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Abstract

Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family
have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and
amplify signals from a wide variety of sources including growth factor, cytokine and antigen
receptors as well as cell adhesion molecules. They also contribute to signal diversification by
channelling the information from activated receptors into signalling pathways with distinct
biological functions. Recent approaches in protein biochemistry and systems biology have revealed
that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation
events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre
of entire signalling subsystems and fulfil an important if not essential role in many physiological
processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human
diseases from various forms of neoplasia to Alzheimer's disease.

In this review, we provide a detailed overview of the structure, effector functions, regulation and
evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in

particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.

Discovery of Gab docking proteins - Ten years on
With the increasing isolation and cloning of protein tyro-
sine kinase (PTK) substrates and association partners in
the mid 1990s, a large number of proteins with no intrin-
sic enzymatic activity were described and termed as adap-
tor, scaffold or docking proteins [1]. Although these terms
are often used interchangeably, adaptor proteins are usu-
ally smaller in size and often function as an inter- or intra-
molecular bridge between two proteins or within a single
protein, respectively, and thereby play an important role
in the assembly of larger protein complexes or the stabili-
sation of certain conformational states. Examples for such

adaptor proteins are growth factor receptor bound protein
2 (Grb2) or the 14-3-3 proteins [2,3]. Scaffold and dock-
ing proteins, however, contain multiple structural
domains and various protein interaction motifs or dock-
ing sites and are consequently significantly larger. Further-
more, docking proteins usually contain one or more
moieties that mediate their recruitment to biological
membranes by protein-protein or -lipid interactions. Due
to their size and molecular characteristics, docking and
scaffold proteins may act as platforms for the assembly of
signalling subsystems as it is exemplified by the pivotal
role of the kinase suppressor of ras (KSR) scaffold protein in
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the orchestration of Ras/ERK signalling [4,5]. Indeed, the
genes for several scaffold or docking proteins, including
KSR, Daughter of Sevenless (DOS) and Suppressor of Clear
(SOQ) 1, were identified by genetic screens in Drosophila
and Caenorhabditis as important modifiers of receptor
tyrosine kinase (RTK) signalling pathways, long before
biochemical and structural studies revealed their true
mechanism of action [4-7]. The discovery of the mamma-
lian DOS/SOC-1 orthologues, Grb2 associated binder 1
(Gab1), Gab2 and Gab3, placed Gab proteins among the
first docking proteins identified in mammalian signal
transduction [8-10]. Since then, it has become evident
that Gab proteins are crucial signalling elements
employed by a plethora of receptors and the field has
gathered significant insights into their structure, function,
evolution, regulation and contribution to various human
diseases. In this article, we will review these topics with a
particular emphasis on the two latter aspects, for which
considerable progress has been made since the last com-
prehensive reviews were published on these docking pro-
teins more than five years ago [11,12].

Diversity and structure of Gab docking proteins
The Gab proteins are large scaffold or docking proteins of
50 to 100 kDa found in metazoans [11,12]. Functionally
and/or structurally related proteins are: the docking pro-
tein FRS2, an important signal transducer downstream of
FGF receptors; the IRS proteins that have emerged as criti-
cal signalling components regulating insulin action and
sensitivity; and the proteins SLP-65 and SLP-76 that fulfil
pivotal roles downstream of cell adhesion molecules and
antigen receptors and in the haematopoietic system [13-
18]. Vertebrates possess at least three paralogues, Gab1 to
3 [8,9,19,20]. In contrast to vertebrates, the genomes of
the model organisms Drosophila and Caenorhabditis con-
tain only one Gab gene [6,7,20-22]. However, compara-
tive analyses of the amino acid (aa) sequences of these
invertebrate Gab proteins with the vertebrate proteins, in
particular for sequences outside of the highly conserved
pleckstrin homology (PH) domain, suggest that SOC-1
probably represents an early divergent member of the Gab
family. This issue will be further discussed below. As
explained in detail in Fig. 1, all Gab proteins share a sim-
ilar modular structure, including a PH domain at their N-
terminus, proline-rich regions in the central part and mul-
tiple phosphorylated tyrosine residues.

Recruitment of Gab proteins to their site of
action

Docking proteins of the Gab family use several different
mechanisms to regulate their subcellular localization.
Firstly, the PH domain confers recruitment of Gab pro-
teins to plasma membrane patches enriched in specific
phosphatidyl-inositol-phosphates  (PIPs) [23-29]. In
addition to the PH domain, Gab proteins use at least two
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additional mechanisms for their recruitment to activated
plasma membrane-associated receptors. The first mecha-
nism appears unique to the c-Met/Gab1 receptor/trans-
ducer system. Gab1l contains a specific c-Met binding
domain (MBD), which encompasses aa residues 450 to
532 and confers the direct interaction between this dock-
ing protein and the c-MET RTK following its engagement
by its ligand, hepatocyte growth factor (HGF) [17,30-32].
The MBD could be narrowed down to a sixteen amino
acid motif (aa residues 486-501) called Met binding motif
[31]. This direct interaction involves the activated kinase
domain of ¢-MET and the MBD in Gab1 [17,31]. How-
ever, c-MET also recruits Gab1 via a second mechanism
involving the small adaptor protein Grb2, and this repre-
sents the only mode of receptor interaction for Gab2 [33].
The significance of this indirect recruitment is under-
scored by the observation that a c-Met receptor mutant
selectively defective in Grb2 binding fails to induce
branching morphogenesis in the Madin-Darby canine
kidney (MDCK) cell line model system [34] and by the
non-viable phenotype of knock-in mice expressing a Grb2
binding-deficient Gab1 mutant [32]. This indirect mode
of recruitment (Figs. 2 and 3) appears to apply to all other
receptors recruiting Gab proteins. Phospho-tyrosine resi-
dues within the cytoplasmic tails of these receptors serve
as docking sites for the SH2 and/or PTB domains of Grb2,
which binds to the proline-rich regions in Gab1-3 via its
C-terminal SH3 domain [11,33,35-40]. Shc proteins can
serve as additional bridging adaptors between Grb2 and
the tyrosine-phosphorylated receptors.

Indirect recruitment of Gab proteins with the help of Grb2
adaptors

Vertebrate Gab proteins possess at least two regions that
are potentially involved in the recruitment of Grb2 or
other proteins containing SH3 domains such as Mona/
Gads (Fig. 1; [11,41]). Such recruitment sites for SH3
domains were also identified in DOS and the Gab-like
proteins identified in the sea squirt Ciona and the sea
anemone Nematostella [42,43]. The small adaptor protein
Grb2 contains a central SH2 domain flanked on each side
by an SH3 domain [44]. Upon ligand binding, many cell
surface receptors become tyrosine phosphorylated, which
provides binding sites for the SH2 domain of Grb2 [3].
While being bound to the phosphorylated receptor, Grb2
can then use its two SH3 domains to recruit additional
proteins to the activated receptor. For example, Grb2
binds to proline-rich stretches in the Ras-guanine nucle-
otide exchange factor SOS via its N-terminal SH3 domain,
while it uses its C-terminal SH3 domain to bind to two
SH3 binding motifs within Gab proteins [42,45].

Two recruitment motifs can be distinguished in Gab/Dos
proteins, a "typical recruitment" motif and an "atypical"
Grb2 binding site [46]. The typical Grb2 binding site,
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Conserved structural features of Gab proteins. Simplified cartoon indicating the modular structure of the human Gab
proteins (Gab|-3), the putative human Gab4 protein, DOS, SOC-I and a putative Gab protein from Nematostella vectensis (Ne-
Gab). All proteins contain a highly-conserved N-terminal PH domain involved in membrane recruitment. The central proline-
rich regions mediate the interaction with SH3 domain-containing adaptor proteins such as Grb2. Consensus motifs for SH2- or
PTB domain-containing proteins like SHP2, p85, Crk and PLCy are indicated. The functionally-characterized 14-3-3 binding
motifs in Gab2 and the c-Met binding domain (MBD) in Gab| are also shown.

which occurs in Gab1/2/3, but not in SOC-1 and DOS,
conforms to the canonical PXXP motif for SH3 domain
binding [47]. In addition, both Gab1/2/3 as well as DOS
and SOC-1 contain a so-called atypical Grb2 binding site
with the recognition sequence PXXXR [46], which is also
found in the SLP-76 and SLP-65/BLNK docking proteins
[41,48]. Biochemical experiments by Lock et al. have dem-
onstrated that both binding sites contribute to Grb2 bind-
ing [46] and consequently most functional studies
addressing the Gab/Grb2 interaction utilize Gab mutants
in which both recruitment motifs are mutated (AGrb2).
However, these two sites may not be functionally equiva-

lent. Using crystallography, peptide arrays and isothermal
calorimetry, Harkiolaki et al. recently provided new
insights into the interaction between the C-terminal SH3
domain of Grb2 and Gab2. In this study they demon-
strated that both Grb2 binding sites contain the core con-
sensus motif RxxK (with x for any amino acid) [42].
However, they also determined that the individual bind-
ing modes between the C-terminal SH3 domain of Grb2
and peptides derived from the typical and atypical Grb2
binding site differ significantly from each other. Conse-
quently, this study provides a prime example of the flexi-
bility of SH3 domains with regard to target recognition.
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Recruitment of Gab proteins to activated receptors and the main effector arms of Gab signalling. The indirect
mode of recruitment applies to all receptors except c-Met (see text and Fig. 3 for details). Characteristics of this mechanism
are that phosphotyrosine residues within the cytoplasmic tails of activated surface receptors serve as docking sites for the SH2
domain of Grb2, which in turn binds via its C-terminal SH3 domain to specific binding sites in Gab|-3. Alternatively, Shc can
serve as additional bridging molecules between Gab and activated receptors. Membrane/receptor association leads to tyrosine
phosphorylation of Gab proteins and subsequent recruitment of SH2 domain-containing effectors such as SHP2, p85, PLCy and
Crk. While it has been shown by numerous studies that the association between Gab proteins and the effectors Shp2, p85,
Grb2, Crk and PLCy represents a direct protein-protein interaction, the coupling between Gab and STATS5 needs to be

resolved in the future.

Since mutation/deletion experiments have clearly demon-
strated the importance of the Gab2/Grb2 interaction for
the activation of the various effector pathways controlled
by this docking protein [39,40], important issues that
remain to be resolved for many signalling systems are
whether both recruitment sites are equally important,
functionally redundant or are used in a stimulus-specific
manner. In addition, it remains possible that the individ-
ual sites are used sequentially during the Gab recruitment
process. Feller et al. (2002) have addressed the first issue
for DOS by showing that mutation of either of the two
Grb2 binding sites impairs R7 photoreceptor cell develop-
ment in a moderate manner, while simultaneous muta-
tion abrogates R7 development completely [43].
Furthermore, Yamasaki et al. (2003) have shown that the
atypical Grb2 binding site plays a dominant role in the
Gads/Grb2-mediated recruitment of Gab2 to the LAT sig-
nalling complex in the lipid rafts of T lymphocytes [41]. A
final point of interest is that, although one might predict

the Gab/Grb2 interaction to be constitutive, time course
experiments have revealed that the Grb2/Gab ratio is
increased by extra-cellular signals such EGF or IL-3 stimu-
lation [8,9,39,49,50]. It remains to be tested as to whether
this increase is caused by a conformational change of Gab
that facilitates Grb2 binding or if this reflects indirect
recruitment of this adaptor into the Gab2 signalosome by
other proteins. Such a scenario could involve SHP2,
which interacts with Grb2 as well [51].

A more complex indirect recruitment mechanism is uti-
lized by Gab1 in FGF receptor signalling [14,52]. Here, the
activated FGFR recruits first the docking proteins FRS2a/
B, which are tethered to the plasma membrane by a myri-
stylation anchor at their N-terminus and in addition con-
tain a phosphotyrosine-binding (PTB) domain that
mediates the direct interaction with FGF receptors [53].
Following interaction of FRS20/f with the activated
receptor, phosphorylated tyrosine residues within the
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The Gab recruitment code. Simplified overview of the
various mechanisms utilized for recruitment of Gab proteins
by receptor tyrosine kinases (RTKs), cytokine receptors,
multichain immune recognition receptors (MIRRs), integrins
and G-protein coupled receptors (GPCRs). Inner circle:
Receptor classes recruiting Gab proteins. Middle circle:
Adaptor proteins involved in recruitment. Outer circle: Gab
proteins recruited. For details see main text and references
therein.

FRS2 proteins serve as binding sites for the SH2 domain
of Grb2 (Fig. 3). In turn, Grb2 binds with its C-terminal
SH3 domain to Gab1, which is then recruited to the acti-
vated FGFR complex and becomes tyrosine phosphor-
ylated. This mechanism plays an important role in FGF-
induced PI3K activation, since this is mediated via Gab1/
p85 interaction in the signalling complex [52]. It remains
to be tested as to whether this mode of recruitment is also
realized for Gab2 and Gab3 and for other receptor sys-
tems, such as NGF/TRK receptors, which also employ
FRS2 proteins as signalling platforms [54]. The different
strategies employed by particular cell surface receptors to
recruit Gab docking proteins are summarized in Fig. 3.

The Gab PH domain

Several PH domains are able to recognize specific phosph-
oinositides such as phosphatidylinositol-3,4,5-trisphos-
phate (Pl;,sP; or PIP; in short), phosphatidylinositol-
3,4-bisphosphate (PI; 4P,) as well as phosphatidylinosi-
tol-4,5-bisphosphate  (PI,sP,) [55,56]. Interestingly,
Gab1/2 belong to the few proteins, which bind preferen-
tially to the PI3K product Pl 4 sP5;, which is only found
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within the plasma membrane, and less to PI;,P, and
PI, sP,[23-25,40,57]. The PH domain plays an important
role in the plasma membrane recruitment of Gab1 in cells
stimulated via the EGF-, VEGF- or B cell antigen receptors
(BCR) [23,26,27,58]. It is also required for recruitment of
Gab1 to cell-cell contacts, and for the morphogenetic pro-
gram triggered by the c-MET receptor [24,25]. In the case
of Gab2, the PH domain mediates recruitment to phago-
cytic cups induced by FcyRI [28] and is required for bFGF-
induced tyrosine phosphorylation of this docking protein
in murine P19 teratocarcinoma cells [29]. In conclusion,
these findings suggest that the PH domain might play an
important role to localize or to concentrate Gab proteins
to membrane areas where receptors are activated.

Recruitment via the PH domain or adaptors - which
mechanism predominates?

The PH domain mediated recruitment of Gab proteins
provides the opportunity to modulate their membrane
residency by PI3K and lipid phosphatases in a very
dynamic manner without the need to disrupt large signa-
losomes such as the EGFR/Grb2/Gab complex that are
potentially stabilised by various direct and indirect pro-
tein-protein interactions. A recent study by Sampaio et al.
(2008) reiterates the importance of the PH domain by
showing that it is required for the EGF-triggered recruit-
ment of Gab1 to the plasma membrane in the presence of
low doses of EGF, while the recruitment of this docking
protein by high doses of EGF relies on Grb2 [59]. The
dependency on the PH domain could be explained by the
fact that, in the presence of low EGF concentrations, fewer
EGFR molecules are auto-phosphorylated and thereby
have a reduced potential to recruit binding partners such
as the SH2 domain of Grb2. However, the reason(s) as to
why high concentrations of EGF induced lower tyrosine
phosphorylation of a Gabl mutant impaired in Grb2
binding than a low concentration of this growth factor is
unclear, but might be explained by competition with
other PH domain containing proteins [59].

If the PH domain were to play such an important role
under low growth factor stimulation, one would expect
that the membrane recruitment mechanisms reliant on
protein-protein interactions such as the c-MET/Gab1 and
Grb2/Gab interactions would be largely dispensable. In
the following, we review several lines of evidence from
various experimental settings indicating that the PH
domain alone cannot confer long-term plasma-mem-
brane residency or ensure adequate physiological Gab sig-
nalling. For example, the MBD plays an important role in
Gab1 recruitment under certain circumstances [33]. A
strong interaction with particular activated receptors is
mediated via the Grb2 binding sites, as indicated by vari-
ous lines of evidence. Firstly, the tyrosine phosphoryla-
tion of Gabl1 is drastically reduced in mouse embryonic
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fibroblasts (MEFs) lacking Grb2 or expressing a function-
ally impaired Grb2 protein in which its SH2 domain has
been rendered non-functional by the E89K knock-in muta-
tion [60]. The opposite experiment in which the Grb2
binding sites in Gab1 were mutated also resulted in an
impaired  tyrosine  phosphorylation of  Gabl
[46,59,61,62]. A similarly impaired tyrosine phosphoryla-
tion of Gabl was observed in Fr3T3 cells expressing a
Grb2 binding deficient and transformation impaired
mutant of the Tpr-Met oncoprotein [63]. Most impor-
tantly, despite the presence of intact PH and MET-binding
domains, knock-in mice that express a Gab1 mutant lack-
ing the Grb2 binding sites display an embryonic lethal
phenotype and defects in liver, placenta and craniofacial
development [32]. This finding underscores the impor-
tance of the Gab1/Grb2 interaction. Furthermore, a Gab2
mutant lacking both typical and atypical Grb2 binding
sites displays a reduced and short-lived tyrosine phospho-
rylation in EGF-stimulated human mammary epithelial
cells and in Fce Rl-stimulated murine bone marrow
derived mast cells (BMMCs) [39,40]. This suggests that
the Grb2 binding sites, while not essential to achieve a cer-
tain degree of tyrosine phosphorylation, are necessary to
sustain tyrosine phosphorylation, in particular at time
points at which PI3K levels have already returned to base-
line levels due to the action of PIP; hydrolysing phos-
phatases such as SHIP and PTEN [64,65]. This notion is
further supported by the plethora of receptors employing
Grb2 as a recruitment device for Gab proteins (Fig. 3).

Overall, it appears that the relative roles played by these
alternative recruitment mechanisms are context-depend-
ent. The reports reviewed in this section invite for detailed
future studies that not only take the amount and timing of
the extra-cellular stimulus into account, but also consider
the lineage and transformation status of the cell lines.
Indeed, the Gab/Grb2 interaction might be more relevant
in primary tissues or immortalized cell lines such as
BMMCs and MCF-10A, than in particular tumour cell
lines often used in signalling studies, e.g. Jurkat or MCF-7
cells, which display elevated PIP, levels due to the loss of
PTEN expression or PIK3CA mutations, respectively [65-
68]. Lastly, it should be noted that even in the same cellu-
lar setting, particular Gab proteins may differ in their
requirement for PH domain-mediated plasma membrane
recruitment. For example, van den Akker et al. showed
that the EPO-induced tyrosine phosphorylation of Gab2
is much more reliant on PI3K activity than that of Gab1
[69].

Positive regulation of Gab proteins and
downstream effectors

As bona fide signal transducers, Gab proteins not only pos-
sess structural motifs for their receptor recruitment, but
also contain features that are involved in the transduction,
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localization and amplification of receptor-derived signals
(Fig. 1). At the moment, the SHP2/Ras and the PI-3K/AKT
pathways are considered as the two major effector arms of
Gab proteins. However, a series of biochemical and
genetic studies as well as yeast-two-hybrid (Y2H) screens
have identified additional Gab effector proteins such as
PLCy-isoforms [8,70], adaptor proteins of the Shc
[9,61,71] and Crk families [72-76], the lipid phosphatase
SHIP [71], the Ras-GTPase activating protein RasGAP
[77], GC-GAP [78] and transcriptional activators STAT3
and STAT5 [50,79-81]. In the following sections we will
provide an update regarding recent insights into these
effector pathways.

Tyrosine phosphorylation of Gab proteins

A fundamental mechanism for regulation of Gab-medi-
ated signal transduction is site-specific tyrosine phospho-
rylation of these docking proteins. Depending on the
particular Gab family member, tyrosine phosphorylation
may provide recruitment sites for the SH2 domains of the
tyrosine phosphatase SHP2, adaptors of the Crk family,
PLCy and the regulatory subunit of PI3K, p85 [11,12].
However, the kinases and phosphatases controlling the
phosphorylation status of these tyrosine residues are in
many cases still ill-defined. While, at least in vitro, RTKs
such as the EGFR are able to phosphorylate Gab1 directly
[82], it is becoming increasingly evident that a variety of
systems such as RTKs, antigen receptors, cytokine recep-
tors and even the Bcr-Abl oncoprotein "sub-contract"
PTKs of the Src-, Syk/ZAP-70 and JAK families to drive the
tyrosine phosphorylation of Gab1/2 [37,83-94]. In some
instances, a cascade of PTKs regulates Gab phosphoryla-
tion, such as the Bcr-Abl/JAK2/Lyn pathway in human
CML cells [91,95]. Also, it is possible that individual PTKs
might target distinct tyrosine residues in Gab proteins. By
recruiting various effectors with SH2 domains, Gab pro-
teins mediate not only signal amplification, but, as a func-
tion of the recruitment of distinct enzymatic activities,
also channel the receptor-derived signals into pathways
with distinct biological properties (Fig. 2). Thus, Gab pro-
teins act as a nucleation core of an entire signalling sub-
system, which we will dissect in the following sections.

The SHP2/Ras/ERK pathway

Probably the best-characterized effector arm of Gab pro-
teins is mediated via the protein tyrosine phosphatase
SHP2. SHP2 contains tandem SH2 domains, the most N-
terminal of which confers auto-inhibition of the C-termi-
nal phosphatase domain [96,97]. Many SHP2 interaction
partners including the Gab proteins contain two SHP2
binding sites, which, if phosphorylated, will act as a bi-
phosphoryl tyrosine activation motif (BTAM) and confer
simultaneous binding of both SH2 domains, thereby
relieving auto-inhibition [96,98]. Thus, SHP2 interaction
partners like Gab proteins might not only act as recruit-
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ment platforms, but also as allosteric activators. But what
are the functional consequences of Gab-mediated SHP2
recruitment and activation? The best understood effect
mediated by the Gab/SHP2 interaction is the sustained
and/or increased activation of the ERK/MAPK pathway
(Fig. 2). This effect occurs in response to a variety of stim-
uli, including treatment of cells with EGF, VEGF, HGF and
LPA [35,39,48,62,98-101]. However, in certain cellular
contexts, the Gab/SHP2 complex also positively regulates
other downstream pathways. These include c-Kit-induced
Rac activation [102] as well as B1l-integrin- and growth
factor-induced PI3K activation [39,103]. The detailed
mechanisms involved in Gab/SHP2-mediated regulation
of Rac and PI3K have yet to be resolved. In cultured mam-
malian cells, recruitment of SHP2 to particular Gab pro-
teins regulates diverse biological endpoints, including
PDGF-induced cytoskeletal organization and VEGEF-
induced migration in endothelial cells [62,104], cell adhe-
sion and migration of Ba/F3 haematopoietic cells [103],
epithelial morphogenesis in MDCK cells [99] and acinar
growth of MCF-10A mammary epithelial cells [39]. These
studies have been complemented by epistasis analyses in
Drosophila  melanogaster and Caenorhabditis  elegans
[7,21,105]. Recently, the physiological significance of the
Gab/SHP2 interaction for Ras/ERK activation was under-
scored by the generation of knock-in mice expressing a
Gab1 mutant lacking the tyrosine residues involved in
SHP2 recruitment (Gab14SHP2) These mice display
impaired development of muscles and the placenta [32],
an organ known to be extremely sensitive towards aber-
rant ERK signalling [106].

Taken together, these findings demonstrate that SHP2 is
an important positive modulator of ERK activation. How-
ever, why the recruitment of SHP2 by Gab proteins is
required for full activation of ERK signalling downstream
of receptor tyrosine kinases is still not fully understood,
but several mechanisms may contribute. Firstly, SHP2 de-
phosphorylates binding sites for p120Ras-GAP on the acti-
vated receptors for PDGF and EGF [107,108] and also on
Gab1 [77] and thereby counteracts Ras inactivation. In the
latter case, p120Ras-GAP js recruited via its SH2 domain to
phosphorylated Y317 on Gabl, which is dephosphor-
ylated by SHP2. Like Gab1, DOS is also de-phosphor-
ylated by the SHP2 orthologue Corkscrew (CSW)
resulting in enhanced Ras activation [6]. Secondly, Shp2
dephosphorylates recruitment sites for the Src-inactivat-
ing kinase Csk on the transmembrane glycoprotein PAG/
Cbp [109] and paxillin [110], leading to enhanced activity
of Src family kinases. These data are consistent with a
report showing that the expression of a fusion protein
consisting of the Gab1 PH domain and SHP2 does not
only induce constitutive ERK pathway activation, but also
enhances activation of Src [100].

http://www.biosignaling.com/content/7/1/22

The PI3K effector arm

Through the recruitment of PI3K to activated receptors,
Gab proteins contribute to the initiation of signalling
pathways promoting cellular growth, survival, migration
and proliferation [11]. The generation of knock-in mice
expressing a Gab1 protein defective in p85 recruitment
(Gab14pr85) demonstrated that the interaction between
Gab1 and PI3K downstream of the EGFR is important in
embryonic development for eyelid closure and for kerati-
nocyte migration [32]. Nevertheless, their viable pheno-
type also indicates that the Gab1/p85 interaction is, in
comparison to the interactions of Gab1 with c-Met, Grb2
and SHP2, a relatively dispensable interaction during
mouse development. While a Gab1l gene knock-out is
embryonic lethal [61,111], Gab2 deficient mice are viable
[112-114]. However, the essential role of Gab2 in IgE-
mediated allergic responses is attributed to its function in
coupling FceRI to PI3K activation [112]. The role of Gab2
in FcyR-mediated phagocytosis also seems to be depend-
ent on the recruitment of PI3K [11]. Some receptors
recruit PI3K both via direct p85 binding sites and via Gab
proteins, for example c-Kit and the NGF receptor
[63,115]. A recent study showed that a splice variant of c-
Kit that recruits Gab2 induces much stronger activation of
the PI3K pathway than an isoform that does not bind
Gab2 and recruits PI3K only directly [116]. Similarly, the
B and T cell antigen receptors recruit PI3K via co-receptors
and via Gab2 [27,117]. Thus, Gab proteins serve as ampli-
fiers of PI3K signalling in many receptor systems, in par-
ticular for those lacking direct p85 binding sites such as
the IL-3 receptor. This receptor activates PI3K via a Shc/
Grb2/Gab2 complex and other cytokine receptors lacking
direct PI3K binding sites might use the same pathway
[38]. Lastly, it should be emphasised that Gab1-induced
PI3K activation can amplify receptor signalling by gener-
ating a positive-feedback loop, as described for the EGFR
system by Rodrigues et al. (2000) [23].

Gab signalling to PLCy

Association of Gab proteins and PLCy 1/2 most likely
reflects a direct interaction involving tyrosine-phosphor-
ylated residues on the docking protein and the SH2
domains of the PLCy isoform. For example, HGF induces
tyrosine phosphorylation of Gab1l at Y307, Y373 and
Y407, which in turn recruit PLCy1, a critical event for
MET-induced branching morphogenesis of MDCK cells
[118]. Gab2 also interacts with PLCy2 in FceRI-stimulated
RBL-2H3 basophilic leukemia cells and RANKL-stimu-
lated primary osteoclasts [70,119]. Interestingly, Mao et
al. (2006) found that PLCy2 not only interacts with Gab2,
but also enhances its interaction with the receptor RANK
and its tyrosine phosphorylation, suggesting that PLCy2
plays a scaffolding or recruitment role in the RANK/Gab2
relationship [70]. The physiological relevance of the
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RANK/PLCy2/Gab2 axis is supported by the observation
that mice deficient in RANKL, RANK, PLCy2 or Gab2
develop an osteopetrotic phenotype (see below). How-
ever, while these studies identify particular PLCy isoforms
as important effectors or regulators of mammalian Gab
proteins, a DOS protein lacking the putative PLCy binding
sites is able to rescue the phenotype of DOS-deficient flies
[105], indicating that the DOS/PLCy interaction does not
play an essential role in this context.

Shc proteins - just companions of Grb2?

Another prominent component of immuno-purified Gab
signalling complexes are the Shc adaptor proteins. In
many cases, however, it is still unclear as to whether Shc
interacts directly with Gab proteins or is recruited via
Grb2. The latter mechanism has been demonstrated for
Gab2 signalling complexes from EGF-stimulated mam-
mary epithelial cells and from Fce RI- or stem cell factor
(SCF)-stimulated mast cells [39,40,49,102]. Similarly, Liu
et al. (2001) identified Shc in Gab2 complexes from M-
CSF stimulated cells, but failed to purify Gab2 using GST
fusion proteins bearing either the SH2 or PTB domain of
Shc [120]. These data argue against a direct interaction.
However, it should be noted that the Scansite program
[121] predicts putative binding sites in Gab1 and Gab2 for
the SH2 domain of Shc and Far Western blot analyses
have demonstrated a direct interaction between the GST-
Shc SH2 domain and tyrosine phosphorylated Gab1 puri-
fied from BCR-stimulated B cells [122]. Consequently,
Shc proteins might be able to interact with Gab proteins
under certain circumstances. Be that as it may, the exact
role of Shc proteins in the Gab signalosomes is still not
completely resolved. Do they only serve as "bridging mol-
ecules" (Fig. 2 and 3) or do they fulfil additional func-
tions, e.g. by concentrating additional regulators of Gab
signalosome components such as 14-3-3 proteins [123] or
the SHIP lipid phosphatases [124,125]? Indeed, SHIP1
and 2 have been found in Gab signalosomes in a variety
of settings, e.g. in Gab1l complexes purified from B cells
stimulated either through the BCR alone or in co-cluster-
ing experiments involving both BCR and the inhibitory
FcyRIIb [124,125]. Similarly, SHIPs have also been
detected in Gab1/2 signalosomes isolated from EPO-stim-
ulated UT-7 cells [71], a human pluripotent leukemia cell
line, in FceRI-stimulated RBL-2H3 cells [126] and in M-
CSF-stimulated FDCP1 cells, that represent mouse mye-
loid progenitors [120]. Although a direct interaction
between the SH2 domain of SHIP1 and Gab2 was demon-
strated in Far-Western blot experiments [120], several
studies suggest that these interactions are indirect and
mediated via Shc [124,125]. The role of SHIPs in Gab sig-
nalling complexes is still ill-defined, however, an attrac-
tive idea is that they counteract the contribution of the
Gab proteins to local PI3K signalling.

http://www.biosignaling.com/content/7/1/22

The role of Gab proteins in the activation of small GTPases
Crk proteins constitute another group of Gab interaction
partners. These adaptor proteins consist of one N-termi-
nal SH2 domain followed by one (Crkl) or two (CrkII)
SH3 domains [127,128]. As shown in Fig. 1, both Gab1
and Gab2 as well as DOS contain multiple consensus
binding sites (Y-X-X-P) for the SH2 domain of Crk pro-
teins [127,129]. The interaction of Gab proteins with
these adaptors has been observed in a variety of cell types
and downstream of distinct receptor/transducer systems
such as RTKs, antigen and certain cytokine receptors
[74,127,129]. In turn, Crk proteins recruit particular effec-
tors via their SH3 domains e.g. guanine nucleotide
exchange factors for Rac and Rap-GTPases. Thereby, they
potentially regulate cellular motility, adhesion and mor-
phology [74,129]. Interestingly, Watanabe et al. have
recently demonstrated that HGF/c-MET signalling in
human synovial sarcoma cell lines induces sustained tyro-
sine phosphorylation of Y307 on Gab1, which serves as a
recruitment site for both Crk and PLCy [129,130]. The
recruitment of Crk to this residue is not only pivotal for
downstream signalling events, e.g. Rac activation, and
enhanced cell scattering, invasive behaviour and
xenograft growth, but is also required for the sustained
tyrosine phosphorylation of Gab1 itself [129]. In a follow-
up study, the same group demonstrated that Y307 is phos-
phorylated by Src. This enhances cellular migration and
contributes to the membrane recruitment of Gabl in
HGF-stimulated MDCK cells and the organisation of focal
adhesion complexes [93]. Furthermore, other studies have
shown that formation of the Gab1/Crk complex is a criti-
cal event in c-Met induced activation of the JNK pathway,
an event downstream of Rac activation and a prerequisite
for several of the aforementioned morphological changes
and efficient cellular transformation [72,131,132]. Inter-
estingly, a recent report has demonstrated that the p85
and Crk binding sites in Gab1 play a pivotal role in the c-
Met mediated entry of the intracellular bacterium Listeria
monocytogenes, implicating the Gab1/Crk complex in pro-
motion of cytoskeletal rearrangements required for path-
ogen internalization [133].

In a Y2H screen conducted with a portion of Gab2 (aa
120-587) as a bait, Zhao et al. (2003) isolated a novel
GTPase activating protein (GAP) for Rho-GTPases, which
was named GC-GAP [78]. This interaction was subse-
quently confirmed by co-immunoprecipitation experi-
ments. GC-GAP is highly expressed in brain and displays
in vitro GTPase stimulating activity towards RhoA, Racl
and Cdc42 and towards Racl and Cdc42 upon ectopic
expression in HEK293T cells. RNAi-mediated suppression
of GC-GAP was correlated with reduced proliferation of
C6 astroglioma cells. Although the original identification
of the Gab2/GC-GAP interaction in the Y2H screen sug-
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gests a direct interaction between both proteins, it should
be noted that GC-GAP also interacts in mammalian cells
with the N-terminal SH3 domain of Crk [78].

A recent study by Paliouras et al. (2009) has identified the
Ser/Thr-kinase and Rac/Cdc42 effector PAK4 as a specific
interaction partner of the Gabl isoform [130]. PAK4
binds in a phosphorylation-dependent manner via its
GEF-interacting domain to a region in Gabl located
between the PH domain and the first of the three Crk
binding sites (aa 116-234). Interestingly, the authors
could show that ectopically co-expressed Gab1 and PAK4
cooperate in HGF-induced epithelial cell scattering and
invasiveness and that PAK4 knockdown or deletion of the
PAK4 recruitment region impaired these biological
responses.

The JakISTAT pathway

Although the molecular details remain ill-defined, the
Gab2 isoform is increasingly implicated in JAK/STAT sig-
nalling. An early study demonstrated that in CD4-positive
T cells derived from the rare human neoplasia mycosis fun-
goides, tyrosine-phosphorylated Gab2 interacted with
SHP2 and STAT5a in a IL-2- regulated fashion [79]. Later,
Arnaud et al. (2004) uncovered a complex interplay
between Gab2, SHP2 and STATS5 in IL-2 stimulated T cells
[80]. Here, S623 becomes phosphorylated in a negative
feedback loop by activated ERK, which in turn reduces the
potential of Gab2 to interact with SHP2 via the phospho-
rylated tyrosine residues Y614 and Y643. Interestingly,
activation of the ERK pathway was blunted, as expected by
other studies, by the Y614F mutation and slightly
increased by the Gab25623A mutant. In contrast, I1L-2-
induced STAT5 activation was enhanced by the SHP2
binding mutant Gab2Y¥614F and inhibited by Gab25623A,
These data indicate a potential role of STATS5, its interac-
tion partners or its upstream kinases as SHP2 substrates.

Additional observations support the concept of a func-
tional cooperation between STAT5 and Gab2. First, the
murine gab2 gene is one of the top candidates on the
modifier locus located on chromosome 7 that modulates
the engraftment of hematopoietic stem cells (HSC) during
steady-state haematopoiesis, a process dependent on
intact cytokine signalling [134]. Second, two studies from
the Gouilleux laboratory have shown that constitutively
active mutants of STAT5 (caSTAT5) not only associate
with Gab2, but also require this docking protein for the
efficient induction of Ba/F3 cell proliferation via the Ras/
ERK and PI-3K/AKT pathways [50,135]. In this system,
caSTAT5-induced cell proliferation, as well as ERK and Akt
activation, is dependent on Gab2/p85 binding. Interest-
ingly, the authors also demonstrate that the basal tyrosine
phosphorylation of Gab2 is increased in caSTAT5-express-
ing Ba/F3 cells [50]. This suggests that PTKs are recruited
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to the Gab2 signalosome by caSTAT5 or that STAT5 pro-
tects Gab2 against dephosphorylation by PTPs, e.g. Shp2.
In support of the latter model, Gab2 is not associated with
Shp2 in caSTAT5 expressing cells. However, it remains
unclear at present whether the Gab2/STATS5 interaction is
mediated via a direct interaction or via a mutual binding
partner such as p85. Clearly, further work is required to
characterize mechanisms underpinning the interplay
between Gab2 and STATS5, and to determine how STAT5
antagonizes Shp2 recruitment to this docking protein.

In addition to the STAT5/Gab2 relationship, Ni et al.
(2007) have demonstrated that murine and human Gab2
orthologues, but not Gab1, contains a canonical STAT3
binding motif (YXXQ). Using a Y194F substitution
mutant, the authors could demonstrate that this site is
indeed required for the recruitment of STAT3 and the effi-
cient Friend erythroleukemia virus-mediated transforma-
tion of murine hematopoietic progenitors [136]. It
remains to be seen as to whether this site is also involved
under more physiological circumstances and in the
recruitment of other STAT proteins such as STATS.

Gab proteins are ancient elements of the
metazoan signalling toolbox

Recent genome analyses have revealed that the emergence
of PTK signalling networks precedes the advent of true
multi-cellularity and that these expand dramatically at the
base of the animal kingdom (Fig. 4A; [137-140]). Conse-
quently, these analyses should aid in the identification of
the time point of the emergence of Gab, DOS and SOC
proteins and would assist in the design and interpretation
of structure-function analyses of Gab proteins. We rea-
soned that if the hallmarks of a Gab protein were the pres-
ence of an N-terminal PH domain followed by Pro-rich
sequences enabling the recruitment of SH3 domains and
the presence of multiple tyrosine phosphorylation motifs
for the recruitment of SH2 domains, then it would be pos-
sible to search for Gab proteins in lower metazoans and to
identify proteins that resemble the last common ancestor
of the DOS, SOC and Gab proteins. To this end, we made
use of the recently published genomes of the choanoflag-
ellate Monosiga brevicollis, which represents an outgroup to
metazoans, and the basal metazoan Trichoplax adhaerens
and the starlet sea anemone Nematostella vectensis. Whilst
there is no evidence for bona fide Gab/DOS proteins in
either the Monosiga nor Trichoplax genomes (our own
observations), we and the Feller group identified a Gab-
like protein in the Nematostella genome (GenBank entry
XP_001636529; [42]). This conceptual protein (NeGab;
Fig. 1) carries an N-terminal PH domain of the Gab type
(PH_GAB) followed by potential recruitment sites for
SH3 domains, of which two and three align almost per-
fectly with the typical and atypical Grb2 binding domains
of human Gab proteins, respectively. These motifs also
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Figure 4

(A) Simplified phylogenetic tree illustrating the emergence of PTK signaling systems and the emergence of
Gab/Dos proteins. The tree is based on recent insights into metazoan evolution and highlights the position of the model
organisms in which bona fide Gab/Dos proteins have been identified [137,139,140,240,241]. The distances between the individ-
ual clades do not represent phylogenetic or temporal distances. (B) Overall sequence similarity and sequence identity
across the PH domains of the various Gab/DOS proteins discussed in this review.

contain the key residues for the interaction with the C-ter-
minal SH3 domain of Grb2 [42]. It should be noted that
the typical Grb2 binding site does not occur in the various
DOS proteins and SOC-1 [20]. Importantly, our Scansite
analysis revealed that NeGab also carries several tyrosine
residues that match phosphorylation motifs involved in
the recruitment of SH2-containing proteins such as the
Gab signalosome components p85, CrkL and PLCy (Fig.
1). Overall, these findings are consistent with the presence
of orthologues of the Gab signalosome components
Grb2, Sh¢, PLCy and Crk in Nematostella [137] and data-
base entries for SHP2- and p85-like proteins for another
Cnidarian, Hydra magnipapillata (our unpublished obser-
vations). However, it should be noted that, whilst there
are also tyrosine residues in NeGab that align with those

involved in the recruitment of SHP2 to mammalian Gab
proteins, the surrounding residues are not conserved and
therefore do not constitute a bona fide recognition motif
for both SH2 domains of mammalian SHP2 [141]). These
findings suggest that either NeGab does not recruit the
corresponding SHP2 orthologue or that the NeGab/SHP2
interaction takes place by other means. Nevertheless,
according to a Scansite prediction [121], the SH2 binding
motifs in NeGab align with one of the CrkL (Y266 in
human Gab2) and p85 (Y584) recruitment sites in mam-
malian Gab proteins. Taken together, these data suggest
that at least the Gab/Crk, Gab/PLCy and Gab/PI3K con-
nections were already established in the precambrium
and that a Gab-like docking protein was an early feature
of the metazoan PTK signalling toolkit (Fig. 4A).
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So far, all sequenced genomes of invertebrate model
organisms including those closer to the basis of verte-
brates such as the chordates Ciona and Branchiostoma pos-
sess only one Gab-like protein [42,142]. This suggests that
the three Gab paralogues were generated by the genome-
wide duplications that occurred with the emergence of
vertebrates and have diversified subsequently [42,143].
However, the Gab family appears to expand further in
mammals. An enigmatic entry in genomic databases rep-
resents the GAB4 gene, for which entries at both the
genomic DNA and transcript level have been recorded for
humans and chimpanzees. The human GAB4 gene is
located on chromosome 22ql11.1 and its nucleotide
sequence is most related to Gab2 (65% similarity: Fig.
4B), which is encoded on chromosome 11q13. GAB4 con-
tains a bona fide exon/intron structure suggesting that this
gene is not a retro-transposon-like element that has been
derived from a Gab2 transcript. Furthermore, the detec-
tion of Gab4 ESTs in testicular tissue, as well as sequence
differences between Gab2 and Gab4, suggest that this
gene is indeed actively transcribed and might give rise to a
functional Gab4 protein [144]. While the putative Gab4
contains potential binding sites for SHP2, only one of the
three p85 binding sites is conserved and it lacks the typical
Grb2 binding site (Fig. 1). The expression pattern, signal-
ling mechanisms and functional roles of the Gab4 protein
remain to be characterized.

Physiological functions of Gab proteins

Various analyses have shown that most mammalian cell
types express more than one Gab family member [19],
suggesting that the individual proteins are not function-
ally redundant. This hypothesis is supported by the phe-
notypes of Gab1-3 gene knock-out mice. While Gab2 and
Gab3 knock-out mice are viable and have a normal life
span [112,115,145], Gabl deficiency causes embryonic
lethality due to severe defects in heart, placenta, liver, skin
and muscle development [61,111]. In line with the spe-
cific and intimate relationship between Gab1 and c-Met,
it is perhaps not surprising that mice lacking Gab1 phen-
ocopy many of the aspects of HGF- and c-MET-deficient
mice, such as early embryonic lethality owing to placental
defects, reduced liver size and defects in the migration of
muscle precursor cells [32,61]. As already discussed
above, the generation of knock-in-mice carrying mutations
in either the SHP2 or the p85 binding sites of Gabl
revealed that these interactions play distinct roles in
embryonic development [32]. Interestingly, enforced
membrane localization of Gab2 through the addition of a
myristoylation signal together with the introduction of
the MBD from Gabl1 is sufficient to confer a Gab1-like
behaviour to Gab2 in HGF-stimulated MDCK cells [146].
These findings indicate that in the case of Gab1 and Gab2,
differences in their subcellular compartmentalization,
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rather than in coupling to effectors, leads to distinct bio-
logical properties.

Using cardiomyocyte-specific Gab1/Gab2 double-defi-
cient mice, Nakaoka et al. (2007) could show that both
Gab1 and Gab2 play an important role in the postnatal
maintenance of cardiac function [147]. Neuregulin-1
(NRG1 B), a paracrine factor produced from endothelium
and a major ligand for the ErbB2/ErbB3 heterodimer,
induces marked tyrosine phosphorylation of Gab1 and
Gab2 leading to activation of ERK and AKT and the up-
regulation of angiopoietin 1 in the heart. These responses
were absent in Gab1/2-double deficient mice, which
exhibited high postnatal mortality and various signs of
cardiac insufficiency.

Gab2 plays an important albeit not essential role in the
development of various haematopoietic lineages [113],
except for NK cells [148]. Resulting defects in Gab2-defi-
cient mice can be attributed to the reduced responsiveness
of hematopoietic progenitors to early-acting cytokines
[113]. Importantly, Gab2-deficient mast cells display a
drastic phenotype. They fail to degranulate and to secrete
cytokines following activation of the FceRI antigen recep-
tor [112]. Consequently, allergic reactions including sys-
temic anaphylaxis are markedly impaired in Gab2-/- mice.
These mast cell activation defects reflect the pivotal role of
Gab2 as an amplifier for FceRI induced PI3K activation.
Similarly, knockdown of Gab2 expression with siRNA or
antisense oligonucleotides in RBL-2H3 rat basophilic leu-
kaemia cells, a widely used model system for mast cells,
results in drastically impaired degranulation and cytokine
production [149,150]. Furthermore, murine mast cell
development is impaired, because of weakened c-Kit sig-
nalling [115]. These findings suggest that Gab2, which is
often up-regulated in inflammatory diseases [151], might
be an important target for novel therapies against inflam-
mation and allergy. However, both Gab1 and Gab2 are
involved in the aggregation of platelets triggered by the
collagen receptor GPVI [152]. Thus, there might be a cer-
tain degree of redundancy between Gab1l and Gab2 for
some functions within the hematopoietic system, which
could be dissected further using inter-crosses between
Gab2-deficient mice and a conditional Gab1 knock-out.

Gab2-deficient mice also display an osteopetrotic pheno-
type that is explained by the role of Gab2 as a key regula-
tor of RANK signalling [114]. Bone homeostasis is the
result of an intricate balance between the anabolic action
of mesenchymal osteoblasts and the catabolic action of
osteoclasts, which represent a specialized type of mono-
cyte/macrophage lineage. In agreement with its pivotal
role in the differentiation of various haematopoietic line-
ages [113,115], Gab2 deficiency results in defective osteo-
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clast differentiation, which causes decreased bone
resorption and a subsequent systemic increase in bone
mass. Gab2 is tyrosine-phosphorylated in RANK ligand
stimulated osteoclast progenitors and it interacts with the
C-terminal domain of RANK. These reports are comple-
mented by a study showing that Gab2 plays distinct roles
in osteoclastogenesis in different phases of skeletal devel-
opment. According to this study, Gab2-deficient mice dis-
play enhanced bone formation at six weeks of age and
reduced osteoclast differentiation at twelve weeks of age
[153]. In addition to the RANK signalling pathway, EGFR
signalling has also been implicated in osteoclast differen-
tiation. Since Gab2 functions as signal transducer in both
pathways, it has been suggested that the crosstalk between
the two receptors might be mediated by Gab2. Indeed, an
interaction of the EGFR, RANK and Gab2 could be shown.
Moreover, stimulation of osteoclasts with RANKL induces
tyrosine phosphorylation of the EGFR implying that the
EGEFR is transactivated by RANK [154]. Recently, the PTK
Lyn has been shown to be recruited to the RANK/Gab2
signalling complex and to act as a negative regulator of
osteoclast differentiation by inhibiting the tyrosine phos-
phorylation of Gab2 [85]. This mechanism involves Lyn-
mediated phosphorylation of the tyrosine phosphatase
SHP-1. As a consequence, Lyn-deficient mice display bone
loss due to increased osteoclastogenesis. Therefore, Lyn
can either enhance [86,88,95] or attenuate [85] Gab2
tyrosine phosphorylation, depending on cellular context.
These findings further illustrate how fragmentary our
knowledge still is in respect to the mechanisms regulating
Gab phosphorylation.

All three mammalian Gab proteins are expressed in neu-
ronal tissues [10,19,29,155], however their precise role in
the CNS remains to be elucidated. Several reports suggest
that the individual Gab proteins exert important and
potentially non-redundant roles in the nervous system.
Firstly, Korhonen et al. (1999) reported that ectopic
expression of Gab2 in PC12 cells increased NGF-inde-
pendent neuronal differentiation and survival via PI3K-
and MEK-dependent pathways [155]. Similarly, Gab2, but
not Gab3 acts downstream of FGF receptors in order to
ensure the survival of various stem cell models during
retinoic acid-induced neuronal differentiation [29]. Inter-
estingly, this study also demonstrated that the expression
of Gab2 is strongly up-regulated during neuronal differen-
tiation and that Gab2 requires its PH domain and p85
recruitment sites to confer bFGF-mediated survival.

So far, studies have not identified any specific roles for
Gab3. Genetically-modified mice deficient for Gab3 are
healthy and viable and despite the strong up-regulation of
this protein during macrophage development, no obvious
phenotype was identified in Gab3-deficient macrophages
[145].
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Negative regulation

Gab proteins fulfill critical roles in the communication
between various receptor classes and several signalling
pathways involved in the control of proliferation, cell
death, migration and differentiation. Consequently, their
expression, subcellular localisation and signalling compe-
tent state must be strictly regulated. Although our knowl-
edge about these processes is still very limited, it is
becoming apparent that several layers of negative regula-
tion are applied to Gab docking proteins, which we will
now discuss.

Negative regulation by phosphatases

Firstly, as the PH domain plays an important role in mem-
brane recruitment, Gab signalling is influenced by the bal-
ance between the activities of PI3K and lipid phosphatases
such as PTEN or SHIP1/2. As discussed above, the latter
proteins are recruited into Gab signalosomes [156]. Simi-
larly, "PH domain-only" proteins such as the recently-
described p53 target and putative tumour suppressor gene
product PHLDA3 may negatively influence the membrane
recruitment of Gab proteins through direct competition
for PI3K products [157]. Indeed, such a scenario is sup-
ported by experiments in which the expression of the iso-
lated PH domain of Gab1 suppressed EGF-induced ERK
and AKT activation in breast cancer cell lines [158].

Secondly, tyrosine-phosphorylated Gab docking proteins
recruit SHP2 and it is therefore highly likely that the phos-
phorylation of certain tyrosine residues and their associ-
ated downstream signalling events are directly regulated
by this protein tyrosine phosphatase (PTP). Indeed, stud-
ies on both DOS and Gab1 have shown that they are
dephosphorylated by CSW and SHP2, respectively
[6,21,159]. Furthermore, the tyrosine residues implicated
in the recruitment of p85 and RasGAP to Gab1 are sub-
strates of SHP2 [77,160], which could explain as to why
SHP2 mutants with impaired phosphatase activity pro-
mote the interaction between Gab1 and a GST-p85 fusion
protein [161]. Although this has not been proven so far, it
is conceivable that a comparable mechanism can be
applied to the Gab2 signalling complex and that the pres-
ence of SHP2 in the Gab2 signalosome controls p85
recruitment and the extent of PI3K signalling. Indeed,
such a scenario might explain as to why SHP2 recruitment
dominates over p85 recruitment in the early phase of
EGF-induced Gab2 activation [39] and, given the reports
that p85 is accompanied by STATS5 into the signalosomes
[135], why Shp2 recruitment is inversely correlated with
STATS5 binding [80].

Regulation of Gab protein expression

A third regulatory layer is the control of the expression
level of Gab proteins by various mechanisms acting at the
transcriptional and post-transcriptional levels. Although
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the regulation of GAB gene promoters remains poorly-
characterized, one study has shown that transcription of
the GAB2 gene is induced by the transcription factor E2F
[162]. Furthermore, Gab2 expression is estrogen-regu-
lated in hormone-responsive breast cancer cells [163] and
studies in various cellular systems have revealed that Gab2
and Gab3 are up-regulated during cellular differentiation
processes [19,29,145,164].

Another study has demonstrated that Gab2 is subject to
ubiquitin-mediated degradation in FceRI-stimulated RBL-
2H3 basophilic leukaemia cells [165]. However, it
remains to be seen as to whether this mode of negative
regulation can be extended to other signalling systems
and cell types.

The hidden layer of complexity - fine tuning of docking
proteins by Ser/Thr-phosphorylation

A fourth and emerging mode of negative regulation of
docking proteins is mediated by Ser/Thr-phosphoryla-
tion, which is often correlated with their reduced tyrosine
phosphorylation and/or changes in subcellular localisa-
tion (see Refs. [15,97,166] for review). Indeed, early in
Gab signalling research, the dramatic electrophoretic
mobility shift displayed by these docking proteins upon
growth factor or cytokine stimulation was attributed to
phosphorylation events, although the sites and signalling
pathways remained largely ill-defined until the recent
advent of sensitive phospho-proteomics. Since then there
is accumulating evidence that many docking proteins
including those of the Gab family are targeted by several
immediate early feedback loops involving various classes
of protein Ser/Thr-kinases (Fig. 5; for review see Refs.
[97,166,167]). Bioinformatic analyses, e.g. using the Net-
Phos 2.0 algorithm, predict that Gab1 and Gab2 contain
47 and 76 potential Ser/Thr-phosphorylation sites,
respectively [8,168]; our unpublished observations).
Indeed, recent phospho-proteomic analyses on Gab2 and
SLP-65 [49,169] have underscored our concept that dock-
ing proteins are heavily phosphorylated in a dynamic
manner and thereby act as the centre of entire signalling
subsystems or hubs [170] as it is also depicted in Fig. 2. In
the following section we will provide an overview of how
this field has progressed over the last five years.

ERK mediated feedback phosphorylation of Gabl

The first reports on the feedback phosphorylation on Ser/
Thr-residues of Gab1l by the MAPK ERK were reported
about ten years ago by the Cantley group and were subse-
quently confirmed by others in a variety of experimental
settings [90,168,171,172]. Six ERK-dependent phosphor-
ylation sites (T312, S381, S454, T476, S581, S597) have
been mapped on human Gab1 in assays in which recom-
binant Gab1 was subject to an in vitro phosphorylation
reaction using recombinant ERK1/2 [173]. All these sites
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are located within putative MAPK phosphorylation motifs
(Fig. 5). Interestingly, most studies pinpoint towards a
negative role for ERK in Gab1 signalling as an increase in
the Ser/Thr-phosphorylation content of Gab1 is corre-
lated with a decrease in its tyrosine phosphorylation
[90,168,171,174]. Although the molecular mechanisms
involved in ERK-mediated inhibition of Gab1 tyrosine
phosphorylation still remain ill-defined, it should be
mentioned that four of these sites (S454, S581, S597,
T476) are located within the vicinity of the YVPM motifs
involved in p85 recruitment [171,173,174]. However, a
positive role for the ERK-mediated feedback phosphoryla-
tion of Gab1 has been also described [172]. Furthermore,
Eulenfeld and Schaper (2008) have revealed that an addi-
tional MAPK-dependent phosphorylation site in Gab1,
S$552, modulates the function of the PH domain in a pos-
itive manner and thereby contributes to the IL-6-mediated
recruitment of Gab1l to the plasma membrane [175].
Although the precise molecular mechanism remains to be
elucidated, this study suggests that phosphorylation may
regulate Gab proteins via conformational change. Lastly,
Gab1 has been shown to be a substrate of the Ser/Thr-
kinase ROK in vitro and possibly in vivo, although the sites
of phosphorylation and the functional consequences of
these phosphorylation events remain to be identified
[176].

Gab?2 is the target of several negative feedback loops
Gab2 is also subject to Ser/Thr-phosphorylation at multi-
ple sites (Fig. 5). In this regard, we have recently identified
21 novel phosphorylation sites on Gab2 purified from
growth factor-stimulated mammary epithelial cells [49].
The recent tally in Phosphosite http://www.phos
phosite.org currently lists 10 tyrosine, 18 serine and 5
threonine bona fide phosphorylation sites indicating that
Gab2 is a heavily phosphorylated protein.

In 2002, Lynch and Daly reported that Gab2 is phospho-
rylated within a typical AKT phosphorylation motif
encompassing S159 [177]. Furthermore, this study
showed that the prominent growth factor-induced elec-
trophoretic mobility shift of Gab2 is mediated by both
PI3K- and MEK-dependent feedback loops. Importantly,
inhibition of the PI3K/AKT pathway or mutation of S159
resulted in increased tyrosine phosphorylation of this
docking protein, and the Gab25!5%4 mutant displayed
transforming properties in fibroblasts. To our knowledge,
this was the first evidence that the oncogenic potential of
docking proteins can be harnessed by negative feedback
control. This concept was subsequently supported by a
study from the Schlessinger laboratory showing that the
negative feedback phosphorylation of FRS2a by ERK sup-
presses its transforming potential [13]. In agreement with
the original findings by Lynch and Daly (2002), a recent
study comparing murine breast cancers driven by an
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Figure 5

The Phosphomaps of human Gabl and Gab2. This cartoon is based on information from sources cited in the main text

and on the Phosphosite homepage http://www.phosphosite.org. Phosphotyrosine residues involved or strongly implicated in
the recruitment of the SH2 domain containing effectors Shp2, p85, Crk and PLCy are indicated. Ser/Thr-residues phosphor-

ylated in an ERK- or PI3K-dependent manner are also shown.

ErbB2 transgene alone or in combination with an consti-
tutively activated AKT transgene showed that the phos-
phorylation of Gab2 at Y452 was dramatically reduced in
the latter [178]. Although, the phosphorylation status of
S$159 was not addressed in this study, it is tempting to
speculate that the aforementioned Akt-mediated feedback
loop is responsible for the attenuation of Gab2 tyrosine
phosphorylation. Another recent report has identified the
Ser/Thr-phosphatase calcineurin as novel interaction part-
ner of Gab2 that interacts with the serine-rich region C-

terminal of the PH domain [179]. This region includes
S159 and ectopic expression of calcineurin results in
reduced recognition of Gab2 by an anti-AKT substrate
antibody, which appears to detect predominantly pS159.
In line with the negative role of $159 [177], co-expression
of Gab2 and a catalytically active, but not a phosphatase-
dead, form of calcineurin enhanced IL-3 mediated activa-
tion of a c-fos-reporter construct in a synergistic manner.
As described later in this section, Gab2 is also subject to
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additional PI3K-dependent negative feedback events on
S$210 and T391 [49].

Gab2 is also regulated by ERK-mediated negative feedback
phosphorylation, as identified by Arnaud et al. in 2004 in
IL-2 stimulated T lymphocytes [80]. Previously, ERK or an
ERK-dependent kinase had been implicated in the phos-
phorylation of Gab2 [177,180], however, the phosphor-
ylation site(s) was not characterised. Arnaud et al (2004)
identified S623 as the site of action of this ERK-mediated
feedback loop and provided evidence that the Gab2/SHP2
interaction is enhanced by a S623A mutation.

Taken together, a series of studies over the last decade has
shown that the tyrosine phosphorylation and signalling
potential of docking proteins such as those of Gab, IRS,
FRS and SLP families is counteracted by their Ser/Thr-
phosphorylation, which usually represents the endpoint
of feedback loops from cytoplasmic signalling cascades
[13,15,49,81,169,177,181]. Consequently, major tasks
for the future will be to characterize the spatiotemporal
regulation of these phosphorylation events in response to
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specific stimuli, the kinases and phosphatases involved
and the mechanisms by which such modifications control
signal output.

How is Gab function regulated by feedback
phosphorylation?

Potential mechanisms that may underpin the action of
phosphorylation-dependent positive or negative feedback
on Gab proteins are summarized in Fig. 6. Firstly, phos-
phorylation of a particular residue might affect the phos-
phorylation of a nearby residue in either a positive or
antagonistic fashion, due to phosphorylation-induced
changes in protein conformation or simply changes in the
electrostatic landscape of the substrate protein [182] (Fig.
6A/B). Secondly, phosphorylation-induced conforma-
tional changes may alter the accessibility of key regions,
such as the PH domain. These may occur due to electro-
static repulsion/attraction between distinct protein moie-
ties or phosphorylation-induced cis/trans peptidyl-prolyl-
isomerisation (Fig. 6C). Although Gab proteins have not
been identified as substrates of peptidyl-prolyl-isomerases
such as PIN1 yet [183], the high number of phosphoryla-
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Potential functional effects of Gab phosphorylation. (A/B) Phosphorylation of one residue affects the phosphorylation
of a nearby residue in either a positive or antagonistic fashion. (C) Phosphorylation-induced conformational changes by the cis/
trans peptidyl-prolyl-isomerase PIN-1. (D) Phosphorylation affects the composition of multi-protein complexes, e.g. by phos-
phorylation-induced conformational changes or the creation of docking sites, e.g. for proteins with SH2, PTB, or WW domains
or for 14-3-3 proteins. IP A and IP B stand for interaction partners A and B, respectively. For details refer to text.
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tion sites preceding proline residues and the fact that Gab
proteins are targeted by Pro-directed kinases such as ERK
support the likelihood of this regulatory mechanism
[80,173,175].

A third mechanism by which docking proteins can be neg-
atively regulated by protein phosphorylation is via
changes in their "social behaviour", specifically altera-
tions in their ability to interact with crucial interaction
partners or in their subcellular localisation (Fig. 6D; [4]).
Key mediators of this kind of mechanism are 14-3-3 pro-
teins, a highly- conserved and ancient group of eukaryotic
adaptor proteins that bind to specific phospho-Ser/Thr-
residues in their client proteins and thereby execute the
effect of phosphorylation events, either by stabilizing cer-
tain protein conformations or regulating intermolecular
protein-protein interactions [2]. Several docking proteins
such as KSR, SLP-76 and IRS proteins have been described
as 14-3-3 client proteins [4,15,181] and we recently
reported that Gab2 interacts with 14-3-3 proteins in a
phosphorylation-dependent manner [49]. This interac-
tion is mediated by two 14-3-3 binding motifs surround-
ing S210 and T391 that flank the typical Grb2 binding
site. Interestingly, while Akt phosphorylates Gab2 only at
S$159 [177], the phosphorylation of S210 and T391 is
attenuated by PI3K and AKT inhibitors indicating that the
responsible Ser/Thr-kinases are positively modulated by
the PI3K-AKT axis and are therefore acting in negative
feedback mode [49]. In support of this model, Gab2
mutants defective in 14-3-3 binding exhibit increased
recruitment of Grb2 and consequently sustained associa-
tion with the tyrosine phosphorylated EGFR and Shc. Fur-
thermore, these Gab2 mutants promote cellular
proliferation and transformation. Conversely, introduc-
tion of constitutive 14-3-3-binding sites into Gab2 drasti-
cally reduces its ability to recruit Grb2 and renders it
refractory to receptor activation, demonstrating that site-
selective binding of 14-3-3 proteins is sufficient to termi-
nate Gab2 signalling. Based on these findings, we pro-
posed a model in which signal attenuation occurs,
because 14-3-3 promotes dissociation of Gab2 from
Grb2, and thereby uncouples Gab2 from the receptor
complex. As shown in Figs 2 and 3, the Gab2/Grb2 inter-
action is pivotal for the recruitment of this docking pro-
tein to most, if not all receptors and consequently this
novel regulatory mechanism should have broad implica-
tions for diverse signalling systems. Interestingly, the 14-
3-3 recruitment motifs around S210 and T391 are con-
served in Gab2 orthologues from bony fish to mammals,
but are absent from Gab1l and Gab3 paralogues. Gab4
contains the 14-3-3 binding motif around S210, but lacks
the motif around T391 and the typical Grb2 binding site,
which is positioned in N-terminal vicinity of T391. Fur-
thermore, these motifs are also absent from DOS and
SOC-1 suggesting that the 14-3-3 interaction is a verte-
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brate-specific regulatory layer for Gab2. However, Scansite
[121] predicts three potential mode I 14-3-3 binding sites
in NeGab (S162, S328 and T516), which also flank the
equivalent of the typical Grb2 binding site in NeGab
(359-366). Although this remains purely speculative, this
observation could indicate that the Gab/14-3-3 interac-
tion is an ancestral feature that was modified or lost dur-
ing the evolution of the SOC-1, DOS and Gab1/3
proteins.

Gab docking proteins in human pathologies

Gab proteins and tumourigenesis

Given their pivotal role in many physiological processes,
it is perhaps not surprising that Gab proteins are impli-
cated in a variety of human diseases. In particular, Gab
proteins contribute to aberrant PTK signalling in certain
malignancies, reflecting their functions as signal amplifi-
ers. Only a few mutations have been reported in human
Gab proteins so far [184] and COSMIC database) and due
to their low frequency it is unclear whether the corre-
sponding mutant Gabs represent real drivers or merely
passengers of tumourigenesis. However, it is well-estab-
lished that Gab proteins promote tumourigenesis by func-
tioning as 'accomplices' of certain oncoproteins or by
amplifying signalling upon their overexpression. In the
following sections we will provide an update regarding
their identified roles in hematopoietic disorders and solid
tumours.

Haematological neoplasia

The first evidence for the critical involvement of Gab2 in
leukemogenesis was the groundbreaking finding that
myeloid progenitors from Gab2-deficient mice are resist-
ant to transformation by Bcr-Abl [185]. The latter repre-
sents a leukemogenic fusion protein generated as a
consequence of a chromosomal translocation found in
more than 90% of patients with chronic myeloid leukae-
mia (CML). Phosphorylation of Y177 within the Bcr moi-
ety leads to recruitment of the Grb2/Gab2 complex and
downstream signalling via SHP2 and PI3K, which is cru-
cial for enhanced proliferation and survival. Similarly, the
oncogenic Bcr-FGFR1 fusion protein, which is also the
product of a chromosomal translocation (Table 1) and
consists of a Bcr-derived moiety and the tyrosine kinase
domain of the fibroblast growth factor receptor 1
(FGFR1), drives the tyrosine phosphorylation of Gab2 in
murine bone marrow cells and their malignant transfor-
mation through phospho-Y177 mediated Grb2 associa-
tion [186]. These data strongly suggest that Grb2-
mediated recruitment of Gab2 to oncogenic fusion pro-
tein tyrosine kinases is a critical event for the induction of
a CML-like disease.

The pivotal role of Gab2 in Bcr-Abl signalling is further

underscored by the observation that shRNA-mediated
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Table I: Oncogenic events in human and murine leukemias involving Gab2

Genetic aberration Leukemic disease Involvement of Gab2 References
Bcr-Abl CML, B-ALL Recruitment of Grb2/Gab2 complex to Y177 of [185,187]
translocation t(9;22) Bcr-Abl
Y177 and Gab2 are essential for Bcr Abl-mediated
transformation and leukemogenesis
Bcr-FGFRI t(8;22) CML-like disease Recruitment of Grb2 and presumably Gab2 to [186]
Y177 of Ber-Abl. Increased Gab2 tyrosine
phosphorylation
Tel-Abl B-ALL, T-ALL, CML Recrutiment of Grb2/Gab2 complex to Y314 of [191]
translocation Tel-Abl
t(%;12) Y314 is essential for Tel Abl-mediated
transformation and leukemogenesis
Tel-Jak2 translocation t(9,12) ALL Some isoforms of Tel-JAK2 recruit the Grb2/Gab2  [190]
complex via Y314
Npm-Alk Anaplastic large cell lymphomas Gab2, SHP2 and Grb2 form a complex with Npm-  [242]
translocation Alk
t(2;5)
SHP2 E76K JMML E76K mutation confers enhanced catalytic activity ~ [200]
point mutation to SHP2 and requires Gab2 for transformation
Sf-Stk Friend's virus-induced erythroleukemia in mice Recruitment of the Grb2/Gab2 complex to S-Stk [36,81]
is essential for erythroid transformation by Friend
virus,
this involves the direct binding of STAT3 to Gab2
Amplification of MLL locus AML/MDS Gab?2 is frequently co-amplified with the mixed [210]

lineage leukaemia (MLL) gene

silencing of endogenous Gab2 inhibits proliferation and
colony formation of CD34+ cells from CML patients, but
not their counterparts isolated from healthy donors [187].
However, the role of Gab2 in CML might be more com-
plex than just driving proliferation and survival through
the PI3K and SHP2/Ras pathways. Indeed, through the
recruitment of SHP2, Gab2 tightly controls ERK/MAPK
signalling, which will, if it exceeds a certain threshold,
drive the terminal differentiation rather than the prolifer-
ation of Bcr-Abl transformed myeloid progenitors.
Indeed, Gab2 over-expression induces increased ERK acti-
vation and megakaryocytic differentiation of the CML cell
line K562 [188]. This suggests that the expression levels
and signalling competence of Gab2 needs to be tightly
controlled in Bcr-Abl* CML in order to drive proliferation
and to repress differentiation at the same time, raising the
possibility that modulation of Gab2 signalling might rep-
resent a strategy to control this disease.

Despite the great clinical success of the PTK inhibitor
imatinib in the therapy of CML, imatinib resistance, due
to acquired mutations in the Bcr-Abl oncogene or subse-
quent alterations in the cellular signalling network,
remains a serious clinical challenge [189]. Interestingly,
imatinib resistance in the absence of detectable Bcr-Abl
kinase mutation is often mediated by persistent activation
of the Src family kinase Lyn, which tyrosine phosphor-
ylates Gab2 leading to activation of its downstream effec-
tors. Lyn inhibition silences Gab2 and Bcr-Abl tyrosine
phosphorylation and restores imatinib sensitivity [86].

Another kinase implicated as a key component of the Bcr-
Abl signalling network is Jak2 that in turn activates Lyn
leading to Gab2 phosphorylation. Consequently, phar-
macological or siRNA-mediated inhibition of Jak2 or Lyn
reduces tyrosine phosphorylation of Gab2 in CML cells.
Taken together, these findings identify Jak2 and Lyn as
additional drug targets in CML and further highlight the
important role of tyrosine-phosphorylated Gab2 as a
driver of CML [86,91,95].

After the pivotal role of Gab2 in Bcr-Abl-mediated trans-
formation had been established, its involvement in the
pathogenesis of several other leukemias was discovered
(Table 1). The oncogenic fusion kinases Tel-Abl and Tel-
Jak2 engage Gab2 in a similar manner to Bcr-Abl
[190,191]. Tyrosine 314 is crucial for the recruitment of
the Grb2/Gab2 complex to Tel-Abl and presumably to
Tel-Jak2 as well [192]. Consequently, a Tel-AblY314F
mutant exhibits reduced fibroblast transforming capacity
and fails to induce a CML-like disease in mice [191]. It
should be emphasised that the common denominator of
the structurally unrelated Bcr and Tel fusion partners is
their potential to recruit Grb2/Gab2 complexes, which
underscores again the significance of Gab2 as an amplifier
of dysregulated signalling by Abl, Jak2 and FGFR1.

The role of Gab proteins in JMML and NCFC syndromes

Juvenile myelomonocytic leukemia (JMML) and the
neuro-cardio-facious cutaneous syndromes (NCFC) are
human pathologies caused by aberrant Ras/ERK signal-
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ling. The NCFC syndromes comprise neurofibromatosis
(NF) and the Noonan (NS), Costello (CS), LEOPARD
(LS) and cardio-facious-cutaneous (CFC) syndromes,
which are correlated with autosomal-dominant germ-line
mutations within either the core components (Ras, B-Raf,
Raf-1, MEK) or modulators of the Ras/ERK pathway (NF1,
SHP2, SOS and Spred). The resulting mutant proteins dis-
play aberrant activities and consequently disturb the over-
all fine-tuning of the Ras/ERK pathway and to a certain
degree the Ras/PI3K pathway [35,193]. As the ERK path-
way steers both proliferation and differentiation, many
processes underlying normal human development and
organ homeostasis are perturbed and give rise to the vari-
ous clinical symptoms, which range from cardiac defects,
skin and cranio-facial abnormalities to growth and men-
tal retardation [194-196]. Importantly, some NCFC syn-
dromes predispose affected individuals to neoplastic
diseases [196]. Indeed, the discovery of germline missense
mutations in the SHP2-encoding PTPN11 gene in ~50%
of NS cases led to the identification of PTPN11 as the most
common target of somatic mutations in JMML, a rare,
albeit aggressive myelo-proliferative disorder occurring in
children, where PTPN11 mutation rates of up to 35%
have been reported [196-199]. The most frequently
JMML-associated mutation, E76K, confers enhanced cata-
lytic activity to SHP2 and requires Gab2 for transforma-
tion of primary murine myeloid progenitors [200].
However it should be noted that the nature of somatic
JMML-associated PTPN11 mutations differ from the
germline mutations identified in Noonan syndrome in
that JMML-associated PTPN11 alleles usually encode
stronger gain-of-function mutant proteins [200,201].
Nevertheless, this finding demonstrates that Gab2 is an
important player in JMML and suggests that NS-associated
SHP2 mutants may require Gab proteins as recruitment
devices in a similar manner. Indeed, co-expression exper-
iments in COS-7 cells revealed that NS-associated SHP2
mutants exhibit a stronger and more sustained interaction
with Gab1l than SHP2*t. Importantly, co-expression of
Gab148HP2 jp this system blocks the EGF-induced increase
in the phosphatase activity of the NS-associated SHP2
mutants and consequently abolishes their positive effect
on EGF-induced ERK phosphorylation [202].

While NS patients carry mostly gain-of-function muta-
tions in SHP2, this phosphatase often contains dominant-
negative mutations in LS patients [197,203]. Interestingly,
expression of LS-associated SHP2 mutants with impaired
catalytic activity in cells strongly enhances the EGF-
induced interaction between Gab1 and p85 [161], which
suggests that these mutant proteins, while acting in dom-
inant negative fashion on the Ras/ERK pathway, may pro-
mote aberrant PI3K activation by protecting the p85
recruitment sites against SHP2"t. Taken together, these
studies identify Gab proteins as important "accomplices”
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of NCFC-associated SHP2 mutants and suggest that a bet-
ter knowledge of Gab signalling will contribute to an
improved understanding and treatment of these syn-
dromes. Furthermore, the close relationship between
SHP2 and Gab proteins and the important role of Gab
proteins as modulators of Ras signalling also raise the
question as to whether the Gab genes themselves are
awaiting their identification as novel "NCFC" alleles.

Aberrant activation and/or expression of Gab proteins in solid
tumours

Dysregulated Gab signalling is also increasingly recog-
nised as an important contributor to the biology of solid
tumours. Firstly, the signalling potential of Gab1 needs to
be considered in tumours with aberrant expression or
mutations of c-MET [17,204]. As discussed above several
studies have demonstrated the close collaboration
between c-Met and Gab1 and, in contrast to many other
RTKs that merely induce a transient tyrosine-phosphor-
ylation of Gab1, ¢-MET induces a very sustained tyrosine
phosphorylation of this docking protein [24,129]. Fur-
thermore, a recent study has revealed Gab1 not only as a
convergence point between c-MET and EGFR pathways,
but also suggests that Gab1 cooperates with MET amplifi-
cation in lung cancer cells, which have become resistant
towards the EGFR inhibitor gefitinib [204]. A correlation
between the tyrosine phosphorylation status of Gab1 and
the progression of ErbB2-transgene driven murine mam-
mary tumours has also been reported, indicating that
Gab1 needs to be considered as an important downstream
effector of this oncogenic RTK as well [205]. Lastly, it
should be mentioned that somatic missense mutations
resulting in conversion of the amino acid residues Y83,
T387 and R498 into C, N and M, respectively, have been
identified in the human GABI gene in human breast and
lung cancers, albeit at very low frequencies (for details see
the COSMIC database at http://www.sanger.ac.uk/genet
ics/CGP/cosmic/ and Ref. [184]). However, it remains to
be tested as to whether these mutations alter the signalling
properties of Gab1l, and so it is unclear at this stage
whether they represent real drivers or merely passengers of
tumourigenesis.

In contrast to Gab1l, Gab2 is developing a strong track
record as an oncoprotein in its own right in various solid
tumours. Firstly, Gab2 is frequently over-expressed in
human breast cancer cell lines and primary tumours and
becomes tyrosine phosphorylated in these cells in
response to EGF, insulin and bFGF stimulation [163].
This indicates that a variety of RTKs implicated in breast
cancer development or progression use Gab2 to amplify
their signals. It should be mentioned that there might be
several, not necessarily mutually exclusive mechanisms by
which Gab2 is up-regulated in breast cancer such as the
amplification of the GAB2 locus on 11q13-14 [35], a
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region commonly amplified in breast cancers, the aber-
rant activity of the E2F transcription factor [162,206],
which is often dys-regulated in tumours and binds directly
to the human GAB2 promoter, and aberrant estrogen
receptor (ER) signalling [163]. Indeed, the original study
on Gab2 in breast cancer demonstrated that the expres-
sion of both Gab2 mRNA and protein was induced by
estradiol in an ER-dependent manner [163]. These obser-
vations spurred investigations in several laboratories as to
whether the over-expression of Gab2 represents a cause or
consequence of tumour development. In order to address
this question, the Daly and Neel laboratories made use of
the immortalised, but non-transformed human mam-
mary epithelial cell MCF-10A, which expresses very low
levels of Gab2 [163] and generates acinar structures in
three dimensional (3D) matrigel cultures. Consequently,
this cell line is frequently used to characterise the impact
of oncogenes on hallmarks of epithelial development and
transformation [207]. In the first study, Brummer et al.
applied a bi-cistronic retroviral expression system to
adjust the Gab2 expression in MCF-10A cells to levels
observed in human breast cancer cell lines and analysed
the intracellular signalling events in these cells [39]. In
monolayer culture, overexpression of Gab2 accelerated
EGF-induced cell cycle progression and was associated
with enhanced and/or more sustained EGF-induced ERK
and AKT activation. When grown in 3D matrigel culture,
MCEF-10A cells expressing ectopic Gab2 were still able to
generate polarized, growth-arrested acini with hollow
lumina. However, the acini were larger due to increased
cell proliferation, and the suppression of proliferation
that normally occurs in late 3D stage cultures was attenu-
ated [39]. Very similar findings were independently
reported by the Neel laboratory [35]. The effect of Gab2
on acinar size was dependent on the presence of intact
Grb2 and SHP2 binding motifs and was enhanced by its
potential to recruit PI3K [39]. Importantly, Gab2 also
conferred independence of the morphogenetic program
from exogenous EGF and intrinsic EGFR kinase activity
[39].

Amplification and/or over-expression of the human GAB2
gene has been also recently reported for ovarian [208] and
gastric cancer [209] and acute myeloid leukemia (AML)
[210], although additional functional studies are required
to dissect the role that Gab2 plays in these malignancies.
Furthermore, two recent studies in melanoma support the
findings from the aforementioned breast cancer models in
various aspects [211,212]. Firstly, Horst et al. have shown
that, similar to breast cancers and other neoplasias, the
GAB2 gene is amplified and/or over-expressed in 11% and
50% of human metastatic melanomas, respectively [211].
Moreover, Chernoff et al. (2009) demonstrated that GAB2
amplification is associated with melanoma arising from
sun-protected sites and often occurs independently from
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oncogenic NRAS or BRAF mutations or amplification of
the KIT gene [212]. Importantly, knockdown and over-
expression experiments revealed that Gab2 enhances the
migratory and invasive behaviour of melanoma cells in a
PI3K-dependent manner [211]. In contrast to the over-
expression of Gab2 in metastatic melanoma, normal
human melanocyte lines, melanocytic nevi and primary
melanomas displayed low Gab2 expression levels suggest-
ing that Gab2 overexpression might represent a marker of
neoplastic progression [211].

Cooperation of Gab2 with other oncogenes in solid tumours

We have previously reported that MCF-10A cells express-
ing very high levels of Gab2 generate large disorganized
structures in 3D culture with defective luminal clearance
[39], a phenotype that is frequently observed in this sys-
tem upon ectopic expression of activated RTKs [207,213].
Although it is uncertain at this stage as to whether such
high Gab2 expression levels occur in breast cancers, these
data underscore the oncogenic potential of Gab2 and sug-
gest that Gab2, although being a weak oncogene by itself,
might be an important cooperation partner of other onco-
proteins. Indeed, such a cooperation of Gab2 with other
oncoproteins has been previously demonstrated with Sf-
STK, v-Sea and polyoma middle T antigen [36,214,215].
Furthermore, the Neel laboratory could demonstrate that
coexpression of Gab2%t, but not Gab24SHP2, with the RTK
Neu (also known as ErbB2 and HER2) resulted in an inva-
sive growth phenotype of MCF-10A cells in 3D culture
[35]. Importantly, this study also showed that NeuNT-
transgene-evoked mammary tumourigenesis is potenti-
ated or reduced in MMTV-Gab2 transgenic and Gab2-defi-
cient mice, respectively.

The studies of Bentires-Alj et al. [35] were complemented
by a recent report from the Feng laboratory demonstrating
that ablation of Gab2 severely suppresses lung metastasis
of Neu-induced mammary tumours and that Neu-trans-
formed but Gab2-deficient mammary epithelial cells
exhibit decreased migration and impaired ERK activation,
[216]. Here, the authors could show that Gab2 expression
levels were elevated in mammary tumours induced by the
Neu (ErbB-2) oncogene suggesting that, as discussed
above, an oncoprotein-distorted signalling network alone
might be sufficient to up-regulate the expression of Gab2,
e.g. via increased E2F activity. However, Ke et al. reported
that loss of Gab2 in mice had only a modest effect on the
initiation and growth rate of mammary tumours induced
by a constitutively active neu transgene (Neu2-5) or a sig-
nalling-compromised version, NeuYD, which can only
recruit Shc proteins [216]. There are two potential expla-
nations for differences in the results of this study to those
from the Neel laboratory [35]. Firstly, the studies used
independent Gab2-deficient mouse strains generated by
different knock-out strategies, with one strain expressing

Page 19 of 28

(page number not for citation purposes)



Cell Communication and Signaling 2009, 7:22

low amounts of a N-terminally truncated Gab2 protein
[112]. Secondly, intrinsic differences between the NeuNT,
Neu2-5 and NeuYD transgenes used might account for the
observed differences in tumour onset and growth. Despite
these discrepancies, it is clear that Gab2 co-operates with
Neu to promote the development or progression of
mouse mammary tumours. Interestingly, the requirement
for a Gab docking protein for the efficient action of an
activated Neu/ErbB2 is not restricted to mammalian sys-
tems as DOS cooperates with a neu transgene in Drosophila
[217].

The cooperation of Gab2 with oncoproteins in solid
tumours is not restricted to oncogenic RTKs such as ErbB2
and v-Sea. For example, the non-receptor tyrosine kinase
¢-Src is often aberrantly expressed or activated in human
breast cancers, sometimes as a consequence of dys-regu-
lated ErbB2 activity [218,219]. As the tyrosine phosphor-
ylation status of Gab2 is regulated by members of the Src
family, Bennett et al. (2008) investigated the biological
consequences of the co-expression of Gab2 and Src pro-
teins in the aforementioned MCF-10A model [94]. This
study demonstrated that, while over-expression of c-Src by
itself did not affect acinar morphogenesis or growth factor
dependence in 3D culture, c-Src co-operated with Gab2 to
promote EGF-independent acinar growth. Furthermore,
Gab2, but not Gab24r85, significantly enhanced acinar
disruption induced by the hyper-active v-Src and c-SrcY527F
mutants [94]. This phenotype was associated with a signif-
icant reduction in the adhesive strength of E-Cadherin, a
cell adhesion molecule critical for acinar morphogenesis,
without altering its surface expression. Furthermore, Gab2
associated with E-Cadherin in the presence and absence of
v-Sr¢, indicating that the ability of Gab2 to weaken the
strength of cell-cell contacts may reflect enhanced activa-
tion of PI3K at adherens junctions. It should be noted that
Gab2 also increased migration and invasion of MCF-10A
cells expressing activated Src proteins, but these effects
were p85-independent and might be mediated by the
SHP2 effector branch.

Lastly, as Gab2 is an important amplifier of PI3K signal-
ling, it is tempting to speculate that Gab2 overexpression
might cooperate with the BRAFV60OE oncogene in
melanoma. The V600E mutation is a very frequent and
early-arising event in the nevi-melanoma progression
series but, by itself, induces only a transient enhancement
of proliferation followed by cell cycle arrest with hall-
marks of cellular senescence [220]. Indeed, a recent study
involving conditional mouse models has shown that
BRAFV600E cooperates with the loss of PTEN in the induc-
tion of metastatic melanomas [221], which underscores
the idea that BRAFV600E requires increased levels of PI3K
activity to drive malignant melanomas. Thus, Gab2 might
even cooperate with oncogenes that are not directly asso-
ciated with the Gab2 signalosome.

http://www.biosignaling.com/content/7/1/22

In summary, a series of studies conducted in various
experimental settings have now demonstrated that Gab2
is not only an important interaction partner of oncopro-
teins involved in the transformation of hematopoietic
cells, but also of those playing a well-described role in
solid tumours. It appears likely that more co-operating
oncogenes for Gab2 in solid tumours will be found in the
not too distant future. One of these candidates might be
again SHP2, which is mutated at low frequency in AML
and several solid cancer types and commonly overex-
pressed in breast cancer, where it is involved in regulating
epithelial/mesenchymal transition [222-224]. Studies to
date demonstrate that Gab2 can promote the prolifera-
tion, growth factor autonomy, migration and invasion of
cancer cells, indicating that it may contribute to several
stages of tumour progression. An important avenue for
further research will be to identify whether Gab2 associ-
ates with patient prognosis or therapeutic responsiveness
in particular malignancies, such as breast cancer.

Molecular mimicry of Gab proteins

The CagA protein of the gastric pathogen Helicobacter
pylori is translocated into gastric epithelium cells of the
host where it interacts with Grb2, becomes tyrosine phos-
phorylated and recruits effectors such as SHP2 and Crk to
enhance Ras/ERK signalling and cellular transformation
[225-228]. However, despite these functional similarities
to Gab proteins, CagA shares no sequence homology with
members of the Gab/DOS family, indicating that it func-
tions via molecular mimicry of these eukaryotic docking
proteins. Given the association between CagA and devel-
opment of gastric carcinoma [225], an interesting possi-
bility is that the aforementioned overexpression of Gab2
in gastric cancer [209] triggers similar events in the gastric
epithelium to Helicobacter infection and that the gastric
epithelium is susceptible towards transformation by aber-
rant SHP2 activity. Interestingly, this concept of molecular
mimicry is now strongly supported by recent experiments
in Drosophila demonstrating that a cagA transgene can res-
cue larval viability and photoreceptor development in
mutant animals lacking DOS [229]. Furthermore, an
epistasis analysis also revealed that the DOS complement-
ing function of CagA requires the expression of the SHP2
orthologue CSW.

Is Gab2 involved in Alzheimer’s disease?

In addition to the various neoplastic diseases, Gab2 is also
increasingly implicated in Alzheimer's disease (AD). Rei-
man et al. (2007) identified certain GAB2 alleles as modi-
fiers of disease susceptibility in carriers of the APOEe4
allele that is strongly associated with late-onset AD [230].
Although other independent studies failed to replicate
this association [231-233], the initial findings were con-
firmed by Belgian and Italian studies [234,235] and recent
meta-analyses suggest that there is indeed a significant
association between GAB2 allelic variation and AD risk
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[236,237]. It remains to be elucidated how these SNPs
affect Gab2 expression and/or function. However, Reiman
et al. (2007) could demonstrate that siRNA-mediated
reduction of Gab2 expression in neuroglioma cells results
in increased Tau protein phosphorylation at Ser 262, a res-
idue, which is hyper-phosphorylated in AD and has been
implicated in neurofibrillary tangle formation. As this res-
idue is targeted by GSK-3 and this kinase is inhibited by
AKT-mediated phosphorylation [238], this finding is con-
sistent with the well-established function of Gab2 as an
amplifier of PI3K/AKT signalling. Clearly, more genetic
data and in particular functional analyses will be required
to deliver a verdict on the role of Gab2 in AD.

Conclusion and perspectives

Since their discovery, Gab docking proteins have emerged
as critical players in many physiological processes as well
as pathologies such as cancer and inflammatory diseases.
It is becoming more and more evident that their versatile
roles in signal transduction extend beyond the original
and relatively static definition of a docking protein. We
are starting to appreciate that docking proteins play a cen-
tral role in the management of entire signalling subsys-
tems and that they are, at the same time, subject to
complex spatiotemporal control by the same network, e.g.
via phosphorylation events. They orchestrate multiple
protein-protein and -lipid interactions and also act as
allosteric activators. The diversity of Gab interaction part-
ners also implies that there are distinct types of Gab signa-
losomes present in the cell, which differ in their
subcellular localisation and function. Thus, more refined
biochemical approaches will be required to characterize
the composition and stoichiometry of the different Gab
signalosomes. It is also becoming evident that Gab pro-
teins mediate the crosstalk between various signalling
pathways and thereby provide the basis for the synergistic
action of various receptors [154,204,239], which reflects
the real in vivo situation as the cells in our bodies are
simultaneously exposed to a plethora of biologically-
active ligands. However, in order to fully understand the
signalling roles of Gab proteins, it is clear that various dis-
ciplines will need to cooperate and utilize a systems-based
approach that integrates structural and biophysical stud-
ies on regulation of protein-protein interactions, mathe-
matical and computational modelling of the Gab
signalling network and functional analyses that exploit
the genetics of appropriate model organisms. Such an
endeavour is likely to provide exciting new insights into
the mechanisms and functions of Gab signalosomes.
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Aa: Amino acid; AD: Alzheimer's disease; AML: Acute
myeloid leukemia; BCR: B cell antigen receptor; Bcr:
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factor; BMMCs: Bone marrow derived mast cells; BTAM:
Bi-phosphoryl tyrosine activation motif; BTK: Bruton's
tyrosine kinase; CBP: Csk-binding protein; CD: Cluster of
differentiation; CFC: Cardio-facious-cutaneous syn-
dromes; CML: Chronic myeloid leukemia; CNS: Central
nervous system; Crk: Sarcoma virus CT10 oncogene
homolog; CS: Costello syndrome; CSF: Colony stimulat-
ing factor; CSW: Corkscrew; DAG: Diacylglycerol; DNA:
Deoxyribonucleic acid; DOS: Daughter of sevenless; EGF:
Epidermal growth factor; ERK: Extracellular signal regu-
lated kinase; EST: Expressed sequence tag; EPO: Erythro-
poietin; FGF: Fibroblast growth factor; FRS: Fibroblast
growth factor receptor substrate; Gab: Grb2-associated
binder; GADS: Grb2-related adaptor downstream of Shg;
GAP: GTPase activating protein; Grb2: Growth factor
receptor-bound protein 2; Gsk: Glycogen synthase kinase;
GST: Glutathione S-transferase; GTP: Guanine nucleotide
trisphosphate; HER: Human epidermal growth factor
receptor; HGF: Hepatocyte growth factor; IL: Interleukin;
IP5: Inositoltrisphosphate; IRS: Insulin receptor substrate;
JAK: Janus kinase/Just another kinase; JMML: Juvenile
myelomonocytic leukemia; kDa: Kilodalton; KSR: Kinase
suppressor of ras; LAT: Linker of activated T cells; LPA: Lys-
ophosphatidic acid; LS: LEOPARD syndrome (multiple
lentigines: electrocardiographic conduction defects; ocu-
lar hypertelorism; pulmonary stenosis; abnormalities of
the genitalia; retardation of growth and sensorineural
deafness); MAPK: Mitogen activated protein kinase; MBD:
Met binding domain; MEFs: Mouse embryonic fibrob-
lasts; MEK: Mitogen activated protein/extracellular signal
regulated kinase kinase; MONA: Monocytic adaptor;
NCFC: Neuro-cardio-facious-cutaneous syndromes; NF:
Neurofibromatosis; NF-kB: Nuclear Factor kappa B; NGF:
Nerve growth factor; NK: Natural killer; NRG: Neuregulin;
NS: Noonan syndrome; PAG: Phosphoprotein associated
with glycosphingolipid-enriched microdomains; PAK:
p21-activated kinase; PDGF: Platelet-derived growth fac-
tor; PH: Pleckstrin homology; PI3K: Phosphatidyl-inosi-
tol-3 kinase; PI3KCA: gene encoding the catalytic subunit
of phosphatidyl-inositol-3 kinase; PIP: Phosphatidyl-
inositol-phosphate; PKB: Protein kinase B; PLC: Phos-
pholipase; PTB: Phospho-tyrosine binding; PTEN: Phos-
phatase and Tensin homolog; PTK: Protein tyrosine
kinase; PTP: Protein tyrosine phosphatase; PTPN: Protein
tyrosine phosphatase: non-receptor; Raf: Rapidly growing
fibrosarcoma; RANK: Receptor Activator of NF-kB; Ras:
Rat sarcoma; RNA: Ribonucleic acid; RNAi: RNA interfer-
ence; ROK: Rho kinase; RTK: Receptor tyrosine kinase;
SCF: Stem cell factor; Sea: S13 erythroblastosis oncogene
homolog; siRNA: Small interfering RNA; SH2: Src homol-
ogy 2; SH3: Src homology 3; SHIP: SH2-containing inosi-
tol 5-phosphatase; SHP: SH2 domain-containing protein-
tyrosine phosphatase; SLP: SH2 domain containing leu-
kocyte protein; SOC: Suppressor of clear; Src: Sarcoma
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viral oncogene homolog; STAT: Signal transducer and
activator of transcription; Syk: Spleen tyrosine kinase;
ZAP-70: Zeta-chain associated protein of 70 kDa.
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