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Signaling by epithelial members of the CEACAM
family – mucosal docking sites for pathogenic
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Abstract

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a group of immunoglobulin-related
vertebrate glycoproteins. Several family members, including CEACAM1, CEA, and CEACAM6, are found on epithelial
tissues throughout the human body. As they modulate diverse cellular functions, their signaling capacity is in the focus
of current research. In this review we will summarize the knowledge about common signaling processes initiated
by epithelial CEACAMs and suggest a model of signal transduction by CEACAM family members lacking significant
cytoplasmic domains. As pathogenic and non-pathogenic bacteria exploit these receptors during mucosal colonization,
we try to highlight the connection between CEACAMs, microbes, and cellular responses. Special emphasis in this
context is placed on the functional interplay between CEACAMs and integrins that influences matrix adhesion of
epithelial cells. The cooperation between these two receptor families provides an intriguing example of the fine
tuning of cellular responses and their manipulation by specialized microorganisms.
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Introduction
The carcinoembryonic antigen-related cell adhesion
molecules (CEACAMs), a subgroup of the CEA family
of immunoglobulin-related proteins, are encoded in the hu-
man genome by 12 genes [1,2] (Figure 1). All 12 expressed
CEACAM genes and a number of derived pseudogenes
cluster on chromosome 19q13 [3,4]. CEACAMs show
distinct expression patterns on different cell types [1,5].
Whereas particular CEACAMs are only expressed in
certain epithelial or myeloid cells, others are found in
various tissues [6]. Some family members play a precise
functional role in particular events such as hearing in
the inner ear (CEACAM16) or phagocytosis of specific
bacterial pathogens (CEACAM3) [7,8]. However, most
CEACAMs can be seen as modulators of general cellular
processes such as cell adhesion, differentiation, prolifera-
tion, and survival. To fulfill such diverse functions, CEA-
CAMs have to intersect with other cellular receptors and
* Correspondence: christof.hauck@uni-konstanz.de
1Lehrstuhl für Zellbiologie, Universität Konstanz, 78457 Konstanz, Germany
2Konstanz Research School Chemical Biology, Universität Konstanz, 78457
Konstanz, Germany

© 2014 Tchoupa et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
to transmit signals into the cell. Indeed, signal trans-
duction mediated by distinct CEACAM family mem-
bers, which encompass a cytoplasmic domain, such as
CEACAM3 and a splice variant of CEACAM1 with
long cytoplasmic domain, has been studied in great
detail [6,9]. Given the fact that several CEACAMs are
GPI-anchored proteins or that they sustain functionality
in the absence of a cytoplasmic domain, the mechanistic
details of signal transduction processes initiated by these
CEACAM family members are still widely unresolved.
Interestingly, CEACAMs are utilized by bacterial pathogens
as host receptors on epithelial cells. Similar to physiological
stimulation of CEACAMs, bacteria-initiated clustering of
CEACAMs can induce robust cellular responses including
activation of certain kinases, stimulation of small G pro-
teins, cytoskeletal rearrangements, induction of novel
gene expression events, enhanced cell adhesion, and
receptor endocytosis. It has become clear that CEACAM-
binding bacterial pathogens exploit the signaling cap-
acity of these immunoglobulin superfamily receptors
to enhance their chances of colonizing the mucosal
surface. As CEACAM family members without significant
cytoplasmic domains dominate on several epithelial
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Figure 1 The human CEACAM family. Schematic depiction of the twelve members of the human carcinoembryonic antigen-related cell adhesion
molecules. The red spheres indicate IgV-like domains, the blue spheres indicate IgC2-like domains, which are stabilized by disulfide bonds (S-S). The
green spirals indicate transmembrane helices. GPI-anchors are depicted in the form of a green arrow ending in the lipid bilayer. CEACAM20 encodes
only a partial IgV-like domain (N*). Graph modified from http://www.carcinoembryonic-antigen.de/.
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surfaces such as breast, liver, or prostate [10], we will
use this review, to summarize the current knowledge
about the signaling function of these epithelial CEACAMs.
By highlighting recent advances in the understanding of
bacteria-induced CEACAM-mediated processes, we pro-
vide a framework for further dissecting the molecular
signaling connections emanating from epithelial members
of this family.

Physiological roles of epithelial CEACAMs
Since the discovery of carcinoembryonic antigen (CEA)
some 50 years ago [11], and the subsequent appreci-
ation of a family of CEA-related cell adhesion molecules
[12] (Figure 1), numerous physiological and pathological
processes have been associated with these mammalian
membrane glycoproteins. Historically, cancer is one of the
disease states linked to aberrant CEACAM function
and the role of epithelial CEACAMs in tumour pro-
gression and metastasis has been summarized in an
excellent review recently [13]. In particular, human
CEACAM1, CEA, and CEACAM6, which can be found
on various epithelial cell types and derived carcinomas,
are thought to shape the interaction between tumour cells
and their stromal counterparts as well as immune cells.
Apart from their potential utilization as clinical bio-
markers and promising therapeutic targets in melan-
oma, lung, colorectal, and pancreatic cancers, these
epithelial CEACAMs are also implicated in morphogen-
esis [14,15], angiogenesis [16,17], cell proliferation [18],
cell motility [19,20], apoptosis [21], regulation of cell
matrix attachment [22,23], as well as epithelial cell-cell
interaction and cell polarisation [24,25]. Clearly, for-
ward and reverse genetic approaches in animal models
have suggested that CEACAMs are not essential for all
these processes. For example, mice lacking CEACAM1
are viable and fertile and do not show gross morphological
alterations [26]. Furthermore, heterologous expression
of human CEACAM1 in the mouse or expression of
additional human epithelial CEACAMs, which are not
encoded in the murine genome (such as CEA and CEA-
CAM6), does not result in perturbation of tissue architec-
ture or normal tissue homeostasis [27-29]. Therefore,
epithelial CEACAMs seem to contribute to the fine-
tuning of cellular behaviour and their contribution might
become critical during stressful conditions, such as tissue
damage and repair, which are not readily obvious in
laboratory kept animals.
Most studies of CEACAM-initiated signal transduction

have focussed on CEACAM1 in immune cells and trans-
formed epithelial cells (nicely summarized in [6,13]).
Investigations into CEACAM1 structure and function
have also profited from the fact that this family member is
expressed in different cell types and that CEACAM1
orthologs exist in other mammalian species [30]. Due to
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differential splicing, human CEACAM1 occurs in 11
isoforms with the number of extracellular Ig domains
ranging from one to four (see the CEA homepage at
http://www.carcinoembryonic-antigen.de/index.html; [31]).
The major isoforms in human cells are CEACAM1-4
and CEACAM1-3, which possess an extracellular amino-
terminal IgV-like domain, followed by three (A1, B, A2) or
two (A1, B) IgC2-like domains, respectively. Similarly, in
other epithelial CEACAMs, such as CEA or CEACAM6,
up to six extracellular IgC2-like domains follow the amino-
terminal IgV-like domain (Figure 1). Accordingly, engage-
ment of the extracellular domains of epithelial CEACAMs
serves as the primary stimulus for CEACAM-mediated
transmembrane signaling. Under physiologic conditions,
homophilic interactions between CEACAMs on op-
posing cells are thought to be the major trigger of
CEACAM-initiated signaling processes, although CEA-
CAMs can also engage in heterophilic interactions, e.g.
with selectins [32].

Role of CEACAM extracellular domains in
mediating cis- and trans-oligomerization
Trans-oligomerization resulting from homophilic inter-
actions between the amino-terminal IgV-like domains of
CEACAMs on neighbouring epithelial cells is the basis
of CEACAM-mediated cell-cell adhesion [33-36]. How-
ever, it has become clear that this homophilic type of
trans-oligomerization is further supported by the pres-
ence of IgC2-like domains [33,37]. In a tissue context,
these additional extracellular Ig domains might allow
these receptors to extend farther from the membrane
surface to facilitate binding, but they might also be dir-
ectly involved in homophilic trans-interactions [33,38].
Moreover, recent electron tomography studies of soluble
and membrane-attached CEACAM1 ectodomains have
not only confirmed the critical role of the IgV-like
amino-terminal domain for trans-oligomerisation, but
also pointed to additional cis-interactions in the extra-
cellular part of CEACAM1 [39]. Indeed, the extracel-
luar chain of Ig domains in CEACAM1 appears to be
rather flexible, but can be stabilized by cis-interactions
between either IgV-like domains or IgC2-like domains
of parallel CEACAM1 molecules in the same mem-
brane plane [39]. As a consequence, CEACAMs might
occur in different oligomerization states, partially dic-
tated by the occurrence of trans- or cis-interactions
between their extracellular domains. At least in the
case of CEACAM1, these different oligomerization
states clearly have an influence on its signaling function
[40]. In one of the following sections, it will become clear
that the issue of CEACAM1 oligomerization is even more
complex, as the transmembrane domain of this receptor
also sustains cis-interactions, presumably depending on
the lipid context.
Signaling by epithelial CEACAMs
As transmembrane signaling requires a connection to the
cytosol, the transmembrane domain containing CEA-
CAM1 has been the focus of a multitude of studies [6,13].
Indeed, CEACAM1 harbors a cytoplasmic domain, which
can either be long (L; 71 amino acids in humans) or short
(S; 10 amino acids). The “L” isoforms encompass a func-
tional immunoreceptor tyrosine-based inhibitory motif
(ITIM) and both CEACAM1-L and CEACAM1-S iso-
forms are often co-expressed in the same cell, with
expression ratios varying between different cell types
and between different cellular states [18,41]. In many
cases, expression of the short isoform interferes with
CEACAM1-L generated signals [40,42]. Therefore, the
signal transduction role of CEACAM1 has been mostly
attributed to the CEACAM1-L isoform and its cytoplas-
mic domain. Indeed, CEACAM1-L can interact with
cytoplasmic protein tyrosine kinases and protein tyrosine
phosphatases, as well as with calmodulin, β-catenin, actin,
filamin, shc, and tropomyosin (for review see [13]). Only
few of these interactions are sustained by the short cyto-
plasmic domain of CEACAM1-4S. However, investiga-
tions of transformed mammary epithelial cells (MCF7
cells) grown in a 3D-matrigel environment have suggested
that CEACAM1-4S can induce lumen formation in these
carcinoma cells resulting in acinar-like structures [14]. In
follow up studies, the effect of CEACAM1-4S was pin-
pointed to binding interactions of the short cytoplasmic
domain. In particular, in CEACAM1-4S the membrane-
proximal phenylalanine F454 or lysine K456 residues
(−HFGKTGSSGPLQ), respectively, interact with cyto-
skeletal components and T457 (−HFGKTGSSGPLQ) is
phosphorylated [43]. Furthermore, MCF7 cells injected
together with human fibroblasts in the fat pad of mice
show a more normal phenotype (with lumen formation),
when CEACAM1 is stably expressed in these cells [44]. In
this situation, both CEACAM1-4S and CEACAM1-4L are
able to induce lumen formation and gland development in
the xenograft [45]. Therefore, despite major differences in
their cytoplasmic sequences and their distinct profiles of
protein-protein interactions, both CEACAM1-4L as well
as CEACAM1-4S appear to modulate the growth be-
haviour of epithelial cells in a similar manner. These
findings imply that they can transmit at least some over-
lapping signals into the cells. Indeed, phosphorylation
of the membrane proximal threonine residue (T457),
present in the cytoplasmic domains of CEACAM1-4S
and CEACAM1-4L, by calmodulin kinase IID (CaM-
KIID) is the critical event required for CEACAM1-
driven lumen formation in transformed breast epithelial
cells [46].
A similar contribution of CEACAM1 to morphogen-

esis has now been reported in 3D cultures of prostate
cells [47]. The primary human prostate cells formed
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organoids with a lumen and small tubular outgrowth,
which was inhibited, when anti-CEACAM1 antibodies
were added to the cultures or when CEACAM1 expres-
sion was reduced by about 50% with antisense oligonu-
cleotides [47]. As these cells express both CEACAM1
isoforms, with either short or long cytoplasmic domain,
it is unclear if one or both proteins are responsible for
the phenotype. Prostate epithelial cells express an add-
itional member of the CEACAM family, CEACAM20,
which is found together with CEACAM1 on the luminal
surface of normal prostate glands. Again, antisense oli-
gonucleotides against CEACAM20 reduced tubule out-
growth [47]. Clearly, CEACAM20 has a cytoplasmic
domain sequence distinct from CEACAM1. Even more
striking, CEACAM20 lacks a complete IgV-like amino-
terminal domain, which is instrumental in CEACAM1
for homophilic interactions between CEACAM1 on
neighbouring cells. Together, these recent insights point
to functional commonalities between epithelial CEA-
CAM family members, which show striking sequence
divergence in their amino-terminal IgV-like domain or
their cytoplasmic sequences.
One important implication arising from these results

is the realization that signaling by epithelial CEACAMs
could involve parts of these receptors other than the
cytoplasmic domain or the amino-terminal IgV-like do-
main, such as the transmembrane or additional extracel-
lular domains. Indeed, recent experiments employing
either carcinoma cell lines or using bacterial pathogens
as CEACAM ligands have pointed into this unexpected
direction.

CEACAM1 cis-oligomerization sustained by the
transmembrane domain
A long standing observation in the field is the reduced
expression of CEACAM1 that accompanies transform-
ation of epithelial cells from different tissues [13], in-
cluding the transition from hepatocytes to hepatoma
cells. It is therefore not surprising, that re-expression of
CEACAM1-4L in rat hepatocellular carcinoma cells
results in growth suppression in vitro and reduced
tumour formation in vivo [48]. In contrast, expression of
CEACAM1-4S in an anchorage-dependent hepatocellular
carcinoma cell line promoted robust growth of the cells in
soft-agar, suggesting that CEACAM1-4S-initiated sig-
naling rendered the cells anchorage-independent [49].
Strikingly, this effect could be abolished by mutations in
the transmembrane domain. In particular, point muta-
tions disrupting a membrane-integral GxxxG motif
resulted in the loss of the anchorage-independent growth
promoting properties of CEACAM1-4S. As GxxxG motifs
in α-helical domains are known to support helix-helix
interactions, it was proposed that such mutations might dis-
rupt cis-dimer formation of CEACAM1. Recent biochemical
approaches based on chemical crosslinking support
the idea that CEACAM1 oligomerizes laterally via the
transmembrane domain to sustain downstream func-
tion [50]. Together, these results indicate that the
transmembrane domain of CEACAM1 promotes clus-
tering and oligomerization of the receptor as a pre-
requisite for signaling into the cell (Figure 2).

CEACAM-binding bacteria reveal the lipid raft
association of their receptors
Further insight into CEACAM signaling connections has
been gained by the use of bacterial pathogens as select-
ive and multivalent stimuli of these receptors. Over the
last two decades, diverse CEACAM-binding pathogens
including pathogenic Escherichia coli strains, Neisseria
gonorrhoeae, Neisseria meningitidis, Haemophilus influen-
zae, and Moraxella catarrhalis, have been found to bind
to CEACAM1 or other epithelial CEACAMs such as CEA
and CEACAM6 [51-56]. In an intriguing example of
convergent evolution, these bacteria employ structurally
distinct adhesive surface proteins (adhesins) to connect to
the same group of human receptors (Table 1). As CEA-
CAM1, CEA, and CEACAM6 are exposed on the apical
membrane of mucosal cells, they provide an accessible
handle for incoming bacteria (for review see [2]). Indeed,
all CEACAM-binding pathogenic bacteria characterized
so far exploit the human mucosa as a platform for
colonization, multiplication and further spread [57]. In
addition to mere binding to host cells, CEACAM engage-
ment triggers endocytosis of the bacteria into epithelial
cells and transcytosis of microorganisms through intact
epithelial layers [53,58,59]. In this respect, it has been re-
ported before that GPI-anchored CEA and CEACAM6 as
well as CEACAM1 initiate a characteristic uptake pathway
that is distinct from phagocytosis mediated by the granulo-
cyte receptor CEACAM3 [60,61]. Due to its exceptional
phagocytosis promoting properties, CEACAM3-initiated
signaling has been studied in great detail (for review see
[9]). In contrast to epithelial CEACAMs, CEACAM3-
initiated uptake of bacteria critically relies on a cyto-
plasmic sequence motif and involves extensive actin
cytoskeleton rearrangements orchestrated by the small
GTPase Rac and its effector protein WAVE2 [8,62].
Importantly, CEACAM3-mediated phagocytosis is inde-
pendent of sphingolipid- and cholesterol-rich mem-
brane microdomains, as cholesterol chelators do not
interfere with this process [61,63]. This is strikingly
different for epithelial CEACAMs, where internalization
of bacteria is sensitive against cholesterol depletion
[61,64]. Therefore, in addition to receptor dimerization
and oligomerization, it appears that signaling initiated
by epithelial CEACAMs also requires the proper lipid
environment in the membrane. For GPI-linked CEA
and CEACAM6 it is known for some time that these



Figure 2 Signaling initiated by epithelial CEACAMs. Schematic summary of recent findings with regard to CEACAM-initiated signaling events
in epithelial cells. Upon ligand binding, CEACAM1 forms oligomers supported by cis-interactions between the extracellular and the transmembrane
domains (1) and is recruited to membrane microdomains (2). GPI-anchored epithelial CEACAMs, such as CEA or CEACAM6, constitutively localize to
membrane microdomains (3). In membrane microdomains, epithelial CEACAMs connect to putative co-receptor(s) (black) via extracellular IgC2-like
domains (4). Intracellular signaling triggered by epithelial CEACAMs either directly or indirectly via co-receptor(s) leads to phosphatidylinositol-3’-kinase
dependent signaling processes connected to receptor-mediated endocytosis (5). Furthermore, stimulation of epithelial CEACAMs triggers novel gene
expression events, e.g. de novo expression of CD105, which extracts zyxin from basal integrin-rich focal adhesion sites (6), resulting in increased integrin
activity and enhanced binding to the basal extracellular matrix (ECM) (7).
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glycoproteins localize to detergent-resistant membrane
fractions [65]. In this regard, the GPI anchor of CEA is
sufficient to localize proteins to membrane microdo-
mains [66]. Transmembrane CEACAM1 has also been
found in detergent-resistant membrane microdomains
Table 1 CEACAM-binding bacteria and their adhesive protein
Bacterial species Primary target tissue

Adherent-invasive Escherichia coli (AIEC) Digestive tract

Diffusely adhering Escherichia coli (DAEC) Digestive tract Urogenital tract

Haemophilus influenzae Nasopharynx

Moraxella catarrhalis Nasopharynx

Neisseria gonorrhoeae Urogenital tract

Neisseria meningitidis Nasopharynx

commensal Neisseria Nasopharynx

Salmonella sp Digestive tract

NC: not yet characterized.
in epithelial and endothelial cells [20,67]. In contrast to
GPI-anchored CEACAMs, which constitutively localize
to the detergent-resistant membrane fraction, CEA-
CAM1 is only found in membrane microdomains upon
receptor clustering [67]. This suggests an additional
s
Adhesin CEACAM specificity References

1 3 5 6

FimH - NC - + [68]

Afa/Dr-I + - + + [69]

OmpP5 + NC + NC [55,70]

UspA1 + + + NC [56,71]

OpaCEA + + + + [54,72]

OpaCEA + + + + [53]

OpaCEA + NC NC NC [73]

Uncharacterized fimbrial adhesin + NC + + [51]
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layer of regulation, which drives this receptor into spe-
cific membrane regions upon receptor engagement. As
mutations in the transmembrane, but not the cytoplasmic
domain of CEACAM1 affect localization in detergent-
resistant membrane fractions [67], it is tempting to specu-
late that the receptor oligomerization function of the
CEACAM1 transmembrane domain directs this receptor
into membrane microdomains (Figure 2). Together,
epithelial CEACAMs require a specific lipid environ-
ment in the plasma membrane for proper function,
where GPI-anchored CEACAMs constitutively localize
and where CEACAM1 can be recruited to upon receptor
oligomerization.

CEACAM1 signaling initiated by the IgC2-like
extracellular domains
Though the localization in membrane microdomains is
shared by epithelial CEACAMs this does not provide a
direct explanation for their signaling capacity. Again,
CEACAM-mediated internalization of bacterial pathogens
provided novel insight into how epithelial CEACAMs
might be mechanistically connected to intracellular signal-
ing pathways. In numerous endocytic processes, phos-
phatidylinositol phosphates (PIPs) play an important role
[74,75]. Therefore, the observation that CEACAM3–me-
diated internalization is not blocked by wortmannin,
an inhibitor of phosphatidylinositol-3’ kinase (PI3K), was
particularly striking [76]. This surprising finding with
regard to CEACAM3 prompted an investigation of PI3K
and PIPs in bacterial internalization via epithelial CEA-
CAMs. Interestingly, in CEACAM1-expressing cells, a
strong accumulation of phosphatidylinositol 3’,4’,5’-tris-
phosphate (PI3,4,5P) was observed around bacterial
uptake sites [77]. Furthermore, overexpression of class I
PI3K increased bacterial uptake, whereas wortmannin
blocked CEACAM1-, CEA-, and CEACAM6-mediated
internalisation. Expression of the 5’-phosphate-directed
PIP phosphatase SHIP (SH2 domain-containing inositol
phosphatase), which dephosphorylates PI3,4,5P, reduces
CEACAM1-mediated internalization. Intriguingly, PI3K-
dependent endocytosis via CEACAM1 was not linked
to cytoplasmic determinants of the receptor, but rather
required the extracellular IgC2-like domains of CEACAM1
[77]. Accordingly, expression of CEACAM1 mutants lack-
ing either one or all IgC2-like domains resulted in lower
numbers of endocytosed bacteria in comparison to wild-
type CEACAM1 despite a similar binding of the microor-
ganisms to the truncated receptor. It is interesting to note,
that inhibition of PI3K by wortmannin did not interfere
with the re-location of CEACAM1 to membrane microdo-
mains, suggesting that PI3K signaling is downstream of
receptor oligomerization and membrane microdomain as-
sociation of the receptor. A plausible explanation would
be that the IgC2 domains of CEACAM1 connect bacteria-
bound CEACAM1, presumably via the extracellular part
of a membrane-microdomain located receptor, with PI3K
signaling inside cells (Figure 2).
It is interesting to note that the IgC2 domains of CEA-

CAM1 orthologs from human, cattle, mouse and rat
show a higher degree of sequence conservation than
the amino-terminal IgV-like domain [30,78]. The lower
sequence conservation in the amino-terminal IgV-like
domain compared to the IgC2-like domains has always
been interpreted as a sign of positive selection for
sequence variation in the amino-terminal domain.
However, together with the loss of function upon dele-
tion of the IgC2 domains, the relative conservation of
the IgC2 domains of epithelial CEACAMs may reflect
conserved functions and therefore evolutionary con-
straints on this region. Importantly, whereas all iso-
forms of CEACAM1, CEA, and CEACAM6 encompass
at least one IgC2-like extracellular domain, CEACAM3
lacks such an extracellular domain. The absence of
an IgC2-like extracellular domain in CEACAM3 corre-
lates well with the mechanistically distinct endocytosis
mediated by CEACAM3 in comparison to epithelial
CEACAMs. Altogether, it is very tempting to speculate
that engagement of epithelial CEACAMs will promote
the association of their extracelluar IgC2 domain(s)
with not yet identified co-receptor(s), which in turn trans-
mit the PI3K activating signal into the cell (Figure 2). This
model would also explain why CEACAMs with differences
in the amino-terminal and the cytoplasmic domain (such
as CEACAM1 and CEACAM20) can promote similar
cellular responses as discussed above for prostate
morphogenesis. Such a common co-receptor for mul-
tiple CEACAMs might also be located in membrane
microdomains, where CEACAM1 re-locates upon
oligomerization and where GPI-anchored CEACAMs
constitutively localize. The identification of this puta-
tive co-receptor might be the turning point in the
quest to completely understand the fascinating physi-
ology of epithelial CEACAMs.
CEACAM cooperation with integrins and other
membrane receptors
Several cellular receptors have already been proposed to
act as co-receptors for CEA or to co-operate with epithelial
CEACAMs [79-81]. For example, in lung epithelial cells,
CEACAM1 has been shown to co-immunoprecipitate with
Toll-like receptor 2 (TLR2) and bacterial engagement of
CEACAM1 has been suggested to interfere with TLR2-
induced pro-inflammatory responses [80]. However,
as the Moraxella catarrhalis strain O35E employed in
these studies does not bind to any CEACAM [71], it
is unclear, how CEACAM-initiated responses are trig-
gered in this context.
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In several studies, it has been observed that CEACAM
stimulation has a positive effect on cell-matrix adhesion
of epithelial cells as well as on integrin-mediated cell-
cell adhesion in leukocytes [20,22,82]. In the case of
CEACAM1, a phosphorylation-dependent interaction
with integrin β3 has been reported [83] and CEACAM1
colocalizes with integrin β1 in MCF7 cells grown in
Matrigel [84] suggesting that CEACAMs functionally
interact with integrins. Since ligand-bound integrins
locally organize membrane microdomains, they could
constitute a co-receptor for epithelial CEACAMs [85,86].
Indeed, the observed functional co-operation was sug-
gested to result from co-clustering of GPI-linked CEA-
CAMs together with integrins in these membrane areas
[87]. A co-operation between CEACAMs and integrins
would nicely explain the modulation of cellular func-
tions such as cell adhesion and cell survival in the
absence of matrix-attachment [88,89]. However, biochem-
ical evidence for a close physical interaction between CEA
or CEACAM6 and integrins is lacking. Furthermore,
CEACAMs localize to lateral cell-cell contacts or the
apical membrane compartment in polarized cells, whereas
ligand-bound integrins cluster at basal cell-matrix adhe-
sion sites. The seeming contradiction between functional
cooperation and distinct subcellular localization of epithe-
lial CEACAMs and integrins has been nicely resolved.
Using CEACAM-binding bacteria as a naturally occurring,
highly selective and multivalent ligand for CEACAM1,
CEA, and CEACAM6, an unbiased gene-expression ana-
lysis revealed a number of genes, which are specifically
induced following CEACAM stimulation in epithelial cells
[22]. Further analysis showed that upregulation of a mem-
ber of the TGF-β1 receptor family, termed endoglin or
CD105, is observed upon stimulation of GPI-anchored
CEACAMs or stimulation of a CEACAM1 mutant lacking
the complete cytoplasmic domain [22]. In all these cases,
CEACAM engagement by bacteria results in an elevated
CD105 mRNA level, which is observed within 1–3
hours after bacterial infection [22]. In a similar time
frame, the infected epithelial cells display enhanced
integrin-mediated adhesion to the extracellular matrix
and CD105 expression is necessary and sufficient for
this phenotype [22]. CD105 expression in turn does not
alter the amount of integrins on the cells, but initiates
the redistribution of the focal adhesion protein zyxin.
Indeed, zyxin binds with high affinity to the cytoplas-
mic domain of CD105, and disappears from integrin-
rich focal adhesion sites as soon as CD105 is expressed
in epithelial cells [90] (Figure 2). Due to the lack of
zyxin at focal adhesions, integrin activity, and therefore
extracellular matrix (ECM) binding of the infected
cells, increases over the course of several hours follow-
ing contact with CEACAM-binding bacteria. Increased
integrin activity and strengthened ECM-binding is also
observed in zyxin-deficient or CD105-overexpressing cells,
suggesting that CEACAM-binding bacteria exploit physio-
logical regulators of cell adhesion to indirectly manipulate
integrin activity [90] (Figure 2). This functional interplay
between CEACAM stimulation, CD105 expression and
its effect on focal adhesion site composition provide
a plausible scenario, how CEACAMs can modulate
integrin-mediated cell adhesion even without directly
associating with integrins. However, it should be noted
that several CEACAM-binding bacteria also possess
surface adhesins, which associate with extracellular
matrix (ECM) proteins of their host, such as fibronectin
or vitronectin [56,57,71]. In this manner, ECM protein
binding could allow such bacteria to simultaneously
engage integrins and CEACAMs once the integrity of
the epithelial barrier and the spatial separation of CEA-
CAMs and integrins might be compromised. If such
a potential co-stimulation of integrins and CEACAMs
by pathogenic microbes has consequences for the
outcome of bacteria-host interaction has not been
explored so far.
Nevertheless, already the indirect connection between

CEACAMs and integrins must be advantageous for bac-
teria trying to get a foothold on the mucosal surface,
given the fact that so many unrelated microbes target
CEACAMs (Table 1). Indeed, this functional connection
allows bacteria to engage receptors on the apical side of
the epithelium, while ultimately impacting on the activ-
ity of integrins, which are located on the basolateral side
of polarized epithelial cells. In the case of CEACAM-
binding Neisseria gonorrhoeae, which infects the uro-
genital tract, it has been observed that the enhanced
matrix binding of the infected epithelial cells strongly
reduces the exfoliation of the superficial mucosal cell
layer [90]. Suppressing CD105 upregulation or inhibiting
the zyxin-CD105 interaction in the urogenital tract of
CEA-transgenic mice allows exfoliation to proceed despite
the presence of CEACAM-binding bacteria, providing
experimental proof that CEACAM engagement is instru-
mental for successful colonization of the mucosal surface
[90]. Further examples have emerged, which demon-
strate that colonization of the nasopharyngeal mucosa
by Neisseria meningitidis or Moraxella catarrhalis profits
from the presence of epithelial CEACAMs [91,92]. In
the case of N. meningitidis, bacteria are not detected
in wildtype mice three days after inoculation, whereas
the same bacterial strain is present for up to a week
in the nasopharynx of CEACAM1-transgenic mice [91].
It is currently unclear, if suppression of epithelial exfoli-
ation, CEACAM-integrin cooperation, or other forms
of CEACAM-initiated cellular responses are involved in
nasopharyngeal colonization. However, these examples
again demonstrate that epithelial CEACAMs, either
with or without cytoplasmic domain, can orchestrate
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signaling events in epithelial cells. Furthermore, they also
showcase that much of CEACAM functionality can be
learned by using CEACAM-binding bacteria, such as
N. gonorrhoeae, as selective and potent stimuli.

Conclusions
Over the last decade, CEACAMs have emerged as im-
portant modulators of signaling events in leukocytes,
endothelial, and epithelial cells. The simultaneous
expression of multiple CEACAM family members by
most human epithelial tissues, including GPI-anchored
and transmembrane forms in different splice variants,
has hampered progress in deciphering the molecular
signaling connections initiated by CEACAM-mediated
cell-cell interactions. To understand the contribution of
CEACAMs in these processes, well characterized anti-
bodies have been employed to interfere with CEACAM-
CEACAM interactions, but due to sterical hindrance such
approaches might also block a number of other cell-cell
interactions. The use of CEACAM-binding bacteria as
multivalent, high affinity ligands for a number of epithe-
lial CEACAMs has provided an additional opportunity
to selectively trigger CEACAM signaling in vitro and
in vivo. These natural probes allow the visualization of
local CEACAM-initiated signaling complexes as well as
signaling intermediates and, therefore, have provided
novel insight. Combining these different approaches will
further help to refine our understanding of epithelial
CEACAM physiology and of the involved molecular and
cellular processes.
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