and phospholipids. Biochem
Biophys Res Commun 1996, 229:193-197.

Melloni E, Averna M, Salamino F, Sparatore B, Minafra R, Pontremoli S: Acyl-
CoA-binding protein is a potent m-calpain activator. J Biol Chem 2000,
275:82-86.

. Suzuki K, Sorimachi H: A novel aspect of calpain activation. FEBS Lett 1998,

433:1-4.

. Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R: Cross-talk between

calpain and caspase proteolytic systems during neuronal apoptosis. J
Biol Chem 2003, 278:14162-14167.

. Wang KK: Calpain and caspase: can you tell the difference? Trends

Neurosci 2000, 23:20-26.

115.

116.

117.

118.

119.

120.

121.

122.

125.

126.

127.

128.

129.

130.

132.

133.

136.

Page 10 of 11

. McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK: Procaspase-3 and

poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem
Biophys Res Commun 1999, 263:94-99.

Buki KG, Bauer PI, Kun E: Isolation and identification of a proteinase from
calf thymus that cleaves poly(ADP-ribose) polymerase and histone H1.
Biochim Biophys Acta 1997, 1338:100-106.

Gafni J, Cong X, Chen SF, Gibson BW, Ellerby LM: Calpain-1 cleaves and
activates caspase-7. J Biol Chem 2009, 284:25441-25449.

Saftig P, Klumperman J: Lysosome biogenesis and lysosomal membrane
proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009, 10:623-635.
Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N: Lysosomal biogenesis
and function is critical for necrotic cell death in Caenorhabditis elegans.
J Cell Biol 2006, 173:231-239.

Ivanova S, Repnik U, Bojic L, Petelin A, Turk V, Turk B: Lysosomes in
apoptosis. Methods Enzymol 2006, 442:183-199.

Pacheco FJ, Servin J, Dang D, Kim J, Molinaro C, Daniels T, et al:
Involvement of lysosomal cathepsins in the cleavage of DNA
topoisomerase | during necrotic cell death. Arthritis Rheum 2005,
52:2133-2145.

He C, Klionsky DJ: Regulation Mechanisms and Signaling Pathways of
Autophagy. Annu Rev Genet 2009, 43:67-93.

Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al: Neuronal
injury in rat model of permanent focal cerebral ischemia is associated
with activation of autophagic and lysosomal pathways. Autophagy 2008,
4:762-769.

. Saelens X, Festjens N, Parthoens E, Vanoverberghe |, Kalai M, van

Kuppeveld F, et al: Protein synthesis persists during necrotic cell death. J
Cell Biol 2005, 168:545-551.

. Wilson TJ, Nannuru KC, Futakuchi M, Singh RK: Cathepsin G-mediated

enhanced TGF-beta signaling promotes angiogenesis via upregulation
of VEGF and MCP-1. Cancer Lett 2009, 28;288(2):162-9.

Burden RE, Gormley JA, Jaquin TJ, Small DM, Quinn DJ, Hegarty SM, et al:
Antibody-mediated inhibition of cathepsin S blocks colorectal tumor
invasion and angiogenesis. Clin Cancer Res 2009, 15:6042-6051.

Yang Y, Zhao S, Song J: Caspase-dependent apoptosis and -independent
poly(ADP-ribose) polymerase cleavage induced by transforming growth
factor betal. Int J Biochem Cell Biol 2004, 36:223-234.

Gobeil S, Boucher CC, Nadeau D, Poirier GG: Characterization of the
necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication
of lysosomal proteases. Cell Death Differ 2001, 8:588-594.

Chavez-Galan L, Arenas-Del Angel MC, Zenteno E, Chavez R, Lascurain R:
Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol
Immunol 2009, 6:15-25.

Trapani JA: Granzymes: a family of lymphocyte granule serine proteases.
Genome Biol 2001, 2:REVIEWS3014.

Romero V, Andrade F: Non-apoptotic functions of granzymes. Tissue
Antigens 2008, 71:409-416.

. Choy JC, Cruz RP, Kerjner A, Geisbrecht J, Sawchuk T, Fraser SA, et al:

Granzyme B induces endothelial cell apoptosis and contributes to the
development of transplant vascular disease. Am J Transplant 2005,
5:494-499.

Choy JC, McDonald PC, Suarez AC, Hung VH, Wilson JE, McManus BM, et al:
Granzyme B in atherosclerosis and transplant vascular disease:
association with cell death and atherosclerotic disease severity. Mod
Pathol 2003, 16:460-470.

Blanco P, Pitard V, Viallard JF, Taupin JL, Pellegrin JL, Moreau JF: Increase in
activated CD8+ T lymphocytes expressing perforin and granzyme B
correlates with disease activity in patients with systemic lupus
erythematosus. Arthritis Rheum 2005, 52:201-211.

. Saito S, Murakoshi K, Kotake S, Kamatani N, Tomatsu T: Granzyme B

induces apoptosis of chondrocytes with natural killer cell-like
cytotoxicity in rheumatoid arthritis. / Rheumatol 2008, 35:1932-1943.

. Tschopp CM, Spiegl N, Didichenko S, Lutmann W, Julius P, Virchow JC, et al:

Granzyme B, a novel mediator of allergic inflammation: its induction
and release in blood basophils and human asthma. Blood 2006,
108:2290-2299.

Humbert M, Magnan A, Ladurie FL, Dartevelle P, Simonneau G, Duroux P,
et al: Perforin and granzyme B gene-expressing cells in bronchoalveolar
lavage fluids from lung allograft recipients displaying cytomegalovirus
pneumonitis. Transplantation 1994, 57:1289-1292.


http://www.ncbi.nlm.nih.gov/pubmed/18673214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18673214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19374898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19374898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19374898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8769305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8769305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9788281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9788281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9788281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16433929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16433929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16387524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16387524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16954597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16129881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16129881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857102?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16816119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16816119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17007818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17007818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10496967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10496967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16920718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16920718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16920718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19427306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8954105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8954105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10617589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10617589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9738920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12576481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12576481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10631785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10486259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10486259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9074620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9074620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19672277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19672277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15986368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15986368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19653858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18567942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15699214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19789302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19789302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14643888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14643888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14643888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11536009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11536009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11536009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11790262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15707403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15707403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12748253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12748253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15641052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15641052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15641052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15641052?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18785318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18785318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18785318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16794249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16794249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8178362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8178362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8178362?dopt=Abstract

Chaitanya et al. Cell Communication and Signaling 2010, 8:31
http://www.biosignaling.com/content/8/1/31

137.

138.

139.

140.

141.

142.

143.

144.

147.

149.

150.

153.

154.

156.

157.

. Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J,

Chaitanya GV, Kolli M, Babu PP: Granzyme-b mediated cell death in the
spinal cord-injured rat model. Neuropathology 2009, 29:270-279.

Wang T, Allie R, Conant K, Haughey N, Turchan-Chelowo J, Hahn K, et al:
Granzyme B mediates neurotoxicity through a G-protein-coupled
receptor. FASEB J 2006, 20:1209-1211.

Chaitanya GV, Schwaninger M, Alexander JS, Babu PP: Granzyme-b is
involved in mediating post-ischemic neuronal death during focal
cerebral ischemia in rat model. Neuroscience 2010, 165:1203-1216.

Trapani JA, Sutton VR: Granzyme B: pro-apoptotic, antiviral and antitumor

158.

159.

Page 11 of 11

erythropoietin-activated endothelial cells promote neural progenitor cell
migration. J Neurosci 2006, 26:5996-6003.

Mandler RN, Dencoff JD, Midani F, Ford CC, Ahmed W, Rosenberg GA:
Matrix metalloproteinases and tissue inhibitors of metalloproteinases in
cerebrospinal fluid differ in multiple sclerosis and Devic's neuromyelitis
optica. Brain 2001, 124:493-498.

Nicolescu AC, Holt A, Kandasamy AD, Pacher P, Schulz R: Inhibition of
matrix metalloproteinase-2 by PARP inhibitors. Biochem Biophys Res
Commun 2009, 387:646-650.

functions. Curr Opin Immunol 2003, 15:533-543.

Martinvalet D, Thiery J: [A novel caspase-independent apoptotic pathway
triggered by Granzyme Al. Med Sci (Paris) 2008, 24:901-903.

Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J: Granzyme A cleaves
a mitochondrial complex | protein to initiate caspase-independent cell

doi:10.1186/1478-811X-8-31

Cite this article as: Chaitanya et al: PARP-1 cleavage fragments:
signatures of cell-death proteases in neurodegeneration. Cell
Communication and Signaling 2010 8:31.

death. Cell 2008, 133:681-692.

Zhu P, Zhang D, Chowdhury D, Martinvalet D, Keefe D, Shi L, et al.
Granzyme A, which causes single-stranded DNA damage, targets the
double-strand break repair protein Ku70. EMBO Rep 2006, 7:431-437.
Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, et al: Granzyme
A activates an endoplasmic reticulum-associated caspase-independent
nuclease to induce single-stranded DNA nicks. J Biol Chem 2001,
276:43285-43293.

. Zhu P, Martinvalet D, Chowdhury D, Zhang D, Schlesinger A, Lieberman J:

The cytotoxic T lymphocyte protease granzyme A cleaves and
inactivates poly(adenosine 5'-diphosphate-ribose) polymerase-1. Blood
2009, 114:1205-1216.

. Zhang D, Beresford PJ, Greenberg AH, Lieberman J: Granzymes A and B

directly cleave lamins and disrupt the nuclear lamina during granule-
mediated cytolysis. Proc Natl Acad Sci USA 2001, 98:5746-5751.

Froelich CJ, Hanna WL, Poirier GG, Duriez PJ, D'’Amours D, Salvesen GS,
et al: Granzyme B/perforin-mediated apoptosis of Jurkat cells results in
cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic
fragment and less abundant 64-kDa fragment. Biochem Biophys Res
Commun 1996, 227:658-665.

. Waterhouse NJ, Sedelies KA, Trapani JA: Role of Bid-induced mitochondrial

outer membrane permeabilization in granzyme B-induced apoptosis.
Immunol Cell Biol 2006, 84:72-78.

Adrain C, Murphy BM, Martin SJ: Molecular ordering of the caspase
activation cascade initiated by the cytotoxic T lymphocyte/natural killer
(CTL/NK) protease granzyme B. J Biol Chem 2005, 280:4663-4673.
Krishnamurthy P, Peterson JT, Subramanian V, Singh M, Singh K: Inhibition
of matrix metalloproteinases improves left ventricular function in mice
lacking osteopontin after myocardial infarction. Mol Cell Biochem 2009,
322:53-62.

. Candelario-Jalil E, Yang Y, Rosenberg GA: Diverse roles of matrix

metalloproteinases and tissue inhibitors of metalloproteinases in
neuroinflammation and cerebral ischemia. Neuroscience 2009,
158:983-994.

. Lehrke M, Greif M, Broed! UC, Lebherz C, Laubender RP, Becker A, et al:

MMP-1 serum levels predict coronary atherosclerosis in humans.
Cardiovasc Diabetol 2009, 8:50.

Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, et al:
Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac
myocytes and is capable of cleaving poly (ADP-ribose) polymerase
(PARP) in vitro. FASEB J 2004, 18:690-692.

Raffetto JD, Khalil RA: Matrix metalloproteinases and their inhibitors in

vascular remodeling and vascular disease. Biochem Pharmacol 2008,
75:346-359.

et al: Identification of candidate angiogenic inhibitors processed by
matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens:
disruption of vascular endothelial growth factor (VEGF)/heparin affin
regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth
factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell
Biol 2007, 27:8454-8465.

Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, et al. Mmp-9
deficiency enhances collagenase-induced intracerebral hemorrhage and
brain injury in mutant mice. J Cereb Blood Flow Metab 2004, 24:1133-1145.
Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y,
et al: Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/19170890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19170890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19895873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19895873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19895873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14499262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14499262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19038084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19038084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18485875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18485875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18485875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16440001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16440001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11555662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11555662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11555662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19506301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19506301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8885990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8885990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8885990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16405654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16405654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15569669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15569669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15569669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18979185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18979185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18979185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18621108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18621108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18621108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19751510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17678629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17678629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15529013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15529013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15529013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16738242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16738242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16738242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19619515?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19619515?dopt=Abstract

	Abstract
	Introduction
	PARP-1 and Caspases
	PARP-1 and Calpains
	PARP-1 and Cathepsins
	PARP-1 and granzymes
	PARP-1 and matrix metalloproteinases

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

