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Abstract

Considerable controversy arose over the concept that cholesterol/sphingolipid-rich rafts in the T
cell plasma membrane serve as a platform for TCR signalling reactions. This controversy was
founded on the initial definition of rafts as detergent resistant membranes which later turned out
to misrepresent many features of cell membrane organisation under physiological conditions. Raft-
organisation was subsequently studied using a number of detergent-free experimental approaches.
The results led to a refined perception of membrane rafts which resolves the controversies. Here
we review new biophysical and biochemical data which provide an updated picture of the highly
dynamic nanometer-sized cholesterol/sphingolipid-rich raft domains stabilised by protein-networks
to form TCR signalling platforms in the T cell plasma membrane.

Introduction

The T cell antigen receptor (TCR) provides the key signal
for activation of T lymphocytes to perform their numer-
ous effector functions in adaptive immune responses. T
cells become activated upon engagement of their TCRs by
a cognate peptide-MHC ligand presented on the surface of
an antigen-presenting or target cell. Early T cell signalling
reactions are embedded in the complex and dynamic lipid
bilayer matrix of the T cell plasma membrane and are crit-
ically defined by their lateral compartmentalisation in
plasma membrane domains [1,2]. We will here discuss
recent data which provide a detailed picture of the mem-
brane raft characteristics of the plasma membrane
domains supporting active TCR signalling protein com-
plexes.

Protein scaffolds and membrane rafts define TCR
signalling plasma membrane domains

The TCR signalling cascade is initiated by phosphoryla-
tion of critical tyrosines of the TCR/CD3 complex by the

Src-family kinases Lck or Fyn which are anchored in the
cytoplasmic leaflet of the T cell plasma membrane. The
cytosolic ZAP-70 tyrosine kinase is recruited to the T cell
plasma membrane via binding to the tyrosine phosphor-
ylated TCR-complex [3]. ZAP-70 then becomes activated
to phosphorylate a defined set of tyrosine residues in the
cytoplasmic portion of the trans-plasma membrane adap-
tor protein Linker for Activation of T cells (LAT) [1,4].
These TCR activation-induced tyrosine phosphorylations
of membrane-associated signalling proteins trigger the
formation of protein complexes, held together by a coop-
erative network of protein-protein interactions [5,6].
These complexes assemble into submicron TCR signalling
domains in the T cell plasma membrane which were first
studied by confocal fluorescence microscopy at the con-
tact zone of a T cell with TCR-activating glass coverslips.
These complexes were shown to incorporate numerous
cytosolic TCR signalling adaptors and enzymes, driven by
TCR activation-induced tyrosine phosphorylations [7].
For a detailed review on TCR signalling microclusters see
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[8]. Video microscopy technology resolving single mole-
cule movement was employed to monitor the dynamic
interaction of membrane-associated signalling proteins
with TCR signalling clusters in plasma membrane
domains. These studies tracked the movement of Lck and
LAT in the T cell plasma membrane and showed retention
of these proteins in the submicron TCR signalling
domains and their subsequent release. The retention of
LAT in the TCR signalling domains depended on the
phosphorylation of its tyrosines.

All these reports highlighted protein-protein interactions
as critical driving force of TCR signalling complex forma-
tion. However specific lipid-mediated interactions at the T
cell plasma membrane bilayer are also a central functional
element in early TCR signalling. Numerous intracellular
signalling proteins interact with plasma membrane lipids
of the cytoplasmic leaflet via specific lipid headgroup-
binding domains. These interactions and their essential
functional consequences for cell surface receptor signal-
ling reactions are excellently reviewed in [9].

The analysis of detergent-resistant T cell membranes had
initiated the concept that early TCR signalling steps take
place in cholesterol/sphingolipid-rich raft domains of T
cell plasma membranes [10] (see Box for an overview of
the current perception of raft domains in cell mem-
branes). Confocal fluorescence microscopy was employed
to monitor the distribution of TCR signalling plasma
membrane sites and to relate their distribution to that of
clustered raft markers which show resistance to Triton X
100 detergent solubilisation. This report suggested that
the TCR signalling domains represent coalesced raft
domains [11]. Moreover, Blue Native Gel Electrophoresis
of TCR complexes indicated that the integrity of high
molecular weight TCR complexes in T cell plasma mem-
branes depends on membrane cholesterol [12]. However,
in consequent studies using Fluorescence Resonance
Energy Transfer (FRET), no clustering of generic GPI-
anchored raft marker proteins in TCR signalling domains
was detected [13]. These studies also showed that an
important element of the apparent accumulation of gly-
cosphingolipid raft-marker GM1 at TCR activation sites
could be attributed to convolutions of the T cell plasma
membrane at these sites which are not resolved by the
light microscopical methods used. These and other results
formed a basis of well-founded scepticism over the con-
cept that TCR signalling occurs in specific cholesterol/
sphingolipid raft domains of the T cell plasma membrane
[14,15].

This scepticism was resolved using new methodologies to
monitor membrane raft domains in T cells: Accumulation
of raft-markers in T cell activation plasma membrane
domains was demonstrated by relating fluorescence
intensities of fluorescent protein-tagged raft and control
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non-raft membrane markers. This report indicated that a
stabilisation of raft properties at these plasma membrane
domains which occurs upon CD28 costimulation [16,17]
required the actin-cytoskeleton regulating protein fil-
amin-A [18]. Nanoscale raft organisation in the cytoplas-
mic and exoplasmic leaflets of T cell plasma membrane
was recently also shown by fluorescence correlation spec-
troscopy [19]. In this study rafts were implicated in phos-
phatidylinositol-3 kinase dependent signalling reactions
downstream of TCR activation [19]. New insights, dis-
cussed below, drew a detailed picture of the raft-biophys-
ics and raft-lipid biochemistry of T cell activation plasma
membrane domains.

Plasma membrane domains engaged in TCR activation
adopt a specific condensed physical state

In an approach to assess physical membrane raft proper-
ties, T cell membranes were stained with the fluorescent
lipid dye Laurdan, a reporter for the packing density of
lipid membranes [20-22], 2-photon microscopy of these
fluorescent Laurdan-stained T cells revealed an increase in
the hydrophobic packing density of the T cell plasma
membrane at TCR activation sites. This was shown to
depend on Src-kinase activity, an intact actin cytoskeleton,
the presence of LAT, and was inhibited by cholesterol
depletion [17]. The condensed state of TCR activation
domains correlates with the physical properties of choles-
terol/sphingolipid-rich liquid-ordered (L,) raft phases
which were constituted in artificial membranes composed
of mixtures of cholesterol and a saturated phosphatidyl-
choline (PC) -species or sphingomyelin [23] (Figure 1).
The inserted Box outlines the evolution of the lipid raft
concept to the current perception of rafts as nanometer-
sized highly dynamic cholesterol/sphingolipid domains
in cell membranes which are stabilised by protein scaf-
folds to form membrane platforms for cell biological
functions [24].

The incorporation of the oxysterol 7-ketocholesterol
(7KC) and the incorporation of the polyunsaturated fatty
acid (PUFA) eicosapentanoic acid into T cells perturbed
the plasma membrane condensation at TCR activation
sites as reported by Laurdan fluorescence [25,26]. PUFAs
are incorporated into T cell glycerophospholipids to gen-
erate unsaturated phospholipids. Such glycerophospholi-
pids, containing multiple C = C double bonds, disrupt raft
phases in model membranes (Figure 1) [26-29]. 7KC like-
wise causes alteration of ordered membrane phases in
artificial liposomes [30,31]. The disruption of plasma
membrane condensation at TCR activation sites by incor-
poration of PUFA and 7KC correlates this membrane
structure with the L -lipid phases in model membranes
suggesting that such raft lipid-phases comprise a defining
element of TCR signalling plasma membrane domains.
Importantly, the incorporation of these raft-disrupting
lipid compounds into T cell membranes also resulted in
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Liquid-ordered (L,) raft phases of the exoplasmic
leaflet of the plasma membrane lipid bilayer as mod-
elled in artificial lipid membranes. Alignment of choles-
terol with saturated PC species and SM drives the formation
of densely packed liquid-ordered L, raft membrane phases.
The phases can coexist in model membranes with a less
densely packed liquid-disordered (L;) membrane phase
which is formed by unsaturated phospholipids which do not
align tightly with cholesterol.

saturated
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an inhibition of several T cell activation parameters
[25,27]. 7KC and PUFAs provide possible tools to address
the molecular basis of the influence of the condensed
membrane state on TCR signalling pathways.

The condensation of TCR activation plasma membrane
domains depended on actin cytoskeletal interactions and
on the formation of TCR/LAT signalling protein networks
[17]. This highlights the protein-interactions as a second
important principle which drives the Laurdan fluores-
cence-reported plasma membrane condensation at TCR
signalling sites. Dissecting the crosstalk of protein- and
lipid-mediated principles which drive this raft coalescence
requires new technologies to allow live tracking of the
condensation of TCR-signalling domains in T cell plasma
membranes at a nanometer-scale resolution.

Box

The evolving concept of cholesterol/sphingolipid raft
domains

The analysis of polarised lipid sorting in epithelial cells
sparked the initial proposal that sphingolipid and choles-
terol clusters (rafts) form platforms for the generation of
intracellular transport vesicles to the apical plasma mem-
brane [32]. It was then reported that on entering this
polarised intracellular transport route to the apical plasma
membrane of epithelial cells, GPI membrane-anchored
PLAP protein acquires resistance to solubilisation by Tri-
ton X-100 at 4°C [33]. Plasma membrane-anchored gly-
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colipids, GPI-anchored proteins, and protein-kinases
were found in lipid/protein complexes resisting similar
mild conditions of detergent-solubilisation. Conse-
quently specific cell surface signalling functions were also
proposed to occur in sphingolipid-rich plasma membrane
complexes [34]. These observations led to the hypothesis
that raft domains form functional platforms for numerous
membrane-associated cellular activities [35]. In the fol-
lowing we will outline the developments which led to the
current perception of membrane rafts and include new
data which provide support and new details of rafts in
cells as defined at the Keystone Symposium on Lipid Rafts
and Cell Function in 2006 [36].

In vitro reconstitution of liquid-ordered raft-phases

The lipid environment which conferred Triton X-100
insolubility to the GPI-anchored protein PLAP was char-
acterised by reconstituting PLAP into liposomes [37]. In
such model membrane systems densely packed liquid-
ordered (L,) membrane phases formed by cholesterol and
sphingolipid or saturated PC (Figure 1) indeed fulfilled
the raft-criterion of Triton X-100 insolubility [23,38]. This
was the basis of the important assumption that these L,
phases represent in vitro models of rafts in cells. It was
demonstrated in artificial membranes composed of ter-
nary lipid mixtures that these L, phases can coexist with a
liquid-disordered (L,) phase which is formed by unsatu-
rated PC and readily solubilised by detergent [28,38](Fig-
ure 1). However, it was demonstrated in artificial
membranes that detergent-treatment induced the forma-
tion of raft-like domains in membranes not present prior
to the addition of the detergent [39]. Consequently it is
not possible to equate detergent resistant membrane
(DRM)-association with an in situ organisation of cellular
membrane raft components. This observation resulted in
considerable controversies over the structure, function
and even the existence of rafts in cells under physiological
conditions [14]. These were resolved using novel experi-
mental technologies which revealed important new
insights leading to the current perception of sphingolipid/
cholesterol-rich membrane raft domains.

Characterisation of dynamic nanometer-scale raft-protein
and raft-lipid clusters in cells

A maijor step in the evolution of the concept of rafts in cell
membranes was the characterisation of small raft-protein
clusters and observation of transient anchoring of raft-lip-
ids in nanometer-sized cholesterol-dependent plasma
membrane domains. Initial Fluorescence Resonance
Energy Transfer (FRET) approaches showed that a fluores-
cently-labelled GPI-anchored raft reporter formed small
cholesterol-dependent clusters in cells [40]. Similar small
clusters were described for a DRM-associated raft protein
anchored by fatty acyl-modification in the cytoplasmic
leaflet of the plasma membrane [41,42]. Later studies
showed that the majority of a GPI-anchored fluorescent
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raft reporter protein was actually detected as monomers
but a 20-40% fraction resides in clusters with sizes of 25
nm diameter which generally contain 2, maximally 4,
reporter molecules [43,44]. These nanometer-sized clus-
ters of GPI-anchored raft markers were shown to be rela-
tively immobile and their cholesterol-dependent
clustering requires anchoring to the cortical actin cytoskel-
eton [44]. Stimulated Emission Depletion (STED) nanos-
copy was employed to compare transit times of single
molecules of a GPI-anchored raft-protein or a raft-sphin-
golipid in comparison with a phosphatidylethanolamine
non-raft lipid through a ~50 nm focal area on the plasma
membrane. This showed a cholesterol-dependent and
short-lived (in the order of 10-20 ms) trapping of the lipid
raft-probes in immobile domains which dwell in plasma
membrane areas of < 20 nm diameter [45]. These analyses
of plasma membrane organisation led to the definition of
highly dynamic raft domains in the cell plasma mem-
brane which have a diameter of few nanometers and are
thus not resolvable by conventional light microscopy.

Stabilisation and coalescence of plasma membrane rafts
to form micrometer-scale domains upon lateral
crosslinking of raft-components

The even distribution of raft markers at the cell surface as
it appears in light microscopy is dramatically altered upon
crosslinking of raft proteins and lipids. Different DRM-
associated lipid- or protein-raft markers were shown to co-
cluster in the same plasma membrane domains if inde-
pendently crosslinked. These raft-patches were separated
from clusters of crosslinked non-raft plasma membrane
proteins suggesting that patches of clustered raft-markers
form by coalescence of raft domains following crosslink-
ing of raft membrane components [46].

This concept received strong recent support by experi-
ments in which raft glycosphingolipid GM1 in lipid mem-
branes was crosslinked using the pentavalent choleratoxin
B subunit (CTB). In model liposomes in a single liquid
phase, which is close to the point of separation into L,/Ly
phases, the crosslinking of GM1 by CTB induces segrega-
tion of L, and Ly membrane phases visible by light micro-
scopy [47].

A CTB-mediated GM1 crosslinking also triggered the seg-
regation of micrometer-sized GM1-domains at 37°C in
large (>10 um) plasma membrane-derived spheres from
A431 epidermoid carcinoma cells [48]. The GM1/raft-
domains of these plasma membrane-derived spheres
excluded the non-raft membrane protein transferrin-
receptor and concentrated different DRM-defined raft
membrane proteins: the single-pass transmembrane pro-
tein LAT, VIP17 membrane tetra-spanning protein, and
GPI-, and fatty acyl-anchored proteins. Thus raft and non-
raft marker membrane proteins exhibited the expected
inclusion and exclusion into or from the coalesced raft
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domains of these plasma membrane-derived spheres [48].
In summary, the metastable nanometer-sized rafts as char-
acterised in resting cells are stabilised by crosslinking of
raft components and can then coalesce into functional
micrometer membrane domains to form functional plat-
forms for cell biological activities.

End Box

The molecular lipid composition of TCR signalling plasma
membrane domains

New mass spectrometric methodology was employed to
characterise the molecular raft lipid composition of TCR
signalling plasma membrane domains. These T cell
plasma membrane domains were immunoisolated as
native (not detergent-treated) plasma membrane frag-
ments [49] using TCR-activating magnetic beads which
were conjugated to Jurkat T leukemic cells. These conju-
gates were homogenised mechanically and native Jurkat
plasma membrane fragments bound to the magnetic
beads were isolated. The molecular lipid composition of
these T cell plasma membrane fragments was quantita-
tively charted using a mass spectrometry program devel-
oped for comprehensive characterisation of membrane
lipidomes [50,51]. Comparison of the molecular lipid
composition of these isolated TCR signalling plasma
membrane domains with that of immunoisolated control
plasma membrane fragments provided the first direct evi-
dence for a lateral segregation of specific molecular lipid
species into plasma membrane domains [26].

TCR signalling plasma membrane domains accumulate
cholesterol, sphingomyelin, and saturated phosphatidyl-
choline species. In model membranes a mixture of these
lipids form L, phases akin to cell membrane rafts [23]
(Figure 1, see Box for an outline of the evolving lipid raft
concept as it stands today). Therefore, TCR signalling
plasma membrane domains are characterised by the phys-
ical condensed raft structure and an accumulation of raft
(L, phase) forming lipid species. This coalescence and sta-
bilisation of rafts at TCR signalling platforms most likely
result from the signalling-induced crosslinking and
immobilisation of raft- membrane proteins at TCR activa-
tion domains [52].

The molecular mechanisms of coupling between the exo-
plasmic and the cytoplasmic plasma membrane bilayer
leaflets at lipid raft domains is matter of intense current
interest as it is central to the signal transduction via raft
domains. Patches of crosslinked raft markers anchored in
the exoplasmic plasma membrane leaflet were shown to
colocalise with inner leaflet raft-associated Lck [11]. This
coupling of inner and outer plasma membrane leaflets at
coalesced rafts was later confirmed using an Lck-mem-
brane anchored fluorescent protein as an inner plasma
membrane leaflet raft reporter [53].
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The two leaflets of plasma membrane lipid bilayer display
a marked lipid asymmetry [54,55]. The exoplasmic leaflet
of the plasma membrane contains the bulk of the sphin-
gomyelin (SM) and phosphatidylcholine (PC) whereas
the cytoplasmic plasma membrane leaflet strongly
enriches phosphatidylethanolamine (PE), phosphatidyl-
serine (PS), and phosphatidylinositol (PI). The character-
istic raft-defining lipid composition of TCR activation
domains concerns specific PC species and SM which are
concentrated in the exoplasmic plasma membrane leaflet
(Figure 1). The inner leaflet-preferring phospholipids of
the Jurkat T cell plasma membrane bilayer contain very
few fully saturated phospholipid species and the TCR sig-
nalling domains showed no obvious preference for more
saturated inner leaflet phospholipids species. This indi-
cates that organization of the inner and outer plasma
membrane leaflet at TCR signalling sites are different.
Nevertheless the characteristic molecular lipid composi-
tion of these domains extends to PE, PI, and PS enriched
in the cytoplasmic plasma membrane leaflet suggesting
some sort of coupling between the lipid bilayer leaflets at
rafts [26]:

Importantly, total PE was found not to accumulate in
active plasma membrane TCR signalling domains. Hence,
the lipidome of TCR activation plasma membrane
domains does not confirm the proposed general accumu-
lation of PE at TCR activation raft domains [56]. However,
the relative fraction of plasmenyl PE species, which are
characterised by an ether-bound hydrocarbon chain, is
significantly increased over plasma membrane not
engaged in TCR signal transduction. The increased frac-
tion of plasmenyl PE species was likewise observed in the
lipidomes of other raft membranes prepared by detergent-
free methods [57,58].

The inner leaflet lipids the TCR signalling plasma mem-
brane domains moreover significantly accumulate the
negatively charged phospholipid PS, however with no
obvious preference for a particular species. PUFA-treat-
ment resulted in loss of PS enrichment in the TCR signal-
ling plasma membrane domains [26] correlating the raft-
like membrane condensation at these plasma membrane
domains with PS accumulation at their cytoplasmic leaf-
let. Specific functional interactions of PS-rich membranes
with the TCR/CD3 complex and the TCR signalling
machinery have been reported in a series of in vitro studies
using artificial lipid membranes [59-62]. The membrane
anchors of key signalling proteins, members of Ras super-
family or the Src kinase, contain stretches of basic amino
acids. In fluorescence microscopy studies the net positive
charge of these membrane-targeting regions correlates
with the localisation of these proteins at PS-rich cell mem-
branes suggesting an anchoring of these proteins to the
PS-enriched membranes via electrostatic interactions
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[63]. All these data strongly suggest a functional role of PS
accumulation for different steps of TCR signalling.

Lateral membrane compartmentalisation of Ras signalling
The activation of signalling pathways downstream of Ras
small GTPase provides a crucial element of signal trans-
duction by numerous tyrosine kinase-controlled cell sur-
face receptors, including the TCR. Signalling functions of
Ras critically depend on their anchoring in the cytoplas-
mic leaflet of the plasma membrane by lipid-modifica-
tions [64]. It was shown in non-hematopoietic cells that
lateral compartmentalisation of the 3 Ras isoforms in
plasma membrane domains is a key determinant in their
function. An average of 7 molecules of a specific isoform
of membrane-anchored Ras form cluster in domains of
10-20 nm diameter by mechanisms which rely on specific
protein scaffolds and on cholesterol-dependent mecha-
nisms [2,41]. Recent computer-based in silico models
show the profound consequences of Ras-anchorage and
raft-lipid dependent Ras-clustering in plasma membrane
domains for Ras-downstream signalling [2,65]. Ras clus-
ters in non-hematopoietic cells were modelled as digital
"nanoswitches" for activation of the MAP kinase pathway
in response to a signal via cell surface receptors. The dig-
ital signals given by estimated 40000 of these nanos-
witches in the plasma membrane of these mammalian
cells were modelled to integrate into a high-fidelity cellu-
lar response matching a graded receptor stimulus [64,66].

The organisation of Ras in plasma membranes of hemat-
opoietic cells has not yet been characterised. In B- and T-
lymphocytes the activation of a small number of the
respective B cell antigen receptor (BCR) or T cell antigen
receptors (TCR) triggers a decisive (digital) activation
response of the MAP kinase pathway, once a certain
threshold number of receptors activated is passed [65].
Ras is activated by an exchange of Ras-bound nucleotide
GDP by GTP. The formation of the active Ras is mediated
by Ras GDP/GTP exchange factors (RasGEFs) which are
recruited to cell membranes. In B- and T-cells the activities
of two RasGEFs; RasGRP and SOS, critically cooperate at
the lymphocyte plasma membrane to mediate Ras activa-
tion in response to antigen receptor activation [67].
Recent reports combined in silico and in vitro analyses to
model the sequential activity of these two RasGEFs to acti-
vate Ras. For SOS the binding of Ras to a non-catalytic
allosteric site stimulates its RasGEF activity. Activation of
SOS via this allosteric binding site has a strong preference
for the active RasGTP [68]. The preferential activation of
SOS' GEF activity by its enzymatic RasGTP reaction prod-
uct provides a critical positive feedback loop which drives
a digital SOS GEF activity circuit. Ras activation by Ras-
GRP, on the other hand, follows a sequence of signalling
steps which provide a graded (analogue) downstream
response following BCR or TCR activation. The Ras GEF
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activity of RasGRP provides an initial Ras-activation
response to TCR or BCR signal which ignites the positive
feedback loop of SOS' RasGEF activity to support a digital
Ras activation circuit [65]. It is tempting to speculate that
the raft lipid- and protein-dependent clustering of Ras
molecules in membrane domains, as reviewed above,
connects allosteric binding of SOS to RasGTP and simul-
taneous catalysis of GDP/GTP exchange on a neighbour-
ing Ras to eventually trigger the activation of all Ras
molecules in the cluster.

Conclusion and future outlook

Early TCR signalling reactions take place in domains of
the T cell plasma membrane. New data drew a detailed
picture of the biophysical raft structure and the complex
raft lipid biochemistry of TCR signalling domains. In vitro
reconstitution of lipid membrane-based TCR/LAT early
signalling machineries on defined artificial lipid mem-
branes [62] may pave the way to unravel the influence of
the lipid bilayer platform on the activity of such lipid/sig-
nalling protein complexes.

In silico modelling of signalling downstream of Ras nano-
clusters in plasma membrane raft domains in non-hemat-
opoietic cells provided a first description of crucial
signalling mechanisms determined by raft domains. Such
systems biology approaches [65,66] provide a further out-
look on new methodology deciphering the role of lipid
membrane platform in cell surface receptor signalling.
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