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Abstract
In the past two decades, zebrafish genetic screens have identified a wealth of mutations that have been essential to 
the understanding of development and disease biology. More recently, chemical screens in zebrafish have identified 
small molecules that can modulate specific developmental and behavioural processes. Zebrafish are a unique 
vertebrate system in which to study chemical genetic systems, identify drug leads, and explore new applications for 
known drugs. Here, we discuss some of the advantages of using zebrafish in chemical biology, and describe some 
important and creative examples of small molecule screening, drug discovery and target identification.

Genetic and chemical screens in zebrafish
Zebrafish (Danio rerio) have a unique status in experi-
mental biology. As vertebrates used for forward and
reverse genetics, they have provided novel insight into
development and disease genetics. More recently,
zebrafish research has pushed forward the exploration of
chemical biology in a whole animal system. The advan-
tages of using zebrafish as an experimental system for
chemical biology mirror those already well established for
their use in genetics. Only a few centimetres long as
adults, thousands of zebrafish can be housed in a labora-
tory with relatively low husbandry costs. Breeding pairs
can produce over 200 embryos each week that are fertil-
ized outside of the mother and can be easily collected
from the breeding tank. Embryonic development from a
single cell, and the rapid formation of discrete tissues and
organs with physiological similarity to their human coun-
terparts, can be viewed in real time under a light micro-
scope [1]. Organ progenitors can be observed by 36 hpf
(hours post-fertilization), hatching occurs at 48-72 hpf
and independent feeding by 5 dpf (days post-fertiliza-
tion). Whole-mount in situ hybridization and antibody
staining allows for detection of specific RNA or protein
expression (or modification) in the developing whole ani-

mal, and transgenic technology provides the tools to fol-
low the expression of a specific gene (or series of genes) in
the living fish [2]. The zebrafish genome is sequenced,
and genetic mutants affect a wide range of biological pro-
cesses including development, behaviour, metabolism,
vision, immunity and cancer.

Genetic screens in zebrafish proceed in two main
approaches: forward and reverse genetics [3]. Forward
genetics, characterized as 'phenotype to genotype', first
involves the identification and characterization of a spe-
cific phenotype, followed by the identification of the
underlying genetic mutation. The zebrafish system has
been especially powerful in the identification of develop-
mental phenotypes, caused by N-ethyl N-nitrosourea
(ENU) and insertional mutagenesis, and many of the
underlying genetic mutations have been identified [4-8].
Reverse genetics, 'genotype to phenotype', takes advan-
tage of molecular biology techniques. In these cases, a
gene of interest is selected and targeted by morpholino
oligonucleotide (MO) knockdown, TILLING (Targeting
Induced Local Lesions IN Genomes), or zinc-finger
nucleases to discover the function of the genetic muta-
tion within the fish [9-14].

Chemical genetics complements traditional genetic
approaches [3]. First, many small molecule libraries are
made up of compounds with known biological function,
allowing rapid elucidation of biological pathways within
the organism. Second, chemical treatment can occur at
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any point during development or in the adult organism,
allowing for the study of latent effects of genes during
development. Third, chemical dosage can be controlled,
which can be advantageous when studying essential func-
tions, or tissue specificity. Small molecule screening iden-
tifies relevant targets within the physiological context of
the organism, biasing the screen for compounds that are
more likely to be cell permeable, less toxic, effective and
with an aceptable pharmacokinetic and pharmacody-
namic profile [15]. Like genetics, chemical genetics can
achieve both forward and reverse approaches [3,15]. In
forward chemical genetics, 'phenotype based small mole-
cule discovery', a library of inhibitors can be screened for
a specific phenotype in the animal, and from this the tar-
get(s) can be identified (Figure 1). Here, we describe some
of the phenotype based chemical screens in zebrafish that

are pushing forward our knowledge of stem cells, behav-
ior, development and disease treatment (Figure 2A, B, D,
E). Conversely, reverse chemical screening entails testing
chemical inhibitors with known molecular targets for
specific phenotypes in the zebrafish. Examples of this
application of the zebrafish system include identifying
and optimizing new bioactive compounds, applying a
cancer drug to developmental disease, and revealing the
teratogenic mechanisms that hinder valuable clinical
drugs (Figure 2C, F).

Considerations of chemical libraries and 
methodology
In genetic screens, the type of mutagen (e.g. ENU, x-ray,
insertional mutagen) will determine the range of possible
genetic mutations and phenotypes, as well as the ease of

Figure 1 Phenotype based chemical screening in zebrafish. Male and female pairs are bred to produce hundreds of single cell embryos that are 
fertilized ex vivo. For high throughput screening, groups of males and females can be bred within in a larger tank (group breeding), producing high 
numbers of embryos for screening. Breeding is synchronized by the light/dark cycles, and the fish tend to breed within the first two hours of light in 
the morning. In this example, embryos are arrayed in 96-well plates, each with a different chemical compound, and observed for a specific phenotype. 
The chemical in well A2 causes a loss of melanocytes, like MoTP [18]. MoTP can specifically kill differentiated melanocytes, and has become a valuable 
chemical tool to explore melanocyte stem cell biology [42-44]. Other small molecule screens in zebrafish have also identified pigmentation pheno-
types [85,86,96]. In another example of a small molecule screen, compounds are screened for inhibition of tail fin regeneration. The tail fin is clipped 
and grows back within a few days. A zebrafish embryo treated with the compound from well B3, a glucocorticoid, does not correctly regenerate its 
tail fin [97].
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Figure 2 Creative examples of chemical biology in zebrafish. The zebrafish system can be used in a wide range of chemical biology experiments 
and screens. A. Zebrafish as young as four dpf have active and sleep-like states. Continuous tracking of movement behaviours of the embryos during 
rest and wake states, established by light and dark cycles, can be recorded by a camera and computer. High throughput screening for behavioural 
changes has identified new uses for poorly characterized compounds [80,82]. B. Genetic polymorphisms may underlie differences in sensitivity to poor 
nutrition. In this example, ENU mutagenized zebrafish (parental (P) generation) were screened for genetic mutations that showed sensitivity to 
sub-optimal copper nutrient conditions. Zebrafish embryos fertilized with UV-inactivated sperm can live as haploid embryos until about 3 dpf [2]. 
Haploid embryos of the heterozygous mother (F1 generation) were screened for loss of pigmentation, but only in the presence of the small molecule 
copper chelator, neocuproine [41]. C. Intensive efforts by the pharmaceutical industry to develop drugs that target the MAPK pathway to treat cancer 
patients may also be useful for the management of developmental diseases caused by mutations in the MAPK pathway. In the zebrafish model, ex-
pression of BRAF or MEK cardio-facio-cutaneous (CFC) mutant alleles interferes with early development. A one-hour treatment within a specific de-
velopmental time window with a MEK inhibitor is sufficient to allow normal development for a CFC zebrafish embryo [75]. D. The cardio-vasculature 
system is conserved in fish, mice and humans. A small molecule screen for changes in hematopoietic stem cells (HSC) development identified the 
prostaglandin pathway as critical for HSC establishment [59]. A long-acting compound, called dmPGE2, can stimulate HSC development in the em-
bryo and adult zebrafish, as well as in the mouse. dmPGE2 can be safely administered to people, and a clinical trial is underway to see if dmPGE2 treat-
ment of umbilical cord blood prior to transplant can benefit transplant patients (L.I. Zon, personal communication). E. The acute myelogenous leukemia 
oncogenic fusion AML1-ETO (AE) promotes a change from an erythrocytic fate to a granulocytic cell fate. Erythrocytes express the gata1 gene in the 
posterior blood island of the developing zebrafish (red dotted line). Heat-shock inducible expression of AE causes a cell fate change that can be visu-
alized by loss of gata1 expression. A chemical screen identified that COX-2 inhibitors can suppress the AE cell fate change, and the embryos maintain 
gata1 expression in the presence of AE [72]. F. Zebrafish can play a valuable role in testing for drug toxicity and teratogenisity, as well as for testing 
direct chemical targets in vivo. Thalidomide is a valuable drug for multiple myeloma and leprosy, but caused severe developmental birth defects when 
taken by pregnant mothers in the late 1950s and early 1960s. Zebrafish are also sensitive to thalidomide, and treatment in early development prevents 
the proper development of embryonic fins [88]. Thalidomide binds CRBN, and knockdown of crbn in the developing zebrafish also causes a loss of fin 
phenotype. This suggests that the binding of thalidomide to CRBN in vivo may underlie its teratogenisty.

identifying the mutation [2,10]. For example, ENU muta-
genesis can generate hypomorphic, temperature sensi-
tive, and gain- and loss-of-function mutations that
require genetic mapping to identify the genetic lesion.
Insertional mutagenesis is more likely to cause gene dis-
ruptions, and allows for the rapid identification of the
insertion in the genome. Likewise, in chemical biology,
the choice of chemical library directs the type of molecu-
lar processes that are disrupted, as well the approach of
target pathway identification [16]. Traditionally, the dis-
covery of new drugs has been achieved through the isola-
tion of natural products from plants and microbes [17].
Screening a library of natural products will be rich in
chemical diversity and may identify novel active com-
pounds, but identifying the active compound(s) and sub-
sequent targets may require extended fractionation
procedures and biochemical techniques. Conversely,
screening a library designed to target specific classes of
enzymes, such as kinases, allows for rapid identification
and direct testing of the chemical target in vivo, but
represents a much smaller range of chemical diversity.
Similarly, screening a library of compounds of pharmaco-
logically active molecules of known bioactivity, while
again covering a reduced chemical space, may allow for a
rapid transition to pre-clinical mammalian models.

As in genetic screens, an important feature of chemical
screening is consideration for the screening assay, that is,
the phenotypic feature that is the basis for the screen. The
zebrafish system allows for diverse screening assays
including development and function of internal tissues
and organs in living animals that can be illuminated by
florescent reporter genes or molecules, or disrupted by
genetic mutations. Whole-mount RNA in situ hybridiza-

tion and antibody staining provide details of cellular
changes in fixed embryos. No other vertebrate is as well
positioned for high throughput phenotyping as the
zebrafish embryo [3]. For high-throughput screening,
computerized detectors can rapidly screen thousands of
treated embryos in a small treatment volume (e.g. in a 384
well or 96 well plate), while lower throughput screening
can often involve a single investigator screening multiple
characteristics in larger treatment volumes (e.g. in a 24
well plate).

In the first chemical screen in zebrafish, Peterson and
colleagues (2000) screened 1,100 compounds selected
from the DIVERSet E Library (Chembridge) in 96-well
plates for small molecules that caused developmental
phenotypes during the first three days of development
[18]. This was an important proof-of-concept study
showing that small molecule screening in zebrafish could
identify chemicals that, like genetic mutations, disrupt
specific developmental processes. In addition, the identi-
fied chemicals could be used at different doses and at dif-
ferent developmental intervals to identify the timing of
the chemical action during development. Recently, a
thorough review of the zebrafish chemical screens per-
formed and libraries used has been published [16]. Here,
we describe selected screens and chemical-genetic analy-
ses performed in zebrafish to highlight the range of
experimental screen designs and outcomes (Figures 1 and
2).

Chemical screening to rescue disease phenotypes: 
aortic coarctation
Many genetic mutations identified in zebrafish are analo-
gous to disease genotypes in humans, or cause pheno-
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types that share clinical features with human diseases
[19,20]. The zebrafish gridlock mutant suffers from a mal-
formed aorta that prevents circulation to the trunk and
the tail, similar to coarctation of the aorta in humans. The
gridlock phenotype results from a mutation in the hey2
gene, a transcriptional repressor that determines angio-
blast differentiation [21,22]. To screen for chemical sup-
pressors of aortic coarctation, Peterson and colleagues
treated gridlock mutant embryos with small molecules
from the DIVERSet E library (Chembridge) from early
gastrulating embryos until 48 hpf [23]. From over 5000
chemicals screened, two structurally related compounds
suppressed the gridlock phenotype. Altering the treat-
ment time during development revealed a critical chemi-
cal treatment window for correcting the aorta phenotype
to be between 12 and 24 hpf. Importantly, the correction
mechanism was identified to be via upregulation of vas-
cular endothelial growth factor (VEGF), and the subse-
quent promotion of blood vessel development. Small
molecule inhibitors of the vascular endothelial growth
factor receptor (VEGFR) can inhibit blood vessel forma-
tion during zebrafish development, and tail fin regenera-
tive angiogenesis in the adult [24,25]. The chemically
induced upregulation of VEGF was also effective at stim-
ulating endothelial cell tubule formation [23]. Thus, phe-
notypic-based screening can identify suppressors of a
genetic disease phenotype that have relevant biological
activity in mammalian cells. Importantly, in this example,
the target compounds did not affect the disease gene or
protein directly. Rather, a pathway critical to the rescue of
the phenotype was successfully identified, and can now
be considered for new therapeutic approaches.

Chemical screening to reveal new insight into 
retinal blood vasculature
A highly metabolic tissue, the retina is fed oxygen and
nutrients by an intricate vascular network. In humans,
disruption of the retinal vasculature network, through
damage to the existing network or inappropriate neovas-
cularization, can lead to loss of vision and severe forms of
blindness. Understanding the basic biology of retinal vas-
culature is critical to understand the aetiology and
pathology of retinal disease. In the zebrafish embryo, this
has been done through the identification and detailed
characterization of genetic mutants which have a disrup-
tion of the retinal vasculature network [26]. These studies
are facilitated by the generation of transgenic zebrafish
lines, expressing green florescent protein (GFP) under the
promoter of the endothelial vessel specific fli1 gene
[26,27]. As a complementary approach to genetics, and to
learn about retinal vascularization, the fli1-GFP trans-
genic line was used in a screen for small molecules that
could modulate the retinal vascular network during days
3-6 of development [28]. Approximately 2000 small mole-

cules from the bioactive Spectrum library were added to
the developing embryos at the pectoral fin stage (approx-
imately 60 hpf ), and embryos were then embedded in
methyl cellulose and visualized under an inverted micro-
scope. Of the 2000 compounds screened, five displayed a
reproducible effect on retinal vessel morphology: two
affected vessel diameter without affecting vessel number,
one affected vessel diameter and number, and two caused
severe collapse and loss of over 80% of the vessels.
Extending these studies, Kennedy and colleagues
screened a panel of known small molecule regulators of
angiogenesis, and found that LY294002, an inhibitor of
PI3 kinase signalling, can prevent the ocular angiogenesis
in wild type fish and partially correct the extraneous
angiogenesis in the out of bounds zebrafish mutant [29].
Treatment with LY294002 within specific developmental
time-windows, showed that the chemical could affect the
development of new vessels, without affecting existing
intraocular vessels or retinal function. Importantly, direct
and localized delivery of the drug was effective at inhibit-
ing intraocular angiogenesis without additional system
effects or altering visual function. Additional studies have
shown that chemical modulation in the adult zebrafish
can reduce hypoxia induced neovascularization [30].
Studies such as these provide a groundwork for identify-
ing chemicals and chemical methodologies that can spe-
cifically target aberrant retinal vascularization, which
affects the sight of millions of people worldwide.

Parallel in vitro and in vivo chemical screening: 
identifying new and known cell cycle regulators
Many small molecules that affect the cell cycle have been
identified through screening for compounds that alter the
cell cycles of cancer cells in culture. Such high-through-
put screens allow for large numbers of compounds to be
screened on multiple cell lines in a rapid and efficient
manner [31]. In the 1960s, cell based screening of natural
products by the National Cancer Institute identified taxol
as a potent mitotic inhibitor [32]. Derived from the
Pacific yew tree, taxol is now considered one of the most
important chemotherapeutics to treat breast, lung, and
ovarian cancer [33]. Many mammalian cell cycle genes
are conserved in zebrafish [34], and the majority of cell
cycle inhibitors used in mammalian cells share sufficient
conservation with the drug targets to be effective in
zebrafish embryos or cell lines [35]. The zebrafish crash &
burn (crb) mutant for the bmyb gene, is a MYB family
transcription factor involved in cell cycle progression and
cancer. The crb mutant was identified in a genetic screen
for changes to the cell cycle, as revealed by an increased
number of mitotic cells marked by a phospho-histone H3
antibody [36]. crb mutants also reveal abnormal spindle
and centrosome formation, and polyploidy. Notably,
adult zebrafish heterozygous for crb have an increased
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incidence of carcinogen-induced cancer [36]. Using the
DIVERSet E library (Chembridge) of 16320 compounds,
Zon and colleagues screened for small molecules that
could specifically rescue the crb phospho-histone H3
mitotic defect [37]. One compound, called persynth-
amide, was identified that suppressed the mutant pheno-
type. In wild type embryos persynthamide transiently
delays S-phase via an ATR dependent checkpoint. Com-
parison with other known S-phase inhibitors, such as
hydroxyurea and amphidicolin, showed that it was the
chemically induced S-phase delay that was sufficient to
rescue the crb defect. In human cells, loss of B-MYB leads
to reduced levels of cyclin B1 [38], and expression of
cyclin B1 is sufficient to rescue crb mutant zebrafish
embryos [36]. The persynthamide-induced S-phase
checkpoint also causes an increase in cyclin B1 expression
and thereby rescues the crb mutant. This is another
example of phenotypic based chemical screening that res-
cues a genetic phenotype by targeting the altered path-
way, and not the mutated protein product directly.

A common question in chemical screening is whether
the identified compounds are specific to zebrafish, and
how the results of zebrafish chemical screening compare
with mammalian cell line based chemical screens. In the
small molecule screen for suppressors of crb, additional
compounds were identified that disrupted mitosis in wild
type zebrafish [35]. While the chemical library had been
previously screened extensively for cell cycle inhibitors in
mammalian cells, 14 novel compounds that affected the
cell cycle were identified via screening on zebrafish
embryos. Six of the 14 hits were effective in mammalian
cell lines, confirming the conservation of the affected tar-
get pathways across vertebrate species. Of the remaining
seven hits, three were serum-inactivated which accounts
for their lack of activity in cell culture systems. Four hits
were only active in the zebrafish embryo, but not cell
lines, possibly due to activation by yolk sac proteins. One
hit was active in zebrafish embryos and zebrafish cell cul-
ture, but not in mammalian cell culture, suggesting the
target of the compound was specific to the zebrafish and
not conserved in mammalian cells. Thus, in vivo and in
vitro chemical screens are complementary approaches,
that when used together constitute a powerful approach
to identifying a more complete set of chemically bioactive
tools.

Using chemicals to identify gene-nutrient 
interactions
The ability to limit the timing and regulate the dose of
small molecules has allowed for unique insight into the
tissue-specific requirements for copper in the developing
embryo. Copper is an essential nutrient, and sub-optimal
copper nutrient conditions in humans can lead to severe
clinical symptoms including disorders of the nervous sys-

tem, hair, and skin [39]. While copper is essential for all
cells, some cells and tissues have a specialized copper
requirement. Gitlin and colleagues treated developing
zebrafish embryos with the small molecule copper chela-
tor, neocuproine, and found that loss of cuprodependent
enzyme activity specifically affected some tissues, includ-
ing melanocytes, the notochord, and the developing
hindbrain [40]. Supported by a genetic mutant in the cop-
per transporter atp7a (that was cloned in part by virtue of
phenotypic features indentical to the effect of the copper
chelator neocuproine), Gitlin and colleagues revealed the
time, dose and tissue specific requirements for copper
dependent enzymes during embryogenesis [40].

Humans with mutations in ATP7A develop Menke's
disease, a rare X-linked disorder of copper metabolism,
characterized by neurodegeneration, hypotonia, and
hypopigmentation. Less well understood are other
genetic conditions that lead to sensitivity to sub-optimal
copper nutrient conditions in otherwise healthy individu-
als. To address this problem, the Gitlin group used low
doses of neocuproine and screened for genetic mutations
that revealed a copper deficiency phenotype under mild
copper deficiency conditions (Figure 2B). Two genetic
mutants were found: a hypomorphic allele of atp7a and
mutation of the vacuolar atpase atp6. Vacuolar Atp6 is
required for proton transport in the secretory pathway,
an important process in intracellular copper transport
[41]. Thus, genetic polymorphisms that otherwise have
normal developmental features can be combined with
chemicals to reveal selected sensitivities to sub-optimal
nutrient conditions.

Chemical-genetic and chemical-chemical screens to 
probe melanocyte regeneration pathways
MoTP (4-(4-morpholinobutylthio)phenol), identified in
the original small molecule screen by Peterson and col-
leagues (2000), caused a dramatic loss of melanocytes by
cell death [18]. Tyrosinase is a copper dependent rate lim-
iting enzyme for melanin pigmentation in melanocytes,
and MoTP exerts melanocyte-specific cell death via its
conversion to a cytotoxic form in cells that express high
levels of tyrosinase [42]. With a melanocytotoxic com-
pound in hand, the Johnson group has been able to use
MoTP to gain significant understanding of melanocyte
regeneration in zebrafish. Many tissues and cells, includ-
ing melanocytes, can regenerate in zebrafish, providing
important insight into tissue-specific stem cells and pro-
genitor development. Using MoTP to ablate embryonic
melanocytes, ENU mutagenized zebrafish were screened
for mutants that fail to regenerate melanocytes after
treatment [43]. Two mutants were identified, eartha and
julie, that only regenerated about 10% of the normal com-
plement of melanocytes, affecting late stages of melano-
cyte differentiation in the regeneration process, and
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proliferation of melanoblasts during early melanocyte
regeneration respectively. Thus, by using a chemical to
precisely control a specific cell type and process, genetic
mutations necessary for distinct aspects of melanocyte
regeneration can be identified.

In a further small molecule screen for compounds that
specifically blocked melanocyte regeneration following
MoTP-induced melanocyte ablation, Johnson and col-
leagues identified ICI-118,551, a chemical that specifi-
cally blocks melanocyte regeneration, while having no
effect on ontogenetic melanocyte development and other
developmental processes [44,45]. One target of ICI-
118,551 is the β2-adrenergic receptor, but it is not clear if
this is the mechanism by which it blocks melanocyte
regeneration. Nonetheless, it is still a useful tool to probe
the origin of melanocytes. For example, transgenic
zebrafish expressing kit ligand have an increased number
of ontogenetic melanocytes, that are suppressed by ICI-
118,551 treatment, indicating that kit ligand exerts its
effects on the stem cell lineage of the developing zebrafish
[44,45].

The genetic mutant, picasso develops normal larval
melanocytes (ontogenetic melanocytes), but shows defi-
cits in forming new melanocytes at the onset of meta-
morphosis. Positional cloning identified the mutation
causing the picasso phenotype to be in the erbb3b gene,
an epidermal growth factor receptor (EGFR)-like tyrosine
kinase [45]. Sequential death and regeneration cycles by
successive MoTP treatments in picasso embryos showed
that they had a defect in their capacity to regenerate mel-
anocytes [44]. Treatment of wildtype embryos with a
commercially available Erbb inhibitor mimics the picasso
phenotype of abnormal adult melanocyte development
and melanocyte regeneration after MoTP ablation.

Thus, through a combination of chemical screens and
genetics, Johnson and colleagues have identified two
existing populations of melanocytes that contribute to
zebrafish pigmentation: ontogenetic erbb3b-indepen-
dent melanocytes that develop within the first 72 hpf, and
an erbb3b-dependent melanocyte progenitor population
that is laid down before the first 48 hours of development
and provides the adult melanocytes, as well as the adult
and larval regenerating melanocytes following ablation.
In humans, melanocyte stem cells maintain hair color,
and cancer stem cells may support melanoma develop-
ment and chemoresistance. A series of chemical tools
that control distinct aspects of melanocyte biology in
zebrafish will be valuable tools to test in zebrafish and
mammalian models of melanoma [46-48].

Gene-drug interactions that modulate 
mechanosensory hair cell death
Hearing loss caused by the death of inner ear sensory hair
is a common medical problem. Over a third of ageing

people have significant hearing loss, and younger people
can also suffer irreversible hearing loss after antibiotic or
chemotherapeutic treatments. In zebrafish, the lateral
line helps the fish to detect changes in water pressure and
water movement, and shares structural and functional
similarities with mammalian inner ear hair cells [49]. The
developing lateral line system in zebrafish consists of
mechanosensory hair cells supported by rosette-like
structures of neuromasts [50,51]. Like mammalian ear
hair cells, treatment with aminoglycoside antibiotics,
such as neomycin and gentamicin, can cause mecha-
nosensory hair cell death [52,53]. Using vital dyes that
allowed for visualization of the living neuromasts, Raible
and colleagues screened over 10,000 small molecules
from the DIVERSet E Library (Chembridge) for com-
pounds that protected the mechanosensory hair cells
from neomycin toxicity [52]. Two compounds, PROTO-1
and PROTO-2 (benzothiophene carboxamides) were
identified, that showed significant protection from the
ototoxic effects of neomycin. Importantly, when com-
bined with neomycin in microbiological testing, PROTO-
1 and PROTO-2 did not interfere with neomycin's anti-
bacterial activity. Aminoglycoside drug uptake depends
on ion channel activity which can be significantly blocked
by altering extracellular calcium concentrations [54].
Thus, a class of small molecules has been identified that
appear to specifically protect the mechanosensory hair
cells from death in the presence of aminoglycosides.
These compounds have relevance for the mammalian
inner ear because they show some protection against
neomycin induced hair cell loss in an in vitro mouse utri-
cle preparation [52].

As with neocuproine and MoTP, one of the exciting
avenues for chemical biology in zebrafish is the potential
to screen for genetic mutations that reveal a specific phe-
notype in the presence of the drug (gene-environment
interactions). Raible and colleagues extended their chem-
ical screening to identify genetic mutations that protect
against the effects of neomycin induced hair cell death
(Owens et al. 2008). Five recessive loci that were either
specific to neomycin resistance or have additional pheno-
types were identified. One mutant, called sentinel, had a
mutation in a novel and conserved gene that had not pre-
viously been functionally studied in an animal system.
Notably, neither PROTO-1 nor sentinel could protect
against another ototoxic compound, cisplatin, suggesting
that PROTO-1 and sentinel act specifically to prevent
aminoglycoside toxicity. Hearing loss is variable in the
human population, and polymorphisms are associated
with familial, environmental and drug induced adult-
onset hearing loss [55-57]. Through screening, zebrafish
have a unique role in the identification of chemical and
genetic modifiers of drug-induced hearing loss. Already,
additional screening of an FDA-approved small molecule
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library for those that protect zebafish lateral lines hair
cells has identified tacrine as a drug that protects the
mouse utricle from neomycin induced hair cell death
[52,58].

Screening for new applications of clinical 
compounds: hematopoietic stem cells
There are now numerous examples of small molecules
that show effects in zebrafish and have relevant bioactiv-
ity in mammalian cells. But will the knowledge gained in
the zebrafish system be directly translatable to the clinical
setting? Zon, North and colleagues have used chemical
screening in the developing zebrafish to identify small
molecules that modify hematopoietic stem cell (HSC)
number in vivo [59]. Definitive HSCs develop in the
aorta-gonad-mesonephros (AGM) region, and then colo-
nize the hematopoietic organs [60]. In zebrafish and
mammals, runx1 and cmyb genes are expressed in the
AGM and are required for HSC formation. Small mole-
cules were screened by RNA in situ hybridization for
those that altered runx1 and cmyb expression in the
AGM (Figure 2D). Of 2480 compounds screened, 82
compounds were identified that affected HSC number,
and of these ten were small molecules with known effects
in the prostaglandin pathway [59]. The prostaglandins are
evolutionarily conserved lipid signaling molecules that
are derived from arachidonic acid, that are first processed
by the cyclooxygenases (COXs) and then further by pros-
taglandin synthases (PGEs) to generate the effector pros-
taglandins, such as PGE2 [61]. PGE2 signals through G-
protein coupled receptors and plays an important physio-
logical role in smooth muscle contraction and relaxation,
pain, inflammation and blood clotting. COX inhibitors
are widely used as non-steroidal anti-inflammatory
drugs, the most common being aspirin and ibuprofen.
Confirming the targets of the small molecules identified
in the screen, morpholino oligonucleotide knockdown of
cox1 and cox2 reduced HSC formation, an effect that
could be rescued by the addition of a long acting deriva-
tive of PGE2 (dmPGE2). Likewise, knockdown of the
PGE2 receptors diminished HSC runx1 and cmyb expres-
sion.

With HSC homeostasis under effective chemical con-
trol in embryos, Zon and colleagues then wanted to
establish if prostaglandin signaling was effective in adult
fish and conserved in mammals (Figure 2D). In adult
zebrafish, the site of hematopoiesis is in the kidney, and
dmPGE2 was shown to be effective at stimulating HSC
dependent kidney marrow recovery in irradiated wild
type fish [59]. Next, in mice, whole bone marrow (WBM)
was stimulated ex vivo by dmPGE2 before being trans-
planted into irradiated recipients, and was found to
increase hematopoietic progenitor formation. Adminis-
tration of dmPGE2 also enhanced bone marrow recovery

after 5-fluorouracil induced bone marrow injury, and
conversely, administration of COX inhibitors diminished
WBM and blood recovery. In this way, these studies have
found an important and druggable regulator of HSC
homeostasis that is conserved in vertebrates. Patients
that have depleted HSCs may benefit from dmPGE2
stimulated cord blood transplants as a therapy to expand
HSCs and enhance engraftment [61]. Based on these
studies, dmPGE ex vivo treatment is currently in clinical
trial for patients receiving cord blood transplants [61];
L.I. Zon, personal communication).

The versatility of the zebrafish assay and the evolution-
ary conservation of zebrafish biology has allowed further
work using prostaglandin chemical modulators to tease
apart the developmental pathways that reguate HSCs.
Wnt signalling is critical for development, regeneration
and stem cells [62-64]. Using a transgenic β-catenin-
responsive reporter line, dmPGE2 treatment increased
Wnt actvity in the AGM that co-localized with HSCs
[62]. Further detailed studies using a combination of
chemical modulators, the β-catenin-responsive reporter
line, and fish and mouse adenomatosis polyposis coli
(APC) mutants strongly supported a conserved PGE2-
Wnt signalling axis in development of HSCs. This axis
also appears to play a critical role in liver regeneration in
both adult fish and mice, and may be a general coordi-
nated proliferative / anti-apoptotic response to wound
healing [62]. In vitro experiments also suggest a close
relationship between Wnt signalling and PGE2 in cellular
proliferation and onocogenesis in colon cancer cell lines
[65,66]. These results bear clinical significance because
COX inhibitors, such as aspirin, reduce PGE2 levels, and
also are known to reduce the number and size of colorec-
tal adenomas in colon cancer patients [67].

Heartbeat and circulation is present in early developing
zebrafish embryos, despite sufficient oxygen supply by
difussion. North et al. (2009) used chemical biology in
zebrafish to show that the blood circulation itself is
required at these early stages for HSC development.
Returning to the other chemicals identified in the HSC
screen, several compounds were found to be modulators
of heartbeat and blood flow (North et al., 2009). While a
chemically diverse set of compounds, in general, com-
pounds that increased blood flow through vasodilation
increased HSC formation, and compounds that
decreased blood flow through vasoconstriction
decreased HSC formation. Emphasizing the importance
of vigorous blood circulation on HSC formation, the
zebrafish silent heart mutant that lacks a heartbeat and
bloodflow, had reduced HSC formation. While chemi-
cally enhanced blood flow can increase HSC formation,
only one compound, the nitric oxide (NO) donor S-
nitroso-N-acetyl-penicillamine (SNAP) could increase
HSC formation before the onset of blood flow. Likewise,
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treatment before the onset of blood flow with the NO ini-
hibitor N-nitro-L-arginine methyl ester (L-NAME)
reduced HSC formation. NO is a gaseous signaling mole-
cule that regulates angiogenesis and vascular tone, and is
a toxic antibiotic secreted by phagocytes in the immune
response [68]. NO production increases in response to
sheer stress and blood flow [69], and remarkably, SNAP
treatment of silent heart mutant zebrafish embryos could
rescue HSC development. Importantly, the role of NO in
HSCs is conserved in mice, and loss of Nos3 reduces
HSCs and transplantable HSCs [70]. These studies have
direct relevance for clinical patients undergoing stem cell
transplants: enhanced blood flow or increased NO sig-
naling might enhance HSC production and engraftment,
improving the outcome for transplant patients.

Screening for chemical modifiers of oncogene-
induced cell fate changes
Many chemotherapeutic drugs target the proliferating
bulk of a cancer cells. However, even with intense chemo-
therapy many cancers return, suggesting that there is a
less proliferative cancer cell population that can survive
treatment. For the majority of patients with acute myel-
ogenous leukemia (AML) the disease recurs within two
years of treatment, and less than 10% of adults with AML
patients will survive beyond five years http://www.can-
cerhelp.org.uk/. AML can be caused by the oncogene
fusion AML1-ETO (AE), and AE redirects cells from an
erythrocytic fate to a granulocytic blast cell fate [71].
Small molecules that suppress the action of this AE-
induced fate change may enhance the effects of chemo-
therapy when combined with anti-proliferative drugs.
Peterson and colleagues developed a transgenic line that
expressed AE from the heatshock inducible promoter,
and screened for small molecules that suppressed the
action of AE on the erythrocytic cell lineage [72]; Figure
2E). When grown at 28.5°C, the hsp:AML1-ETO trans-
genic fish had normal blood development, and expressed
gata1 in the posterior blood island [72]. When shifted to
40°C, AML1-ETO was expressed, and within an hour
after heatshock, gata1 was no longer detectable by RNA
in situ hybridization. After screening 2000 bioactive com-
pounds from the Spectrum library, a COX-2 inhibitor
restored gata1 expression without affecting the expres-
sion of the transgene. Inihibition of COX enzymes both
enhanced gata1 expression (erythrocyte lineage), and
decreased the AE driven mpo expression (granulocytic
lineage). Notably, these effects could be reversed by the
addition of dmPGE2, the major effector metabolite of
COX in zebrafish. Peterson and colleagues then used
morpholino oligonucleotides to directly test the genetic
role of the COX enzymes. Interestingly, the AE cell fate
change was strongly affected by the specific loss of the
COX-2 proteins, suggesting that COX-2 is essential for

the AE oncogene-induced cell fate change. This effect
may be via transcriptional control, as AE expression in
human myelogenous leukemia cells is almost five times
higher than in control cells, and the cells preferentially
differentiate into the myeloid lineage: an effect that can
be prevented upon addition of a COX-2 inhibitor.
Because PGE2 is important in stimulating β-catenin
expression in the pathogenesis of cancers, such as colon
cancers, the effects of AE were tested on ß-catenin
expression. Importantly, AE expression dramatically
enhanced β-catenin expression in human myelogenous
leukemia cells, an effect that could be suppressed by
chemical inhibition of COX-2. This pathway is conserved
in zebrafish, as knockdown of β-catenin genes in
zebrafish embryos compromised the AE differentiation
activity, while treatment with a β-catenin activator, an
inhibitor of the GSK-3β, enhanced the AE differentiation
activity. Taken overall, this study identifies COX-2 small
molecule modifiers of the AE oncogene driven cell fate
changes, and identifies an AE induced COX-2-PGE2-β-
catenin pathway that contributes to dysregulated
hematopoietic differentiation [72]. The conservation of
this pathway in fish and human cells, suggests that this
pathway may be relevant to target in AML pre-clincial
mammalian models.

Using cancer drugs to restore developmental 
processes: Cardio-facio-cutaneous syndrome
Rare developmental disorders are unlikely to attract drug
development programmes. However, if the developmen-
tal mutation is in a pathway that is mutated in common
diseases, such as cancer, there may be the potential to test
available drugs in the context of developmental diseases.
Children with germ-line mutations in KRAS, BRAF,
MEK1 and MEK2 develop Cardio-facio-cutaneous syn-
drome (CFC), characterized by abnormal heart, craniofa-
cial, and skin development. Activation by the fibroblast
growth factors (FGFs) leads to activation of the RAS-
RAF-MEK-ERK (MAPK) pathway kinases, ultimately
directing the cellular action, including proliferation,
apoptosis, differentiation or senescence [73]. The MAPK
pathway is one of the most frequently mutated pathways
in cancer, and is the focus of intense drug development
[74]. Intriguingly, the BRAF CFC syndrome mutations
are both kinase-active and kinase impaired in vitro. Our
laboratory recently expressed a panel of CFC syndrome
and melanoma alleles in the developing zebrafish, and
found that all alleles are gain of function mutations in
vivo, and promote an early cell movement phenotype
[75]. The highly specific and clinically active MEK inhibi-
tor, CI-1040 was able to suppress the cell movement
defect in early embryogenesis caused by CFC kinase
mutations. CI-1040 is a non-ATP-competitive inhibitor,
that selectively inhibits the activity of MEK1 and MEK2

http://www.cancerhelp.org.uk/
http://www.cancerhelp.org.uk/


Taylor et al. Cell Communication and Signaling 2010, 8:11
http://www.biosignaling.com/content/8/1/11

Page 10 of 14
in in vitro and in vivo mouse tumor models [76]. Unlike in
cancer cells, a developing animal requires MAPK signal-
ing in specific cell types, within discrete time points in
development. Therefore, despite the gain of function
mutations in CFC syndrome, it would not be desirable to
completely inhibit MAPK signaling in the developing
embryo. Indeed, treatment with CI-1040 can restore cell
movements in gastrulation, but causes severe effects later
in development. Treating CFC-zebrafish embryos within
a specific one-hour treatment window early in zebrafish
gastrulation restored normal cell movements without
additional drug induced developmental defects [75]. This
work highlights the intrinsic value of the zebrafish system
to test drugs designed for common diseases, such as can-
cer, within a different disease context.

Finding novel small molecule modulators of the 
FGF-MAPK pathway in zebrafish
Uncontrolled MAPK pathway activation is associated
with disease and abnormal development, and the path-
way is carefully attenuated by phosphatases that limit sig-
nalling. One phosphatase, the dual-specificity
phosphatase (Dusp) 6 specifically dephosphorylates the
extracellular signal-related kinase (ERK). Using a trans-
genic line that allows for visualization of dusp6 expres-
sion as a biosensor for FGF signalling, Tsang and
colleagues screened for small molecules that enhanced
FGF signalling in the developing embryo [77]. One com-
pound, called BCI, caused an increase in dusp6-GFP
expression that was dependent on the activity of FGF8
signalling. As described below BCI directly inhibits
Dusp6, and notably, BCI was also active in human cells,
supporting conservation between the human and
zebrafish MAPK pathway and its regulatory enzymes. In
mice, loss of dusp6 leads to an enhanced heart size, but
the mechanism behind this heart size control is unknown
[78]. In zebrafish, knockdown of dusp6 in development
leads to early embryonic defects, which obscures the
study of dusp6 in the heart. With a Dusp6 inhibitor in
hand, the timing and cellular action of Dusp6 in heart
development could be carefully studied and mapped. BCI
treatment at the one to eight somite stage of development
led to the expansion of myocardial progenitors, coupled
with a reduction of the endothelial lineages [77]. Thus,
live embryo screening of a transgenic zebrafish line has
identified a specific inhibitor of the Dusp6 phosphatase
and can reveal novel insight into the role of MAPK sig-
nalling during development, and possibly MAPK dis-
eases.

Screening for new small molecules that control 
zebrafish behaviour
By 2020, it is projected that major depression will become
the disease responsible for the most years of disability

worldwide, with bipolar disorder sixth and schizophrenia
ninth (Lopez and Murray, 1998). Many behaviour-alter-
ing drugs were discovered by chance in the 1940s and
50s, and have become the prototypes for newer analogues
used today [79]. There is an unmet clinical need for new
classes of neuroactive molecules to treat the range of
mental illnesses, and chemical tools to explore neurobiol-
ogy research [79]. One of the reasons for the lack of
newer neuroactive drugs comes from the lack of available
relevant model systems for screening large numbers of
active compounds. The complex networks of the brain
cannot be modelled in vitro, and the expense and ethical
issues surrounding mice and rats do not make them easily
amenable to high throughput screening [79]. In the first
high-throughput chemical screens for behaviour pheno-
types, Peterson, Schier and colleagues have developed
screening platforms that allow for high throughput
screening of known and novel small molecules for behav-
ioural phenotypes in living zebrafish embryos [80-82].

The rest/wake cycle is established as early as four-days
post-fertilization in the developing larvae [81]. Like
humans and other animals, zebrafish have wake and
sleep-like states characterized by periods of activity and
rest [81,83]. In the day, zebrafish display increased loco-
motor activity for longer periods, while night activity is
characterized by short bouts of infrequent movements
[81]. Using a tracking device, detailed measurements of
zebrafish movement behaviour, including quantitative
measurements of the frequency and duration of rest and
waking activity, and the latency between states, was
recorded for individual zebrafish larvae over three days
each when exposed to one of over 5600 chemicals [82].
The multifactorial nature of the quantitative measure-
ments could be organized into a profile for each treat-
ment, called behavioural profiling. Hierarchical
clustering of the profiles clustered the small molecules
into two broad states, arousing and sedative. These stud-
ies in zebrafish are relevant to our understanding of
human biology because arousing and sedative drugs gen-
erally showed a conserved neuropharmacology between
zebrafish and mammals. Compounds that shared profiles
often shared target pathways or therapeutic applications,
indicating that behavioural profiling in zebrafish can
identify and group bioactively similar compounds.
Importantly, by virtue of the shared profiles with well-
characterized drugs, the mode of action for poorly char-
acterized compounds could be predicted. Behavioural
profiling also identified new pathways that govern rest/
wake behaviours, including a new role for the inflamma-
tory signalling pathways and the Ether-a-go-go-related
gene (ERG) potassium channel blockers. In this way, a
systems biology approach to rest/wake neuropharmacol-
ogy in zebrafish may be directly applicable to the devel-
opment of new drugs for the proportion of the
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population (> 10%) who suffer from chronic sleep distur-
bances.

In another study, Peterson and colleagues have discov-
ered a novel phenotype in zebrafish that display stereo-
typic motor behaviours before, during and after exposure
to a high-intensity light stimulus, called the photomotor
response (PMR) [80]. Using tracking devices, the PMR
and an embryonic touch response (ETR) were analysed
for behavioural phenotypes when exposed to 14,000 dif-
ferent small molecules. Behavioural information could be
quantified, and organised into behavioural "barcodes".
Hierarchical clustering of the barcodes revealed groups of
compounds that induced similar phenotypes, called phe-
noclusters. Often, phenoclusters were enriched for com-
pounds of a similar chemical class, and point to the
cellular targets within a pathway. As with the chemical
screening for changes in the rest/wake cycle, hierarchical
clustering of the PMR and ETR phenotype could also
reveal the mode-of-action for uncharacterized com-
pounds, and provide testable hypotheses about the target
identification for that compound. For example, two unre-
lated compounds, STR-1 and STR-2 have no known
activity in mammals, and have the same behavioural bar-
code profile as compounds known to inhibit acetylcholin-
esterase (AchE). In vitro, STR-1 could inhibit AchE, but
STR-2 required bioactivation in the embryo to inhibit
AchE. Thus, phenoclustering revealed novel compounds,
and accurately predicted their mechanism of action.
Importantly, molecules that require activation within the
context of the animal would have been missed in in vitro
designed screens. Finally, high throughput behavioural
screening may also be able to identify compounds that
alter a chemical or genetic behavioural phenotype. As an
example, small molecules that cause paralysis or excita-
tion in the zebrafish embryo could be treated with chemi-
cal antidotes to restore normal behaviour. Given the
unmet need for new drugs to treat mental illness and the
quantity of information obtained for thousands of com-
pounds on just a few zebrafish behaviours, high through-
put behavioural screening in zebrafish has the potential
to reveal important new drug leads and targetable path-
ways for these and more complex behaviours.

Target identification and validation
While many currently used clinical drugs have no known
target [3], target identification remains an important
aspect of chemical biology. For example, to identify the
target of the small molecule BCI described above, Tsang
and collegues used purified Dusp6 to directly test for in
vitro ERK phosphatase assays in the presence or absence
of BCI. Computational BCI docking simulations showed
an accessible crevise in Dusp6 but not Dusp5, and by
binding this site, BCI acts via an allosteric mechanism to

prevent the shift from low to high enzyme activity upon
ERK binding [77]. In other examples, a systems approach
led to the identification of the mode of action for novel
neurobiological compounds [80,82]. Hierarchical cluster-
ing of the behaviour phenotypic profiles enriches for
compounds that act on a similar target or target pathway,
and targets of previously uncharacterized compounds
have been identified by virtue of their similar behavioural
phenotype with well characterized compounds. In
another systems approach, we are using a combined yeast
and zebrafish approach to identify the intended and unin-
tended targets of small molecules in vivo (Ishizaki et al.,
DMM, in press).

Affinity chromatography using immobilised small mol-
ecules is another method for target identification. How-
ever, immobilisation of a small molecule through the
attachment of an adequate linker can often unintention-
ally cause reduced activity of the compound. To address
this issue, Chang and colleagues designed a 1536 triazine-
tagged compound library, incorporating the linkers prior
to screening to provide a straightforward method of iso-
lation of the target compound [84]. In one screen, a triaz-
ine-tagged library was screened for enhanced
pigmentation in developing zebrafish [85,86]. A com-
pound called PPA was identified that could enhance pig-
mentation in both the fish embryo and also in human
albino melanocytes [85,86]. Affininty chromatography
identified the F1F0-ATPase as a cellular target of PPA.
Notably, although PPA was identifed in the zebrafish sys-
tem, it is also effective in a range of mammalian melano-
cyte and melanoma cells. Ion gradients appear to play a
role in pigmentation, and PPA may prove a valuable
research tool to study how mitochondrial ATPases con-
trol melanin in both zebrafish and mammalian melano-
cyte cells.

Zebrafish can play an important role in the drug devel-
opment process by testing for action in vivo, and in struc-
ture-activity profiling. For example, Lum and colleagues
screened 200,000 chemicals for Wnt/β-catenin pathway
modulators using a Wnt pathway responsive reporter
construct expressed in mouse L cells [64]. One class of
compounds, called inhibitors of the Wnt response (IWR),
specifically reduced β-catenin levels and stabilized a
component of the β-catenin destruction complex, called
Axin. Wnt signaling is required for zebrafish tail fin
regeneration, and to test the activity of the IWR com-
pounds in vivo, adult zebrafish tail fins were clipped, and
treated with IWR compounds. The IWR compounds pre-
vented tail fin regeneration as well as decreased prolifera-
tion in the gastrointestinal crypt cells, showing that Wnt
signaling is critical for stem cell activities in vivo. Almost
all colorectal cancers have activated Wnt signaling caused
by mutations in the Wnt suppressors, adenomatosis poly-
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posis coli gene or axin, or activating mutations in β-
catenin, but there are currently no Wnt inhibitors in clin-
ical trials. Novel Wnt inhibitors such as these may pro-
vide therapeutically relevant compounds, and zebrafish
are playing a central role in determining their in vivo effi-
cacy, structure-activity relationships, and tissue specific
sensitivity [64,87].

Finally, zebrafish can provide new insight into how
drugs work in an organism. Thalidomide was widely pre-
scribed in the 1950s and 1960s in many countries, includ-
ing Canada and the United Kingdom, to pregnant women
suffering from morning sickness. This resulted in the
birth of over ten thousand children with serious develop-
mental birth defects, including severe shortening or
absence of limbs, ear defects and other heart and gastro-
intestinal abnormalities. While the teratogenicity of thali-
domide is well established, the mechanism behind the
developmental defects is unknown. This is important
because thalidomide is still used today as a treatment for
multiple myeloma and as an immune suppressant for
treating the painful leprosy asssociated erythema nodo-
sum leprosum. Handa and colleagues identified cereblon
(CRBN) and DNA binding protein 1 (DDB1) as binding
partners of thalidomide in cancer cell extracts [88]. Using
biochemical techniques, Handa and colleagues showed
that CRBN forms a functional E3 ubiquitin ligase com-
plex with Cullin (Cul) 4 and DDB1; importantly, thalido-
mide binding to CRBN inhibits E3 function. Ultimately,
thalidomide may have multiple targets in a developing
organism, but chemical and genetic approaches in
zebrafish showed CRBN to be a relevant in vivo target of
thalidomide in limb outgrowth. Unlike mice and rats, that
are insensitive to thalidomide teratogenicity, zebrafish
embryos treated with thalidomide show otolith and
angiogenic deficiencies and fail to develop outgrowth of
pectoral fins [88,89]. Gene knockdown of crbn or cul4 in
zebrafish caused a loss of the developing fin, and fin
development could be rescued by a thalidomide-insensi-
tive mutant form of crbn. Together, this evidence points
to the binding and inhibition of Crbn as the casue of the
teratogenic effect of thalidomide in the ears and limbs.
The E3 targets of Crbn are unknown, but expression of
Fgf8 at the apical ectodermal ridge of the zebrafish fin
bud was dramatically reduced upon thalidomide treat-
ment, a phenotype that could also be rescued by the thal-
idomide-insensitive mutant form of crbn. The
thalidomide-Crbn-Fgf8 pathway is conserved in the chick
limbs, providing evidence that the zebrafish limb pheno-
types are relevant in other species. Identification of the
dangerous teratogen targets can aid in generation of thal-
idomide deriviatives that no longer inhibit Crbn E3 activ-
ity, and the sensitivity of zebrafish to thalidomide will be a
valuable living tool for screening new thalidomide derivi-
atives.

Conclusions
The combination of genetic and developmental features
places zebrafish small molecule screening at the cutting
edge of chemical biology. Ten years after the first small
molecule screen in zebrafish, we have examples of how
small molecules can lead to fundamental insight into
developmental and behavioural processes, to new clinical
strategies, and to understanding of the action of currently
used drugs. In addition to the chemical biology examples
presented here, other important screens in zebrafish have
identified the first regulators of the BMP pathway [90,91],
regulators of TGFβ signaling [92], histone deacetylase
inhibitors that can suppress models of polycystic kidney
disease [93] and cancer cell radiosensitizers [94], among
others. We are only just beginning to understand how
small molecules act within living animals and the trans-
parent nature of the zebrafish embryo may facilitate
future visualization and understanding of how chemicals
act upon targets within cells. As high throughput screen-
ing becomes more accessible, a greater range of chemical
space within biological systems can be explored. Finally,
sharing of chemical libraries between zebrafish research-
ers with diverse biological interests should lead to an
unprecedented wealth of new insight into chemical biol-
ogy within a whole animal system [95].
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