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Abstract

In the early 1990's, a new cell signaling pathway was described. This new paradigm, now known as
the JAK/STAT pathway, has been extensively investigated in immune-type cells in response to
interferons and interleukins. However, recent evidence suggests that the JAK/STAT pathway also
mediates diverse cellular responses to various forms of biological stress including hypoxia/
reperfusion, endotoxin, ultraviolet light, and hyperosmolarity. The current literature describing the
JAK/STAT pathway's role in cellular stress responses has been reviewed herein, but it is clear that

our knowledge in this area is far from complete.

Review

In multicellular organisms, every cell comprising every tis-
sue, organ, or organ system constantly strives to maintain
homeostasis in the face of destabilizing influences.
Whether it is external stimuli such as toxic chemical expo-
sure or changes in oxygen tension, or natural alterations
in pH or osmolarity due to normal cellular metabolism,
each cell in the body is equipped with the molecular
machinery required to sense these environmental changes
and respond to them. Because these stressful stimuli can
impinge on normal cellular functioning, discrete cellular
sensing mechanisms have evolved to maintain homeosta-
sis. For example, ATP depletion caused by hypoxia acti-
vates AMPK which phosphorylates multiple downstream
targets to switch the cell from a mainly anabolic to cata-
bolic state [1]. Similarly, activation of SAPK/JNK by stres-
sors such as ultraviolet (UV) light results in activation of
well-defined molecular targets [reviewed in [2]].

One interesting question is how do cells translate diverse
stressful stimuli into activation of specific molecular path-

ways? Cellular signaling from membrane to nucleus is
typically accomplished through ligand/receptor activa-
tion of intracellular second messengers. In many cases
these second messengers are kinases which phosphorylate
substrates leading to a cascade by which successive macro-
molecules are triggered. Ultimately, a terminal transcrip-
tion factor is activated which then translocates to the
nucleus to activate specific target genes. This type of cellu-
lar signaling has been well-characterized following recep-
tor activation by polypeptide ligands, but some forms of
cellular stress such as hypoxia cause activation of specific
molecular pathways in the apparent absence of ligand to
receptor stimulation. Therefore, there must be alternative
routes for direct activation of target genes that circumvents
the canonical ligand/receptor/second messenger cascade.
One such pathway that may transmit signals to the
nucleus by this alternative route is the Janus Activated
Kinase/Signal Transducer and Activator of Transcription
family of transcription factors (JAK/STAT).
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The JAK/STAT pathway includes seven functionally
related, latent transcription factors (STAT) and four non-
receptor tyrosine kinases (JAK) [reviewed in [3]]. In the
typical JAK/STAT paradigm, a cytokine binding to its
receptor results in activation of receptor-associated JAKs.
JAKs then phosphorylate the cytoplasmic receptor chains
creating docking sites for recruited STATs. Finally, STATs
are phosphorylated on tyrosine by JAKs, dimerize, and
then translocate to the nucleus to activate specific target
genes. Because the second messenger (STAT) is also the
terminal transcription factor, in many ways the JAK/STAT
pathway represents a streamlined apparatus for cellular
signaling. Thus, the JAK/STAT pathway differs from many
signaling cascades in that the usual system of multiple
sequential signaling molecules is bypassed.

While signaling through the canonical JAK/STAT pathway
has been well-characterized in immune-type cells in
response to interleukins and interferons, there is emerging
evidence that STATs also mediate cellular responses to var-
ious forms of cellular stress. These findings, in addition to
mounting evidence suggesting that some STATs are phos-
phorylated on serine by members of the MAPK family,
imply that alternative mechanisms for STAT activation
exist. Further, these alternative means of activation may
lead to different outcomes with regards to STAT signaling.
For example, STAT3 was recently shown to be serine phos-
phorylated by JNK during UV stress which had a predom-
inately inhibitory role on STAT3 transcriptional activity
[4]. Could these alternative routes of STAT activation
account for STAT's "yin and yang" type properties
whereby depending on the type of cell stressor, either cell
death or cell survival pathways are activated? Although
interferons themselves can regulate cellular responses to
exogenous stressors such as infection through the canoni-
cal JAK/STAT pathway, this literature review will focus
mainly on those alternative mechanisms of JAK/STAT sig-
naling during cellular stress.

STATs and cellular stress

Some of the earliest studies implicating STATs in mediat-
ing cell stress responses were performed in cells exposed
to UV light. In mouse embryonic fibroblasts (MEFs), UV
light treatment resulted in phosphorylation of serine 727
in STAT1 via p38 MAPK [5,6]. Further analysis revealed
that STAT1 could be phosphorylated directly by p38
MAPK in vitro. Thus, the MAPK and STAT pathways appear
to converge during periods of cellular stress. In another
study, UV light caused STAT1 tyrosine phosphorylation,
nuclear accumulation, and DNA binding in keratinocytes
[7]. Together, these studies raise the possibility that STATs
can be activated in a ligand-independent manner during
cellular stress, resulting in the activation of STAT-depend-
ent target genes.

http://www.biosignaling.com/content/2/1/8

Cellular stress can also occur in disease states such as dia-
betes, which is characterized by vascular dysfunction. For
example, prolonged elevated glucose can act as a cell stres-
sor through multiple pathways including hyperosmolar-
ity [8], protein kinase C (PKC) activation [9], and
oxidative damage [10]. Recent studies have determined
that constitutive JAK/STAT phosphorylation was elevated
in cultured smooth muscle-like mesangial cells treated
with high glucose [11]. Furthermore, in these same cells,
angiotensin stimulation of STATs was prolonged by high
glucose treatment [12,13]. The authors of these studies
related these findings to TGFB-induced extracellular
matrix accumulation because collagen and fibronectin
secretion could be inhibited with STAT anti-sense RNAs.
This implies that the JAK/STAT pathway may play a role in
basement membrane thickening observed in diabetic
nephropathy and retinopathy. These studies were some of
the first to suggest that perturbed JAK/STAT signaling
could play a role in disease states like diabetes and possi-
bly link glucose-mediated cell stress and the JAK/STAT
pathway with diabetic sequelae.

Hyperosmotic stress can also activate STATSs. For example,
in the slime mold Dictyostelium, hyperosmotic stress leads
to STAT1 phosphorylation without any known involve-
ment of JAK or MAPK [14]. But mammalian cells also uti-
lize STATs during hyperosmotic stress. In one report,
sorbitol-induced hyperosmolarity was shown to cause
JAK1, JAK2, and TYK2 phosphorylation and subsequent
activation of STAT1 and STAT3 in various cell types; this
led to the formation of STAT1/STAT3 complexes with the
mo67SIE oligonucleotide from the c-fos promoter [15].
Interestingly, these authors speculate that the hyperos-
motic signal occurred independently of gp130. This sug-
gests an alternative pathway by which JAKs may be
activated beyond the canonical JAK/STAT route. In agree-
ment with this study, hyperosmotic shock in COS-7 cells
was shown to lead to tyrosine phosphorylation of STAT1
in a MKK6/p38-dependent pathway [16]. In this case,
STAT1 but not JAK1 phosphorylation could be inhibited
by genistein (a non-specific tyrosine kinase inhibitor)
leading the authors to conclude that a tyrosine kinase dis-
tinct from JAK1 (possibly novel) represented the link
between hypertonicity and STAT activation.

The most well-investigated reports linking cellular stress
with the JAK/STAT pathway are studies in cardiomyocytes
undergoing hypoxia/reperfusion. Like UV light, hypoxia/
reperfusion led to p38 MAPK phosphorylation followed
by serine 727 phosphorylation of STAT1 which was asso-
ciated with activation of pro-apoptotic FAS/FASL and cas-
pase-1 [17]. It was concluded that Fas and caspase-1
expression were directly STAT-1 dependent because their
expression could be inhibited by STAT1 anti-sense RNAs.
Thus, STAT1-dependent FAS activation plays a leading
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role in cardiomyocyte death during hypoxia/reperfusion
injury [18] and as the authors point out, inhibition of this
pathway may prove to be cardioprotective following
ischemic insult [19]. Interestingly, while these studies
showed that both tyrosine 701 and serine 727 of STAT1
were phosphorylated in response to hypoxia/reperfusion,
only phosphorylation on serine was required for FAS
expression. Because serine phosphorylation alone is not
sufficient for direct DNA binding, these results indicate
alternative pathways by which STAT1 may activate target
genes during stress. For example, serine phosphorylated
STAT1 may associate with other scaffolding proteins as it
does in the case of MCM5 [20], BRCA1 [21], or HSF [22]
and act instead as a transcriptional co-activator, rather
than a direct activator of target genes [23].

In vivo models of hypoxia/reperfusion also implicate
STATS as a player in responses to cellular stress. But unlike
STAT1, STATS5 is thought to be mainly protective by acti-
vating anti-apoptotic signals. For example, Yamaura et al.
report that genetic deletion of STAT6 but not the STATSA
causes resistance to myocardial ischemia/reperfusion
injury [24]. This resistance was thought to be related to
two distinct STAT5A-mediated pathways: one involving a
Src/STAT5/PI-3 kinase/Akt pathway, and the other a direct
JAK2/STAT5A pathway. Like STAT5, STAT3 was also
shown to be protective against cardiac ischemia/reper-
fusion injury through a JAK2/STAT3-dependent mecha-
nism involving up-regulation of anti-apoptotic Bcl2 and
down-regulation of pro-apoptotic Bax [25,26]. Studies in
our laboratory indicate that in microvascular endothelial
cells, hypoxia caused an increased tyrosine phosphoryla-
tion of JAK2, down-regulation of FAS/FASL, and that
AG490 (a JAK2 inhibitor) de-repressed FAS transcription
(unpublished observations). This may suggest a possible
mechanism whereby activated JAK2 could mediate pro-
tection during ischemia in endothelial cells by repressing
pro-apoptotic FAS transcription through downstream
STAT3 or STATS5. Intriguingly, a complex of STAT3 and c-
Jun was recently shown to be a FAS repressor [27,28] but
it remains to be determined if STAT5 or other STATs can
behave like STAT3 and act as transcriptional repressors of
pro-apoptotic genes during cellular stress. STAT5 nuclear
translocation and DNA binding to the GAS (y-activated
site) implicates STAT5 in hypoxic stress responses, but the
biological significance of this observation is not yet clear
[29].

Although not as well studied as hypoxia/reperfusion or
osmotic stress, reactive oxygen species have also been
shown to activate the JAK/STAT pathway. Oxidative stress,
such as might occur in diabetes and cardiovascular dis-
ease, was shown to activate HSP70 in smooth muscle cells
in a JAK-dependent manner [30]. This response is thought
to aid in adapting these cells to oxidative damage.

http://www.biosignaling.com/content/2/1/8

Recently it was shown that STAT1 forms a complex with
HSF-1 to activate the HSP promoter while STAT3 filled
just the opposite role [22,31]. Thus, it appears that STAT1
and STAT3 can perform entirely different functions with
regard to cellular stress-type responses. Other studies have
determined that peroxide treatment resulted in STAT3
tyrosine phosphorylation and nuclear translocation [32]
and JAK2, STAT1, and STAT3 were activated by oxidized
LDL [33].

Taken together, the studies reviewed herein support a role
for the JAK/STAT pathway in various forms of cellular
stress and relate perturbed JAK/STAT signaling to poten-
tial disease states. However, consistent with some of the
current ideas about STAT biology, it is clear that cellular
stress seems to activate STATs in ways that can be both det-
rimental to and supportive of cell survival. For example,
STAT1 activation by hypoxia-reperfusion injury activates
cell death pathways, while STAT5 activation by the same
type of stressor seems to promote cell survival pathways.
Thus, STATs may have evolved to fulfil both sides of a "yin
and yang" type mechanism where either death or survival
pathways can be activated depending on the strength or
type of cellular stressor [34]. This may be especially true in
endothelial cells, which seem to be able to resist short-
term hypoxic-stress compared to other cell types but die
by apoptosis following prolonged exposure to hypoxia
[35].

The most intriguing aspect of many cellular stress-acti-
vated pathways is the apparent absence of ligand-to-recep-
tor stimulation. But the cell must somehow "sense"
changes in the external milieu and transmit these signals
to the nucleus. How does it do this? Two such examples of
this type of cellular sensing are activation of a well-
described transcription factor known as HIF-1a (hypoxia-
inducible factor), and another is the cellular thermostat
called HSF (heat shock factor). In the case of HIF, enzy-
matic modification by an enzyme requiring oxygen as a
cofactor is responsible for HIF activation and switching on
of target genes when cells are stressed by low oxygen [36].
For HSF multiple stressors such as ATP depletion,
ischemia, and intracellular acidosis lead to HSF phospho-
rylation, unfolding, and its translocation to the nucleus to
activate target genes [37]. So these powerful signal trans-
ducing pathways are somehow activated directly presum-
ably without ligand stimulation. This is probably the most
speedy and efficient way of activating downstream target
genes to promote cell survival.

Conclusions

Is it possible that STATSs can also act as a cellular rheostat
of various stressors? Recent suggestions that STATs can be
post-translationally modified in ways other than phos-
phorylation (e.g. acetylation, methylation, and

Page 3 of 5

(page number not for citation purposes)



Cell Communication and Signaling 2004, 2:8

A B C

dbh

\ | Stredgily
(Hypoxia/Reperfusion or UV)

Interaction with other STAT
Binding Protcins

A4

FAS, FASL, and
Caspase
Activation

Figure |

(Hypox iniReperf‘nliim or UV)

http://www.biosignaling.com/content/2/1/8

D

4

Stressy ) L
(Hypoxia/Reperfusion or (IV)

dh

Stress

Survival Signals?

FAS Repression

Role of STAT:s in cell stress responses. (A) Autocrine IFN may activate JAK/STAT through the canonical pathway. This
activation would involve tyrosine phosphorylation of STAT by JAK resulting in STAT dimers which are 20% transcriptionally
active. This process is thought to "prime" STATSs for serine phosphorylation by an IFN-inducible serine kinase (possibly PKC)
[42]. Both tyrosine and serine phosphorylation results in a 100% transcriptionally active STAT | dimer. (B) Hypoxia-reperfusion
injury may directly activate p38 MAPK which phosphorylates STAT| on SER727. Serine phosphorylated STAT could then par-
ticipate in protein-protein interactions with other STAT binding proteins and activate the expression of pro-apoptotic genes
like FAS. (C) In this case, hypoxia-reperfusion may activate STATS resulting in activation of cell survival pathways. STAT5 acti-
vation by hypoxia may be mediated by JAK2 and a STAT5/cSrc/PI-3 kinase/Akt pathway. (D) STAT3 may act as a constitutive
FAS repressor, but FAS is de-repressed during UV stress which may involve STAT3 inhibition by PI3-kinase/Akt.

ubiquitination) make this a possibility [38]. For example,
changes in the intracellular redox environment by low
oxygen tension may modify STAT conformation leading
to enhanced availability of its active centers [15]. This
change may facilitate interactions with other STAT-modi-
fying proteins such as p38 MAPK. Alternatively, other pre-
viously unknown STAT pathways may be activated during
cellular stress, altering its transcriptional capacity. These
might include STAT association with other second mes-
sengers such as PI-3 kinase and Akt but also STAT
upstream activation by molecules like Src [24]. Figure 1
summarizes the potential role of STATs in cellular stress.

Finally, while our understanding of a stress-related p38/
STAT1 (pSER) pathway seems to be taking shape, very few
studies have investigated the role of serine phosphoryla-

tion of other STATs and what the upstream kinase (s) may
be during cellular stress. Future studies might focus on
identifying whether serine phosphorylation is common to
other STATs during cellular stress and how this might
relate to activation or inactivation of target genes. Other
questions to be answered are what is the function of
unphosphorylated STAT dimers found in the nucleus of
unstimulated cells and how might other STAT post-trans-
lational modifications (other than phosphorylation)
mediate STAT signaling beyond the canonical JAK/STAT
pathways [39-41]. Answers to these questions may help to
begin to unravel the complex nature of STAT signaling
and how some of the alternative routes of STAT activation
are related to cellular stress-activated pathways. Ulti-
mately, modulation of the JAK/STAT pathway in vivo may
prove to be of therapeutic value.
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