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Abstract

Background: Casein kinase 2 (CK2) is a ubiquitously expressed Ser/Thr kinase with multiple functions in the
regulation of cell proliferation and transformation. In targeting adherens and tight junctions (TJs), CK2 modulates
the strength and dynamics of epithelial cell-cell contacts. Occludin previously was identified as a substrate of CK2,
however the functional consequences of CK2-dependent occludin phosphorylation on TJ function were unknown.

Results: Here, we present evidence that phosphorylation of a Thr400-XXX-Thr404-XXX-Ser408 motif in the C-terminal

cytoplasmic tail of human occludin regulates assembly/disassembly and barrier properties of TJs. In contrast to
wildtype and T400A/T404A/S408A-mutated occludin, a phospho-mimetic Occ-T400E/T404E/S408E construct was
impaired in binding to ZO-2. Interestingly, pre-phosphorylation of a GST-Occ C-terminal domain fusion protein
attenuated binding to ZO-2, whereas, binding to ZO-1 was not affected. Moreover, Occ-T400E/T404E/S408E showed
delayed reassembly into TJs in Ca**-switch experiments. Stable expression of Occ-T400E/T404E/S408E in MDCK C11
cells augments barrier properties in enhancing paracellular resistance in two-path impedance spectroscopy, whereas
expression of wildtype and Occ-T400A/T404A/S408A did not affect transepithelial resistance.

Conclusions: These results suggest an important role of CK2 in epithelial tight junction regulation. The occludin
sequence motif at amino acids 400-408 apparently represents a hotspot for Ser/Thr-kinase phosphorylation and
depending on the residue(s) which are phosphorylated it differentially modulates the functional properties of the TJ.

Background

Tight junctions (TJs) represent the most apical cell-cell
contacts in epithelial and endothelial tissues and play a
central role in the maintenance of tissue integrity. In
forming multiple anastomosing strands surrounding
the cells they allow close contacts between opposing
cytoplasma membranes which form a barrier regulating
the passage of small molecules, ions, water and pathogens,
thereby protecting subepithelial and -endothelial tissues
from the external environment [1-3]. In separating apical
and basolateral membrane compartments, TJs contribute
to the maintenance of cell polarity. In addition to these
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more structural functions, TJs act as highly dynamic
signaling platforms, which integrate numerous signaling
pathways and regulate a variety of cellular processes
involved in differentiation, proliferation and apoptosis [4-6].

As an integral part of TJs, a set of transmembrane pro-
teins including claudins and the tight junction-associated
MARVEL protein (TAMP) family members occludin,
tricellulin and MarvelD3 define TJ structure and function.
The extracellular loops of these four-transmembrane
proteins form homophilic or heterophilic trans-interactions
with T] transmembrane proteins on opposing cell surfaces
thereby sealing the intercellular space and determining the
permeability characteristics of epithelial cell layers [5,7,8].
On the other hand the intracellular N- and C-terminal
domains of these transmembrane proteins assemble
TJ-associated proteins such as zonula occludens (ZO)
proteins ZO-1, -2 and -3, 7H6, cingulin and symplekin
which are essential for the association of TJs with the
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actin cytoskeleton and for assembly and maintenance
of TJs [9]. Interestingly, some of these proteins reveal the
typical dual function of Nacos (nuclear and adhesion
complexes) proteins affecting adhesive activity and nuclear
gene transcription [10]. Moreover, many T] proteins are
targets of protein kinases, which modulate assembly,
stability and functional properties of TJs [4].

When occludin was identified as the first integral T]
protein it was recognized as a central component common
to epithelial and endothelial TJs [11] which is able to form
TJ-like strands [12]. The initial finding that occludin
knockout mice showed fully developed TJs in epithelial
tissues [12] with no major defects in barrier properties
indicated that occludin has no essential barrier function.
In contrast, more detailed analysis of the complex
phenotypes observed in these knockout animals suggested
that occludin may play a role in epithelial differentiation
and proliferation [13]. Knockdown of occludin in Madin
Darby canine kidney (MDCK) II cells resulted in altered
composition of claudin proteins thus affecting permeability
characteristics [14]. Meanwhile, there is a significant
body of evidence indicating that occludin is important
for the regulation of TJ structure and integrity and that
this function is critically regulated by phosphorylation
events [15,16]. Different factors and stimuli such as
cytokines [17], vascular endothelial growth factor (VEGE)
[18], redox changes [19], oxidized phospholipids [20], bile
acids [21] lysophosphatic acid or phorbol ester [16] have
been identified that alter phosphorylation of occludin on
serine, threonine or tyrosine residues thereby affecting T]
properties. Several kinases including c-Yes [22], ¢-Src [23],
protein kinase C (PKC) [24,25], phosphatidylinosite-3-kin-
ase (PI3K) [26] as well as protein phosphatases like the
receptor tyrosine phosphatase DEP-1 [27] or the protein
phosphatases PP2A and PP1A [28] have been reported to
interact with or regulate the phosphorylation of occludin.

The casein kinases CK1 and CK2 represent ubiquitously
expressed serine/threonine kinases common to eukaryotic
organisms. Both kinases target the C-terminal domain of
occludin, whereas CK1 in addition is able to phosphorylate
the occludin N-terminal domain [29-33]. However, the
functional consequences of CK1- or CK2-dependent
phosphorylation on TJs are not completely clear to date.

Here, we focused on the role of CK2 regulating T]
function. CK2 is a constitutive active master kinase
involved in the regulation of multiple cellular processes
including cell proliferation, apoptosis, gene expression and
of the circadian rhythm [34]. Its subcellular localization
appears to define its specific targets in response to different
signals [34,35]. CK2 activity is frequently upregulated in
cancer and contributes to the regulation of signaling
pathways such as Wnt and NF«B signaling [36,37]. CK2 is
composed of two regulatory B-subunits and two enzymati-
cally active a-subunits (a, o”), which phosphorylate the
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consensus sequence motif S/T-X; ,-E/D and can use both
ATP and GTP as phosphate donors.

Previous studies have identified Thr375 and Ser379 in
Xenopus laevis occludin [30] and amino acids Thr403
and Ser407 in mouse occludin [33] as CK2 phosphoryl-
ation sites. Recently, we identified Thr400 as a third
CK2 phosphorylation site in human occludin in addition
to Thr404 and Ser408 which correspond to the sites
identified in Xenopus and mouse occludin [31]. In the
current study, phospho-site mutations were used to
investigate the role of CK2-dependent phosphorylation
of occludin on TJ function. Occ-T400E/T404E/S408E
which mimics constitutively phosphorylated occludin
showed reduced binding to ZO-2. Moreover, MDCK
C11 cells stably transfected with this occludin construct
revealed increased paracellular resistance without
changes in transcellular barrier properties. In addition,
Occ-T400E/T404E/S408E induces enhanced disassembly
and delayed reassembly of TJs in calcium-switch experi-
ments. In contrast, an Occ-T400A/T404A/S408A mutation
neither influences barrier properties nor affects assembly
and localization of occludin in calcium-switch experiments
compared to wildtype occludin.

Results

Occludin directly interacts with CK2

Previous in vitro studies have shown that the occludin
C-terminal domain is phosphorylated by CK2 [30,31].
To test whether an interaction of CK2 with occludin also
occurs in cells, co-immunoprecipitation experiments were
performed. HEK-293 cells were transiently transfected
with full-length FLAG-occludin (FLAG-Occ) and/or
HA-CK2a and myc-CK2p, and subsequently FLAG-Occ
was precipitated with anti-FLAG M2 antibody. In cells
transfected with both occludin and CK2, common
complexes containing FLAG-Occ and CK2a were
pulled down (Figure 1A). In control experiments
where FLAG-Occ or CK2 were transfected alone, no
binding was detectable. Pull-down assays with purified
recombinant GST-OccC fusion proteins containing the
C-terminal cytoplasmic tail of human occludin (amino
acids 263-523) and CK2 further confirmed these data.
GST-fusion proteins of the C-terminal cytoplasmic do-
main of occludin (GST-OccC) or a deletion construct of
this domain (GST-Occye3.389) containing the membrane
proximal part of the cytoplasmic domain, both bind to
CK2. In contrast, the distal part of the C-terminal cyto-
plasmic domain (GST-Occsg.503) revealed no affinity to
CK2 (Figure 1B).

Phosphomimetic mutation of the CK2-phosphorylation
sites in occludin attenuates interaction with ZO proteins
Recently we have shown that CK2 phosphorylates human
occludin in a cluster of amino acids including residues
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Figure 1 CK2 interacts with occludin. A) HEK-293 cells were transiently transfected with FLAG-occludin and HA-CK2a and myc-CK23 as
indicated, and after 24 h cells were lysed. Co-immunoprecipitations were performed with anti-FLAG M2 antibody and protein complexes were
analyzed by SDS-PAGE and Western blotting with anti-HA antibody. Lysate controls are shown. B) Purified recombinant GST-fusion proteins of the
occludin C-terminal cytoplasmic domain and deletion constructs thereof were incubated with recombinant CK2 protein and protein complexes
were pulled down with GSH-agarose beads to show a direct interaction. After analysis by SDS-PAGE and Western blotting binding of CK2 was
detected with an anti-CK2a antibody. Equal amounts of GST-fusion proteins were pulled down with GSH beads as shown in the lower panel.
** indicates heavy chain, and * indicates light chain of the precipitating antibody. The presented figures are representatives of at least three
independent experiments.

Thr400, Thr404 and Ser408 [31]. Sequence alignment of
occludin from different species demonstrates that Thr400,
Thr404 and Ser408 are located in a highly conserved
region (Figure 2A). Successive mutation of these amino
acids to alanine gradually reduces the CK2-dependent
phosphorylation of occludin. Simultaneous mutation of all
three amino acids to alanine completely abolishes the
CK2-dependent phosphorylation (Figure 2B and C).
Previous studies have demonstrated that tyrosine
phosphorylation of the occludin C-terminal cytoplasmic
domain impairs its interaction with ZO-proteins [23,38].
Otherwise, mutagenesis of Thr403 and Thr404 to alanine
targeting a PKCn) site was reported to reduce junctional
localization of ZO-1 [39]. In this context, we next wanted
to address if CK2-dependent phosphorylation also affects
binding of occludin to ZO-proteins. When we pulled
down ZO-1 with GST-OccC T400E/T404E/S408E or
GST-OccC T400A/T404A/S408A from MDCK Cl11

lysates we did not see a significant difference in binding of
endogenous ZO-1 compared to the wild-type construct
(not shown). This observation was discrepant to data
reporting that CK2-dependent phosphorylation of occludin
on S408 affects binding to ZO-1 [40]. Therefore we
decided to analyze ZO-1 binding by FRET in HEK293
cells, which were cotransfected with different occludin and
ZO-1 constructs. Consistent with our biochemical assays,
the triple-mutant occludin constructs again did not differ
from wildtype occludin in binding to ZO-1. However, an
occludin S408E mutant showed reduced binding to ZO-1
as reported previously [40] (Figure 3A) indicating a
differential effect of the single compared to the triple-
phosphorylation. Interestingly, further FRET analyses
performed to analyze ZO-2 binding to the mutated
occludin constructs revealed, that occludin-T400E/T404E/
S408E as well as occludin-S408E are both impaired in
binding to ZO-2 (Figure 3B).
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Figure 2 CK2 phosphorylates a highly conserved T400/T404/
$408 motif in the cytoplasmic tail of occludin. A) Alignment of
amino acid sequences containing the CK2 phosphorylation motif in
occludin from different species. Conserved threonine (T) and serine
(S) residues targeted by CK2 are highlighted. B) Densitometric
analysis of in vitro phosphorylation experiments using purified
recombinant GST-fusion proteins of the occludin C-terminal domain
and the indicated Ser/Thr to Ala mutated constructs. Data represent
mean values +/— SEM of 4 independent experiments. C) Full-length
cytoplasmic tail (GST-Occ263-523) and the C-terminal half of it
(GST-Occ381-523) and the corresponding triple alanine mutated
proteins were in vitro phosphorylated with recombinant CK2 and
subsequently analyzed by autoradiography. The triple alanine
mutations abrogated phosphorylation by CK2. The presented figure
is a representative of 3 independent experiments.

To further confirm this, pull-down experiments with
purified GST-OccC or corresponding phospho-site
mutated proteins were performed with cell lysates of
MDCK C11 cells transfected with HA-tagged ZO-2.
Wildtype and the triple phospho-deficient T400A/
T404A/S408A mutant of GST-OccC strongly interacted
with HA-ZO-2, whereas binding to the phospho-mimetic
GST-OccC T400E/T404E/S408E construct was significantly
reduced (Figure 4A and B). Co-immunoprecipitation assays
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Figure 3 Phosphorylation of T400/T404/5408 differentially
affects binding to ZO-1 and Z0-2. A) The indicated occludin (Occ)
constructs were transiently cotransfected into HEK-293 cells. The
phosphomimetic Occ S408E shows reduced cis-interaction along the
cell membrane with ZO-1 protein (5408/Z0-1, n=12) compared to
Occ wt with ZO-1 (wt/ZO-1, n = 26), p < 0.05 (¥), Mann-Whitney test,
one-tailed. The Occ triple E mutant (TripE/ZO-1, n=30) as well as
the triple A mutant (TripA/ZO-1; n = 34) were without effect. B) In
contrast to ZO-1, phosphomimetic triple E and S408E occludin
constructs exhibited reduced cis-interaction with the ZO-2 protein
(tripleE/Z0O-2, n=37; S408/wt, n=42) compared to Occ wt (wt/Z0-2,
n=35), p< 0011 (***), Mann-Whitney test, one-tailed. The Occ
mutant triple A (TripA/ZO-2; n = 32) was without significant effect.
Cis-interaction was measured as fluorescence resonance energy
transfer (FRET) efficiency using a FRET assay at cell-cell contacts
between two cotransfected cells. The Occ constructs were N-
terminal fusions with yellow fluorescent protein (YFP) and that of
Z0-1 and Z0O-2 were C-terminally fused with cyan fluorescent

protein (CFP).

corroborated this finding. Endogenous ZO-2 from MDCK
C11 cells transiently transfected with full-length FLAG-
tagged occludin variants formed a complex with wildtype
Occ-FLAG; and Occ-FLAG3 T400A/T404A/S408A. As-
sociation of Occ-FLAG3 T400E/T404E/S408E with ZO-2
was again reduced (Additional file 1: Figure S1). Finally,
when GST-OccC was prephosphorylated in vitro by
purified recombinant CK2 and used in pull-down experi-
ments with lysates from FLAG-ZO-2-transfected HEK-
293 cells, association of FLAG-ZO-2 was significantly
reduced (Figure 4C and D). Together with FRET experi-
ments, these results indicate, that phosphorylation of
occludin by CK2 abrogates occludin interaction with
Z0O-2. This suggests that phosphorylation of all three
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Figure 4 Impaired binding of ZO-2 to the phospho-mimetic Occ-T400E/T404E/S408E construct. A) The indicated GST-Occ cytoplasmic tail
fusion proteins were used to pull down HA-ZO-2 from transiently transfected MDCK C11 cells with GSH-agarose beads. Isolated protein
complexes were analyzed by Western blotting with anti-HA antibody. Equal amounts of GST- fusion proteins were pulled down as detected with
an anti-GST antibody in the lower panel. B) Quantification of 5 independent experiments as shown in (A). C) Purified GST-occludin C-terminal
domain (GST-OccC) was prephosphorylated in vitro by purified CK2 and subsequently used to pull down FLAG-tagged ZO-2 from transiently
transfected HEK-293 cells. Association of FLAG-ZO-2 was analyzed by Western blotting with the anti-FLAG M2 antibody. D) Densitometric

CK2 sites in occludin differentially affects binding of
occludin to ZO-1 or ZO-2 and in addition induces a
different effect compared to phosphorylation of S408
alone.

CK2-dependent phosphorylation of occludin does not
affect its localization to tight junctions

To study the physiological effects induced by the CK2-site
mutant occludin proteins, MDCK C11 cells were stably
transfected with FLAG-tagged occludin constructs, and

two clones of each vector-transfected (mock), Occ-FLAGs,
Occ-FLAG3-T400A/T404A/S408A- and Occ-FLAG3;-
T400E/T404E/S408E-transfected cells, respectively,
were selected for further analyses. In a first step, the
localization of the occludin constructs was examined by
confocal immunofluorescence microscopy after staining
with the anti-FLAG M2 antibody. All three Occ-FLAG3
variants were detectable in the plasma membrane and
colocalized with ZO-1 (Figure 5) and ZO-2 (Additional
file 2: Figure S2) in TJs. Comparable results were obtained
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Figure 5 Localization of wildtype occludin-FLAG; and the corresponding T400/T404/5408 mutated constructs. MDCK C11 cells stably
transfected with the indicated FLAGs-tagged occludin constructs were stained with anti-ZO-1 (red) and anti-FLAG M2 (green) antibodies and
nuclei were stained with DAPI (clones: mock 3.1, wt 1.1, T4A00A/T404A/S408A 3.1, T400E/T404E/S408E 4.1). Representative images of the indicated
clones are shown. Images were taken on a confocal laser-scanning microscope. The lower right panel represents a merged image of the other

three images. Bar, 20 M.

with occludin constructs carrying an N-terminal FLAG3-
tag (not shown). In consequence, we conclude that neither
the phosphorylation-deficient nor the phospho-mimetic
occludin variants are affected in their transport and
localization to TJs.

To exclude that stable transfection with the occludin
constructs altered the expression of other T] components,
equal amounts of protein from each of the picked clones
were separated by SDS-PAGE and analyzed by Western
blotting (Figure 6A). All Occ-FLAG; constructs were
expressed at comparable levels within each of the two
groups (mock 3.1, wt 1.1, T400A/T404A/S408A 3.1,
T400E/T404E/S408E 4.1; mock 3.2, wt 2.2, T400A/
T404A/S408A 3.2, T400E/T404E/S408E 4.2), whereas the
empty vector control (mock) showed no FLAG-signal.
Neither the expression of claudin-1 and -2 nor of ZO-1
and ZO-2 was significantly changed compared to mock-
transfected clones. B-Actin was used as a loading control.

Previous studies suggested, that occludin is involved in
regulation of cell proliferation [41]. Therefore, the MDCK
C11 clones expressing the different occludin-FLAGs
constructs were compared in XTT-assays. No significant
differences in cell proliferation were detectable (Figure 6B).
Taken together stable expression of the phospho-site
mutated occludin constructs neither impaired occludin
localization or expression of other tight junctional proteins
nor affected cell proliferation.

CK2-dependent phosphorylation affects occludin
distribution and dimerization

Since phosphorylation does not affect occludin localization
to TJs, we next wanted to address, whether its distribution
between the TX-100 soluble and insoluble fraction is
affected. When wildtype occludin was transfected into
MDCK C11 cells about 40% of the FLAG-tagged occludin

was found in the TX-100 soluble fraction. In contrast only
22% of the triple E mutated occludin was in the soluble
fraction. The triple A mutant did not differ much from
wildtype occludin with 35% of the protein in the TX-100
soluble fraction (Figure 7A and B).

Dimerization of occludin is mediated at least in part
by its C-terminal domain [42,43] and thus may be
affected by CK2-dependent phosphorylation. To address
this, FRET analyses were performed in HEK-293 cells.
Occludin T400A/T404A/S408A interacts with wildtype
occludin similar to homomeric interaction of wildtype
molecules. In contrast association of both occludin
T400E/T404E/S408E and occludin S408E with wildtype
occludin was significantly reduced (Figure 7C,D). In
conclusion, these results suggest that transport of occludin
to the cell surface and the TJs is not impaired by
phosphorylation, however, homodimerization and the
interaction with ZO-proteins is affected.

CK2-dependent phosphorylation of occludin affects
TJ-disassembly/assembly in Ca®*-switch experiments
Phosphorylation of occludin was reported to critically
regulate TJ assembly and stability [23,39]. In a next step
we therefore addressed whether the CK2-phosphorylation
site-mutated occludin-FLAG3 constructs differ from
wildtype occludin-FLAG; during dissociation and
reassembly of TJs in Ca**-switch experiments. After re-
moval of Ca®*, no change in the kinetics of TJ disassembly
was observed between wildtype occludin and Occ-FLAGs-
T400A/T404A/S408A. In contrast, the phospho-mimetic
Occ-FLAG3-T400E/T404E/S408E mutant protein dissoci-
ates significantly faster from the T7Js, as detected by con-
focal immunofluorescence microscopy (Figure 8A and B).
Re-addition of Ca®* had the opposite effect. Both wildtype
and the triple A-mutated occludin reappeared at TJs after
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Figure 6 Expression of TJ proteins in the stably transfected
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20 min whereas the occludin-T400E/T404E/S408E pro-
tein was nearly undetectable at intercellular junctions at
this time point (Figure 8C). After one hour the triple
E occludin mutant protein reappeared at the TJs
(not shown). Interestingly, also ZO-1 which was used
as a control for tight junctional co-localization was
significantly ~delayed, indicating that not only re-
localization of the mutant Occ-FLAG3-T400E/T404E/
S408E protein was impaired but T] assembly in general.
Similar results were obtained with the other clones tested
(not shown). From these observations we conclude, that
CK2-dependent phosphorylation of occludin modulates
TJ assembly and dynamics.

OccludinT400E/T404E/S408E increases paracellular
resistance

To further analyze the physiological consequences of
CK2-dependent phosphorylation, the transepithelial re-
sistance of the MDCK C11 clones transfected with the
different occludin constructs was measured by two-path
impedance spectroscopy, which allows to discriminate
between the paracellular resistance (RP**, reflecting the
resistance of the TJs), the transcellular resistance (R™",
reflecting the resistance of the apical and basolateral
membranes), and the epithelial resistance (R°?', which rep-
resents the contribution of both resistances). The stable
transfection of Occ- FLAGS (RP* =239 + 59 Q x c¢m%
R™™=100 + 15 Q x cm’ R®'=63 £ 9 Q x cm®) and
OCC FLAGg-T400A/T404A/S408A (RP*™ =306 + 60 Q x
cm’ R™™ =96 + 8 Q x cm? R®' =65 £ 6 Q x cm’?)
did not significantly alter the epithelial resistances
compared to mock-transfected cells (RP*™ =334 + 57
Q x cm% R™™ =101 + 6 Q x cm? R%®P1=71 + 5 Q x cm?)
(n=12). In contrast, MDCK C11 cells expressing Occ-
FLAG3-T400E/T404E/S408E showed an about 3-fold
increase in RP*™ (1062 + 199 Q x cm? **p<0.005),
whereas R™™ (126 + 12 Q x cm?) was again unaltered
compared to controls. This results in a 1.5-fold increase in
R (110 + 11 Q x cm?% **p=0.009, n=12), indicating
decreased ion permeability and increased tightness of the
epithelium (Figure 9). The depicted data represent mean
values obtained from 2 stably transfected clones.

Discussion

Early after its identification occludin was recognized to
be highly phosphorylated at Ser/Thr and Tyr residues.
Meanwhile multiple Ser/Thr-kinases including specific
PKC isoforms, ERK1/ERK2, CK1 and CK2 (former casein
kinase 1 and 2) and Tyr-kinases such as c-Yes and c¢-Src
have been reported to interact with and phosphorylate
occludin [16]. In these studies tyrosine-phosphorylation
has been associated with disruption of TJs in response to
different stimuli and was shown to be low in intact epithelia.
In contrast, Ser/Thr-phosphorylation levels are high in
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Figure 7 CK-2-dpendent phosphorylation affects occludin solubility and dimerization. The distribution of wildtype (wt) occludin (Occ) and
of the triple A (TripA) and E (TripE) mutated occludin constructs into TX-100-soluble and -insoluble fractions was analyzed by Western blotting

(A) and quantified by chemoluminescence imaging (Occ-wt/Occ-TripA *p = 0,103; Occ-wt/Occ-TripE **p =0,0018; n = 3) (B). C) Dimerization
(cis-interaction) of occludin was analyzed by a fluorescence resonance energy transfer (FRET) assay in cell-cell contacts (see D) between two
cotransfected HEK-293 cells. The constructs were N-terminally fused with cyan fluorescent protein (CFP, wt) and yellow fluorescent protein

(YFP, mutants). Replacement of serine in human occludin at the position 408 by glutamate reduced the FRET efficiency to wt Occ

(S408/wt, n =40) compared to the wt/wt control (n = 58) similarly as the TripE mutant (TripE/wt, n = 44), whereas the TripA mutant was without
any effect (TripA/wt, n=64). **, p < 0.01, Mann-Whitney test. D) Fluorescence images of living HEK-293 cells cotransfected with the indicated
CFP- and YFP-tagged Occ constructs used for the FRET measurements. Areas of FRET measurement at sites of cell-cell contacts are marked in red.

resting epithelia. The observed changes in response to
removal and readdition of Ca®* in Ca®*-switch experiments
suggested that Ser/Thr-phosphorylation is a central
mechanism regulating recruitment of occludin and its
assembly into TJs [44]. Although association of CK2
with occludin has been reported some time ago [30,33],

little was known about the potential physiological role
of this phosphorylation event. During our analyses a
highly sophisticated study by Raleigh et al. addressed
this question in very much detail [40]. In the following
we specifically discuss our data in the context of the
data presented in this paper.
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dissociated from the TJs along with a loss of ZO-1

addition of Ca". Bar, 10 uM.

Figure 8 Phosphorylation of occludin T400/T404/5408 regulates assembly/disassembly of TJs in Ca®*-switch experiments. A) Confocal
images were taken at t =0 min after removal of Ca’*. B) After depletion of Ca’* the phospho-mimetic Occ-T400E/T404E/S408E protein is rapidly

tight junctional staining. Wildtype occludin and Occ-T400A/T404A/S408A did not differ in the
kinetics of disassembly. C) After re-addition of Ca®* wildtype occludin and Occ-T400A/T404A/S408A rapidly reassembled into TJs whereas
formation of TJs in Occ-T400E/T404E/S408E-transfected MDCK C11 cells was significantly delayed. Confocal images were taken 20 min after

Based on our previous experiments defining Ser408,
Thr404 and Thr400 as amino acids targeted by CK2
[31], we here generated FLAG-tagged triple A and triple
E phospho-site mutated occludin constructs to mimic
unphosphorylated and CK2-phosphorylated occludin.
Both mutations did not impair localization of occludin
to TJs as shown by confocal immunofluorescence

microscopy. Moreover, no changes in cell proliferation
and expression levels of other TJ proteins such as
claudin-1 and -2 or ZO-1 and -2 were observed. These
data are consistent with the observations presented by
Raleigh et al., who in addition detected a reduced mobility
of occludin after inhibition of CK2 in FRAP experiments.
Moreover, occludin-T404A/S408A and occludin-S408A
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Figure 9 Increase of paracellular resistance after CK2-
dependent phosphorylation of occludin. Two-path impedance
spectroscopy was applied to measure the two components of
epithelial resistance (R*™), paracellular resistance (RP*, reflecting the
pathway across the tight junctions) and transcellular resistance
(R"", reflecting the pathway across the cell membranes).
Measurements were done in MDCK C11 cells, which were stably
transfected with the indicated occludin-FLAG; constructs. In Occ-
FLAG3-T400E/T404E/S408E-transfected cells a dramatic increase in
RP4™ was detectable compared to wildtype occludin and to Occ-
FLAGs-T400A/T404A/S408A-transfected cells, while R™" was
unchanged. Due to the about fourfold increase of R®*'®, the overall
epithelial resistance R®" was also increased. The figure shows
combined results of 6 independent measurements on two clones of
each construct. ** p <0.01.

mutant proteins revealed lower mobility fractions compared
to wildtype occludin since S408-dephosphorylated occludin
is able to interact with ZO-1 which links occludin to
selected claudins [40]. In contrast, a GST-occludin
cytoplasmic tail S408D fusion protein showed reduced
binding to a ZO-1 U5GuK construct compared to the
S408A mutated construct [40]. Using FRET analyses we
here observed that in contrast to a S408 mono-
phosphorylated occludin, triple phosphorylated occludin
is able to associate with ZO-1 and in consequence gets in-
tegrated into T7Js. This is also documented by an enhanced
TX-100 insolubility of the phospho-mimetic Occ-T400E
/T404E/S408E protein. According to a recent study by
Tash et al. defining the primary ZO-1 binding site within
residues 468-475 of occludin, CK2-dependent phosphor-
ylation of occludin cannot exert its effects on complex
formation directly on this primary interaction site but
may act on a postulated secondary site [45]. Interestingly,
when we analyzed the binding of ZO-2 protein in
pull-down and co-immunoprecipitation experiments,
association of ZO-2 was significantly attenuated in the
phospho-mimetic Occ-T400E/T404E/S408E-transfected
cells, whereas in Occ-T400A/T404A/S408A-transfected
cells a minor but not significant increase in ZO-2
binding was detectable compared to wildtype occludin.
These findings suggest that ZO-1 and ZO-2 can be
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differentially regulated. Previous studies with ZO-protein
knock-out cell lines or animals have shown that ZO-1 and
Z0O-2 have overlapping but not fully redundant functions
[46-49]. In respect to the dual function of ZO-1 and ZO-2
as Nacos (nuclear and adhesion complexes)-proteins with
specific engagement of the proteins in cell adhesion and
regulation of gene expression [10,50,51] this suggests
that the different effects on ZO-1 and ZO-2 in response
to CK2-dependent phosphorylation may represent a
mechanism how specific phosphorylation patterns on
occludin can modulate cell fate and behavior [52]. This
has to be analyzed in more detail in future experiments.

In previous work, the essential ZO-1 binding region
was mapped to amino acids 406-488 within occludin
which is in close proximity to the CK2 Ser/Thr phos-
phorylation cluster [43]. Since occludin also dimerizes
through a coiled-coil (CC-) domain within this region
[26,42,43,53], CK2-dependent phosphorylation may also
modulate dimerization of occludin or its interaction with
other tight junctional proteins. In experiments using triple
A or triple E mutated GST-OccC fusion proteins to pull
down FLAG-occludin from transiently transfected HEK-
293 cells, we observed that the triple E phospho-mimetic
construct bound less FLAG-occludin compared to the
GST-OccC T400A/T404A/S408A construct (Additional
file 3: Figure S3). However, it has recently been shown that
the MARVEL-domain also is involved in dimerization of
occludin [54] and thus has to be considered in this
respect. Therefore, FRET analyses with full-length occludin
constructs which include the MARVEL domain were
performed and confirmed that the triple E mutated as well
as the S408E occludin is impaired in binding to wildtype
occludin.

Since binding of ZO-proteins to occludin is important
for regulation of TJ assembly and function [47,55,56],
CK2-dependent phosphorylation of occludin may perturb
TJ assembly and stability. In this context, we observed
an enhanced dissociation of occludin from TJs in
response to Ca”*-depletion and a significantly delayed
reassembly of TJs in response to the switch back to high
Ca”*-concentrations in MDCK cells transfected with
the Occ-T400E/T404E/S408E construct. The kinetics of
an Occ-T400A/T404A/S408A construct did not differ
from wildtype occludin in this respect. These observations
are in contrast to the recently reported effects of PKCn-
dependent phosphorylation on TJ] integrity [39]: PKCnp
targets amino acids Thr403 and Thr404 in occludin.
Although including an amino acid of the CK2 motif, an
exchange of Thr403 and Thr404 to alanine impairs
localization of occludin to TJs, whereas the phosphomimetic
construct was predominantly detectable at the TJs and,
moreover, augmented tight junctional localization of ZO-1.
Thus the effects induced by the Occ-T400E/T404E/S408E
construct are more comparable to consequences of c-Src
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-mediated tyrosine phosphorylation of occludin, where a
phospho-mimetic Y398D/Y402D construct was impaired
in tight junctional localization [23].

To address the physiological consequences of CK2-
dependent phosphorylation of occludin on polarized
cell layers with fully established tight junctions, the
transepithelial resistances of Occ-T400E/T404E/S408E
and Occ-T400A/T404A/S408A-transfected MDCK cells
were analyzed. Occ-T400E/T404E/S408E-transfected cells
showed an enhanced paracellular resistance compared to
wildtype and Occ-T400A/T404A/S408A-transfected cells.
This can be correlated with binding of the triple E
mutated occludin to ZO-1 and its efficient integration into
TJs as detected by increased distribution to the TX-100
insoluble fraction. Phosphorylation of occludin T403 and
T404 by PKCn also was reported to enhance barrier
function [39]. However, in respect to CK2-dependent
phosphorylation of occludin our data are in contrast to
the reported increase in transepithelial resistance in
response to CK2 inhibition or knockdown [40]. In our
study a kidney cell line, MDCK C11 was used in which
the mutated occludin constructs were expressed on the
background of endogenous tight junctional occludin
and claudin expression. Different from this, Raleigh
et al. used an intestinal cell line, Caco-2, in which they
analyzed EGFP-occludin phosphosite-mutated proteins
including occludin-T404D/S408D on the background of
a knockdown of endogenous occludin. The presence or
absence of endogenous wildtype occludin might affect
the interactions of the various proteins involved in the
formation and function of TJs and might, hence, influence
the dynamics and functional features of TJs. Furthermore,
the dissimilar tissue origin — intestine versus kidney — and
the resulting different endogenous T] protein expression
profile might have affected the observed results. In line
with this, it was recently reported that the dynamics of
claudins which correlated with their polymerization into
TJ strands differed between cell lines [57]. Additionally, it
is not clear if these differences depend on the further
mutation of T400 or the exchange of threonine and serine
residues to glutamate in our construct compared to aspar-
tate. Nevertheless, in line with Raleigh et al. we conclude
that posttranslational modifications of occludin differen-
tially affect transport and translocation to the TJs and
regulate functional properties when occludin is finally
integrated into the TJs. An explanation how this is mech-
anistically regulated is presented in a model by Raleigh
et al. proposing that a change in the mobile fraction of
occludin affects its association with ZO-1 and claudin-1
and -2 [40].

During development, occludin phosphorylation seems
to be regulated in a stage-specific manner as shown during
early mouse and Xenopus development [29,58]. However,
the kinase(s) involved in these processes have to be
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identified. Since CK2 is a constitutively active kinase its
cellular functions appear to be regulated by subcellular
targeting in response to specific signaling events [35].
Currently, the signals promoting CK2 localization to TJs
or targeting it to tight junctional proteins are unknown.
It is also not clear whether PKC- and CK2-dependent
phosphorylations are mutually exclusive or may occur
in parallel. Consensus motifs for PKCs have been charac-
terized to contain basic residues. According to this, pre-
phosphorylation by CK2 and subsequent phosphorylation
by PKC appears to be very unlikely because CK2 phos-
phorylation would create a highly negative charge in the
neighborhood of the PKC phosphorylation site. However,
in this context it has to be noted that the Thr403/Thr404
site in occludin per se does not fit to the typical PKC
consensus motif in showing no neighboring basic amino
acids. Probably the activity of phosphatases such as PP2A
and PP1 [28] play an important role in coordinating phos-
phorylation of occludin by different kinases. Interestingly,
the Thr400-XXX-Thr404-XXX-Ser408 sequence represents
a typical glycogen synthase kinase-3p (GSK3p) consensus
site, especially when pre-phosphorylated on Ser408. Up to
now, we could not detect GSK3p-dependent phosphor-
ylation of occludin neither with nor without pre-
phosphorylation with CK2 in vitro. Thus the recently
reported stabilization of endothelial TJs in response to
inhibition of GSK3p [59] may be an indirect effect.

Conclusions

Taken together, depending on casein kinase 2 and the
specifically modified residues in occludin, different effects
on TJ assembly and function can be observed most
probably depending on the different mobilities of the
proteins within the membranes [40] or by a release from
raft-like compartments [60]. More important, binding
of ZO-proteins is differentially affected. This explains
why ZO-1 and ZO-2 have overlapping but not fully
redundant functions. In conclusion, the occludin sequence
motif at amino acids 400-408 represents a hotspot and
regulatory segment for Ser/Thr-kinase phosphorylation
[61] including CK2 (Figure 10) which may differentially
regulate T7J structure and function.

Methods

Cell culture

MDCK C11 and HEK-293 cells were cultured in MEM
and DMEM (PAA Laboratories GmbH) respectively,
with 10% (v/v) FCS and 100 U/ml penicillin, 100 pg/ml
streptomycin under standard cell culture conditions.
HEK-293 cells were transiently transfected with calcium
phosphate as described previously [62]. Transient trans-
fections of MDCK cells with expression vectors (5 pg of
DNA per plate) were performed with Turbofect™
(Fermentas). Stable expressing cells were generated by
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Figure 10 Scheme of the regulatory sequence in the cytosolic C-terminal coiled-coil (CC)-domain in human occludin depicting the
casein kinase 2 (CK2) phosphorylation (~P) sites. The CC-domain is illustrated by the shaded area calculated from the molecular surface of
the crystal structure [42]. The N-terminal part, not resolved by crystallography, is displayed as chain of amino acid circles. Interestingly, various
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transfection with 2 pg p3xFLAG-CMV14-Occ expression  from Chemicon International, anti-HA (6E2) antibody
vectors using FuGENE® HD (Roche). G418-resistant  was from Cell Signaling and anti-GST antibody was kindly
clones were picked and established. Clones transfected provided by Jirgen Wienands. HRPO-labeled goat
with empty vector were generated as control. To confirm  anti-mouse and anti-rabbit antibodies were from Dianova,
stable transfection and analyze the expression of endogen-  Alexa Fluor™488 and Alexa-Fluor™594-labeled antibodies
ous T] proteins, cells were grown for 48 h and then were obtained from Molecular Probes (Invitrogen).
washed with ice-cold PBS. Cells were either lysed with  Enzymes for molecular biology were purchased from
lysis buffer (PBS, 0.2% (v/v) Triton X-100, 1 mM NaVOs, Roche, Fermentas or New England Biolabs. Purified CK2
10 mM NaF) as described below or membrane fractions  was obtained from New England Biolabs.

were generated by scraping cells from cell culture plates

and subsequent homogenization in 0.5 ml lysis buffer  Plasmids

containing 20 mM Tris pH 7.5, 5 mM MgCl,, 1 mM  Generation of plasmids to express the cytoplasmic domain
EDTA and Complete™ protease inhibitor mix (Roche) by  of human occludin or fragments thereof (aa263-523,
passing the cells through a 25 G needle. After centrifuga- aa263-389 and aa381-523) was reported previously [31].
tion at 200 x g for 5 min the supernatant was collected  Full length occludin expression constructs were amplified
and centrifuged for 30 min at 44.000 x g. The resulting  from occludin cDNA [62] by PCR using the oligonucleo-
pellet was resuspended in 100 pl lysis buffer and total tides 5'-GCG GGA TCC ATG TCA TCC AGG CCT
protein concentration was determined using advanced CTT G-3'and 5'-CGC GGA TCC CTA TGT TTT CTG
protein assay (Cytoskeleton, Denver; CO, USA). Same TCT ATC ATA GTC-3" or 5'-CGC GGA TCC GCC
amount of protein was separated by SDS-PAGE and GCC ATG TCA TCC AGG CCT CTT GAA-3" and

blotted with the indicated antibodies. 5'-GCG GGA TCC TGT TTT CTG TCT ATC ATA
GTC TCC-3’ and subcloned into the BamHI sites of
Reagents, enzymes and antibodies p3xFLAG-CMV10 and p3xFLAG-CMV14, respectively

Polyclonal antibodies against ZO-1, ZO-2, claudin-1, (Sigma-Aldrich). Briefly, T400, T404 and S408 were
claudin-2, and occludin were obtained from Zymed mutated to Ala or Glu (single or multiple mutations)
(Invitrogen). Mouse monoclonal anti-FLAG-M2 and  with the Change-IT™ Multiple Mutation Site Directed
anti-MBP antibodies were purchased from Sigma, Mutagenesis Kit (USB). The following oligonucleotides
anti-CK2a (clone 1 AD9) and anti-GAPDH antibody was ~ were used: 5'-C TAC ACA ACT GGC GGC GAG
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GCC TGT GAT GAG CTG GAG GAG-3' (5408A),
5-C TAT GAG ACA GAC TAC ACA GCT GGC
GGC GAG GCC TGT GAT-3" (T404A/S408A), 5'-GAG
CAA GAT CAC TAT GAG GCA GAC TAC ACA GCT
GGC GGC-3" (T400A/T404A), 5'-C TAC ACA ACT
GGC GGC GAG GAG TGT GAT GAG CTG GAG
GAG-3" (S408E), 5'-CAG CTC ATC ACA CTC CTC
GCC GCC CTC TGT GTA GTC TGT CTC ATA GTG
ATC-3" (T404E/S408E) and 5-AGA ACA GAG CAA
GAT CAC TAT GAG GAA GAC TAC ACA GAG GGC
GGC GAG-3' (T400E/T404E). The sequences of all
constructs were verified by resequencing.

Recombinant protein expression and purification

Fusion proteins of different GST-tagged occludin
constructs were expressed in E. coli BL21 (DE3).
Protein expression was induced at 30°C with 0.5 mM
IPTG for 1 h and recombinant proteins were affinity-
purified on glutathione (GSH)-agarose (Sigma) as descri-
bed previously [63].

In vitro-association assays

To analyze the direct interaction between occludin and
CK2 pull-down assays with GST-fusion proteins of
different occludin deletion mutants were performed.
Purified proteins (2 pg GST-OccC, 0,25 pl CK2) were
incubated in pull-down buffer (50 mM Tris/HCI pH 8.0,
50 mM KCI, 0.04% (v/v) Triton X-100, 4 mM MgCl,)
for 1 h at 4°C under constant agitation. Assays were
performed as described previously [64]. Binding of ZO-2
to occludin was investigated using purified GST-OccC
fusion protein or corresponding CK2 phosphorylation
site mutant proteins, which were incubated with cell
extracts obtained from confluent MDCK C11 cell mono-
layers. Initially, 2 x 10° cells per well were plated and
grown for 24 h. Subsequently cells were transfected with
5 ug pGW-HA-cZO-2. After 24 h cells were washed
with PBS and incubated with lysis buffer (PBS, 0.2%
(v/v) Triton X-100, 1 mM NaVOs;, 10 mM NaF). After
ultrasonification, cellular debris was removed by
centrifugation (20.800 x g, 15 min, 4°C). Clarified cell
lysates (1 mg total protein) were incubated with 5 pg
of each GST-OccC construct or GST protein alone as
a control, 30 ul GSH-agarose beads (1:1 slurry) and
incubated for 1 h at 4°C under constant agitation.
Beads were washed three times with lysis buffer
and proteins were eluted by boiling for 5 min in
SDS-sample buffer for subsequent analysis by SDS-PAGE
and Western blotting. The chemoluminescence signals
were analyzed on a Fusion-FX7 system (Vilber Lourmat),
the quantification of the signals was performed using
Image] [65].
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Co-immunoprecipitation assays

For co-immunoprecipitation assays, HEK-293 cells were
transiently transfected with 2 pg pRc/CMV-Myc-CK243,
pRc/CMV-HA-CK2a and pFLAG-CMV4-Occludin or
corresponding empty vector. Immunoprecipitation assays
were performed as described before [62], using the follow-
ing lysis buffer: 50 mM HEPES, 150 mM NacCl, 300 mM
sucrose, 0.05 mM ZnCl,, 0.2% (v/v) Triton X-100, pH 6.8.
To detect the interaction between occludin and ZO-2,
2x10° MDCK Cl11 cells per well were seeded and incu-
bated for 24 h at 37°C. The cells were transfected with
p3xFLAG-CMV14, p3xFLAG-CMV14-occludin, p3xFLAG-
CMV14-occludintgpon/Ta0aa/s408a and p3xFLAG-CMV14-
occludinrgoor/Ta0ag/sa0se: The cells were lysed 24 h after
transfection with 200 pl lysis buffer (PBS, 0.2% (v/v) Triton
X-100, 1 mM NaVOs, 10 mM NaF) and ultrasonic treat-
ment. Cellular debris was pelleted by centrifugation
(20.800 x g, 15 min, 4°C). The supernatant (1.5 mg
protein) was incubated with 1 pg anti-ZO-2 antibody for
1 h at 4°C under constant agitation to precipitate en-
dogenous ZO-2. Protein complexes were isolated by
incubating the lysates with Protein A-Sepharose (GE-
Healthcare) for 30 min at 4°C. Beads were washed
with lysis buffer and the pellet was resuspended in
2x SDS-sample buffer, boiled for 5 min and analyzed
by SDS-PAGE and Western blotting. Chemoluminescence
signals were analyzed on a Fusion-FX7 system and quantifi-
cation of the signals was performed using Image].

FRET analyses

For analysis of the cis-interactions between T] proteins
along the cell membrane of one cell, HEK-293 cells were
co-transfected with plasmids encoding human occludin
wild type as N-terminal fusion protein with cyan fluores-
cence protein (CFP) and mutants of occludin N-terminally
fused with vyellow fluorescence protein (YFP), or C-
terminally CFP tagged human ZO-1 and the occludin con-
structs with YEP. Fluorescence resonance energy transfer
(FRET) analysis was performed on a Zeiss LSM 510 laser
scanning confocal microscope equipped with He/Ne and
Ar lasers and a spectral detector. For the microscopy,
a Neofluar-Apochromat 100X oil immersion objective
NA 1.3 was used. Excitation of CFP was achieved with
the Ar laser line at 458 nm (50% power, 3% trans-
mission), of YFP with the Ar laser line at 514 nm
(50% Power, 8% transmission). Bleaching of the YFP
signal was performed with a YFP excitation laser beam
of 100% transmission. FRET was measured after ac-
ceptor photobleaching as described previously in living
cells [66].

Immunofluorescence microscopy
For immunofluorescence microscopy 1x10° MDCK
C11 cells per well were seeded on chamber slides coated
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with collagen (0.1 pg/pl; Biochrom) and incubated for
24 h at 37°C, 5% CO,. Cells were washed with PBS, fixed
with methanol (20 min, -20°C) and washed again with
PBS. After blocking with 5% (v/v) goat serum (PAA) in
PBS for 1 h at RT, cells were stained with anti-FLAG
-M2 (5 pg/ml) and anti-ZO-1 (0.5 pg/ml) for 1 h at RT
and washed 5 times with PBS. Cells were incubated with
Alexa-Fluor488 or Alexa-Fluor594 secondary antibodies
and DAPI (0.1 pg/ml) for 30 min at RT, washed 5 times
with PBS and cover slides were mounted using ProTaqs
Mount Fluor (Bioxyc GmbH&Co. KG). Images were
taken on a LSM 510 META confocal laser scanning
microscope (Zeiss) with a Plan Apochromat Plan Neofluor
objective (63x/1.25 oil) at excitation wavelength 488, 543
or 405 nm. Figures were generated with Adobe Illustrator
without further adjustment.

Cell proliferation

Proliferation of the stable transfected MDCK C11 cells
was analyzed using the Cell Proliferation Kit II (Roche)
according to the manufacturer’s instructions. In brief,
1x10* cells were seeded in 96-well plates in a final
volume of 100 pl medium and allowed to grow for 48 h.
Subsequently, 50 pl XTT labeling mixture was added, and
cells were incubated at 37°C for 4, 6 and 8 h and the
absorbance was measured at 450 nm in an ELISA reader.

Ca®*-switch experiments

Stable transfected MDCK C11 clones (1 x 10° cells/35-mm
dish) were seeded on cover slides and were allowed to
grow for 24 h. Subsequently, cells were rinsed (t = 0) with
PBS™'~ (without Ca**/Mg") and incubated with low (LC)
calcium medium (SMEM, Invitrogen), containing 10%
(v/v) dialyzed FCS, 100 U/ml penicillin, 100 pg/ml
streptomycin. At t = 90 min, cells were washed with PBS
(t*=0) and the LC medium was replaced by normal
calcium (NC) medium. The cells were fixed at the indicated
time points and immuno-stained as described above.

In vitro-phosphorylation assays

In vitro phosphorylation of GST-occludin constructs
with CK2 was performed as described before, using
radioactive-labeled (P*?)-y-ATP [31]. Phosphorylated
proteins were separated by SDS-PAGE and radioactivity
was measured on a FLA-3000 Fluorescent Image
Analyzer (Fujifilm). Data was processed with Image].

Two-path impedance spectroscopy

Two-path impedance spectroscopy was used to quantify
differences in the barrier properties of MDCK C11 cells
stably transfected with wildtype FLAG3-occludin or the
different CK2-site mutated FLAGs-occludin constructs
as described previously [67]. Cells were seeded on cell
culture inserts (Millipore) and allowed to build confluent
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monolayers. After application of AC (35 pA/cm2,
frequency range 1 Hz — 65 kHz), changes in tissue volt-
age were detected by phase-sensitive amplifiers (402
frequency response analyzer, Beran Instruments, Gilching,
Germany; 1286 electrochemical interface; Solartron
Schlumberger, Farnborough, United Kingdom). Complex
impedance values were calculated and plotted in a Nyquist
diagram. R"™" and RP*™ were determined from experi-
ments in which impedance spectra and fluxes of fluorescein
as a paracellular marker substance were obtained before
and after chelating extracellular Ca®>* with EGTA. This
caused TJs to partly open and to increase fluorescein flux.
It was ascertained in separate experiments that changes of
fluorescein fluxes are inversely proportional to R
changes (data not shown).

Statistics

Data represent mean values + SEM of at least 3 experi-
ments. Students t-test was used to identify significant
differences within several experimental groups, with p <0.05
considered as significant. In case of multiple testing,
Bonferroni correction was performed.

Additional files

Additional file 1: Figure S1. A) Co-immunoprecipitation of occludin/
Z0-2 complexes from cell lysates of MDCK C11 cells transiently
transfected with the indicated occludin-FLAG3 constructs. Endogenous
Z0-2 was precipitated with an anti-ZO-2 antibody and association of
occludin proteins was analyzed by Western blotting with the anti-FLAG
M2 antibody. Rabbit IgG was used as a control for immunoprecipitations.
Lysate controls to demonstrate equal transfection and loading are shown
below. B) Densitometric quantification of 8 experiments as shown in (A).

Additional file 2: Figure S2. FLAG-occludin constructs and endogenous
70-2 were detected by immufluorescence microscopy using an inverted Zeiss
Axio Observer.Z.1 ApoTome with a LCI-Plan Neofluor objective (63/1.3 x Im)
at excitation wavelenghts of 488, 543 or 405 nm. Bar: 20 um.

Additional file 3: Figure S3. The indicated GST-fusion proteins of the
occludin C-terminal cytoplasmic domain were incubated with cell lysates
of HEK-293 cells transiently transfected with FLAG-occludin. Associated
proteins were pulled down with GSH-agarose beads and detected by
Western blotting with anti-FLAG M2 antibody (upper panel). Isolated
GST-fusion proteins were detected with an anti-GST antibody

(lower panel). GST was used as a control to detect unspecific binding.

Competing interests
The authors declare no competing interest.

Authors’ contributions

MJD, JKW, CB, SMK, SM, JC performed experiments. IEB, MF, RT contributed
to the conception and design of the experiments and discussion of results,
OH designed and coordinated the study and wrote the manuscript. All
authors read and fully approved the final version of the manuscript.

Acknowledgements

This work was supported by the DFG Research Group FOR 721 TP3
(HU881/4-1 and —2), TP1, TP5 (BL308/9-1) and TPZ. We thank Luise Kosel for
excellent technical assistance. We gratefully acknowledge the receipt of
PFLAG-CMV2-hZO-2 from Dr. Marius Sudol. Expression vectors pRc/CMV-Myc-
CK2[ and pRc/CMV-HA-CK2a were generous gifts from Dr. D. W. Litchfield,
pGW-HA-cZ0O-2 was kindly provided by Dr. Lorenza Gonzalez-Mariscal.


http://www.biomedcentral.com/content/supplementary/1478-811X-11-40-S1.pdf
http://www.biomedcentral.com/content/supplementary/1478-811X-11-40-S2.tiff
http://www.biomedcentral.com/content/supplementary/1478-811X-11-40-S3.pdf

Dorfel et al. Cell Communication and Signaling 2013, 11:40
http://www.biosignaling.com/content/11/1/40

Author details

'Institute of Biochemistry Il, Jena University Hospital,
Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany.
ZInstitute of Laboratory Medicine and Pathobiochemistry, Charité —
Universitatsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.
3Leibniz-Institute of Molecular Pharmacology, Robert-Rossle-Str. 10, 13125
Berlin, Germany. “Institute of Clinical Physiology, Charité —
Universitatsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.
°Current addresses: MJD, Cold Spring Harbor Laboratory, Stanley Institute for
Cognitive Genomics, 500 Sunnyside Blvd, Woodbury, NY 11797 USA. 5JKW,
Oxacell AG, Helene-Lange-Str. 12, 14469 Potsdam, Germany.

Received: 4 October 2012 Accepted: 4 June 2013
Published: 10 June 2013

References

1. Anderson JM, van Itallie CM: Physiology and function of the tight
junction. Cold Spring Harb Perspect Biol 2009, 1(2):a002584.

2. Marchiando AM, Graham WV, Turner JR: Epithelial barriers in homeostasis
and disease. Annu Rev Pathol Mech Dis 2010, 5:119-144.

3. Wroblewski LE, Peek RM: Targeted disruption of the epithelial barrier by
Helicobacter pylori. Cell Commun Signal 2011, 9(1):29.

4. Gonzélez-Mariscal L, Tapia R, Chamorro D: Crosstalk of tight junction
components with signaling pathways. Biochim Biophys Acta 2008,
1778:729-756.

5. Shen L, Weber CR, Raleigh DR, Turner JR: Tight junction pore and leak
pathways: a dynamic duo. Annu Rev Physiol 2011, 73:283-309.

6.  Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S: Tight junction-based
epithelial microenvironment and cell proliferation. Oncogene 2008,
27:6930-6938.

7. Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR,
Gehring C, Rahn HP, et al: Elucidating the principles of the molecular
organization of heteropolymeric tight junction strands. Cell Mol Life Sci 2011,
68:3903-3918.

8. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M,
Turner JR: Tight junction-associated MARVEL proteins marveld3,
tricellulin, and occludin have distinct but overlapping functions. Mol Biol
Cell 2010, 21:1200-1213.

9. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE: Tight junction
proteins. Prog Biophys Mol Biol 2003, 81:1-44.

10. Balda MS, Matter K: Epithelial cell adhesion and the regulation of gene
expression. Trends Cell Biol 2003, 13:310-318.

11. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S:
Occludin: a novel integral membrane protein localizing at tight
junctions. J Cell Biol 1993, 123:1777-1788.

12. Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S, Tsukita S: Overexpression
of occludin, a tight junction-associated integral membrane protein,
induces the formation of intracellular multilamellar bodies bearing tight
junction-like structures. J Cell Sci 1996, 109:43-47.

13.  Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidel U, Amasheh S, Saitou M,
Tsukita S, Fromm M: Epithelial transport and barrier function in occludin-
deficient mice. Biochim Biophys Acta 2005, 1669:34-42.

4. Yu ASL, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD,
Schneeberger EE: Knockdown of occludin expression leads to diverse
phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 2005,
288:C1231-C1241.

15, Dorfel MJ, Huber O: Modulation of tight junction structure and function
by kinases and phosphatases targeting occludin. J Biomed Biotechnol
2012, 2012:807356.

16.  Feldman GJ, Mullin JM, Ryan MP: Occludin: Structure, function and
regulation. Adv Drug Deliv Rev 2005, 57:883-917.

17.  Capaldo CT, Nusrat A: Cytokine regulation of tight junctions. Biochim
Biophys Acta 2009, 1788:364-871.

18. Murakami T, Felinski EA, Antonetti DA: Occludin phosphorylation and
ubiquitination regulate tight junciton trafficking and vascular
endothelial growth factor-induced permeability. J Biol Chem 2009,
284:21036-21046.

19. Blasig IE, Bellmann C, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF:
Occludin protein family - oxidative stress and reducing conditions.
Antioxid Redox Signal 2011, 15:1195-1219.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Page 15 of 16

DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK:
Oxidized phospholipids mediate occludin expression and
phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ
Physiol 2006, 290:H674-H683.

Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M,
Apicella C, Capasso L, Paludetta R: Bile acids modulate tight junction
structure and barrrier function of Vaco-2 monolayers via EGFR activation.
Am J Physiol Gastrointest Liver Physiol 2008, 294:G906-G913.

Chen YH, Lu Q, Goodenough DA, Jeansonne B: Nonreceptor tyrosine
kianse c-Yes interacts with occludin during tight junction formation in
canine kidney epithelila cells. Mol Biol Cell 2002, 13:1227-1237.

Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A,
Desiderio DM, Rao R: Phosphorylation of Tyr-398 and Tyr-402 in occludin
prevents its interaction with ZO-1 and destabilizes its assembly at the
tight junction. J Biol Chem 2009, 284:1559-1569.

Andreeva AY, Krause E, Mller EC, Blasig IE, Utepbergenov DI: Protein
kinase C regulates the phosphorylation and cellular localization of
occludin. J Biol Chem 2001, 276:38480-38486.

Andreeva AY, Piontek J, Blasig IE, Utepbergenov DI: Assembly of
tight junction is regulated by the antagonism of conventional

and novel protein kinase C isoforms. Int J Biochem Cell Biol 2006,
38:222-233.

Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quant C, Mrsny RJ:
The coiled-coil domain of occludin can act to organize structural and
functional elements of the epithelial tight junction. J Biol Chem 2000,
275:29816-29822.

Sallee JL, Burridge K: DEP-1 regulates phosphorylation of tight junction
proteins and enhances barrier function of epithelial cells. J Biol Chem
2009, 284:14997-15006.

Seth A, Seth P, Elias BC, Rao R: Protein phosphatase 2A and 1 interact
with occludin and negatively regulate the assembly of tight junctions in
the CACO-2 cell monolayer. J Biol Chem 2007, 282:11487-11498.
Cordenonsi M, Mazzon E, De Rigo L, Baraldo S, Meggio F, Citi S: Occludin
dephosphorylation in early development of Xenopus laevis. J Cell Sci
1997, 110:3131-3139.

Cordenonsi M, Turco F, D'Atri F, Hammar E, Matinucci G, Meggio F, Citi S:
Xenopus laevis occludin: Identification of in vitro phosphorylation sites
by protein kinase CK2 and association with cingulin. Eur J Biochem 1999,
264:374-384.

Dorfel MJ, Westphal JK, Huber O: Differential phosphorylation of occludin
and tricellulin by CK2 and CK1. Ann NY Acad Sci 2009, 1165:69-73.
McKenzie JAG, Riento K, Ridley AJ: Casein kinase le associates with and
phosphorylates the tight junction protein occludin. FEBS Lett 2006,
580:2388-2394.

Smales C, Ellis M, Baumber R, Hussain N, Desmond H, Staddon JM: Occludin
phosphorylation: identification of an occludin kinase in brain and cell
extracts as CK2. FEBS Lett 2003, 545:161-166.

St-Denis NA, Litchfield DW: From birth to death: the role of protein kinase
CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci
2009, 66:1817-1829.

Filhol O, Cochet C: Cellular functions of protein kinase CK2: A dynamic
affair. Cell Mol Life Sci 2009, 66:1830-1839.

Dominguez |, Sonenshein GE, Seldin DC: CK2 and its role in Wnt and
NF-kB signaling: Linking development and cancer. Cell Mol Life Sci 2009,
66:1850-1857.

Trembley JH, Wang G, Unger G, Slaton J, Ahmed K: CK2: A key player in
cancer biology. Cell Mol Life Sci 2009, 66:1858-1867.

Kale G, Naren AP, Sheth P, Rao RK: Tyrosine phosphorylation of occludin
attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochem Biophys
Res Commun 2003, 302:324-329.

Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio DM,
Guntaka R, Rao R: PKCeta regulates occludin phosphorlyation and
epithelial tight junction integrity. Proc Natl Acad Sci USA 2009,

106:61-66.

Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y,
Wu L, Schneeberger EE, Shen L, Turner JR: Occludin S408 phosphorylation
regulates tight junction portein interactions and barrier function. J Cell Biol
2011, 193:565-582.

Matter K, Aijaz S, Tsapara A, Balda MS: Mammalian tight junctions in the
regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol
2005, 17:453-458.



Dorfel et al. Cell Communication and Signaling 2013, 11:40
http://www.biosignaling.com/content/11/1/40

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Li Y, Fanning AS, Anderson JM, Lavie A: Structure of the conserved
cytoplasmic C-terminal domain of occludin: identification of the ZO-1
binding surface. J Mol Biol 2005, 352:151-164.

Maller SL, Portwich M, Schmidt A, Utepbergenov DI, Huber O, Blasig IE,
Krause G: The tight junction protein occludin and the adherens junction
protein a-catenin share a common interaction mechanism with ZO-1.

J Biol Chem 2005, 280:3747-3756.

Rao R: Occludin phosphorylation in regulation of epithelial tight
junctions. Ann NY Acad Sci 2009, 1165:62-68.

Tash BR, Bewley MC, Russo M, Keil JM, Griffin KA, Sundstrom JM, Antonetti
DA, Tian F, Flanagan JM: The occludin and ZO-1 complex, defined by
small angle X-ray scattering and NMR, has implications for modulating
tight junction permeability. Proc Natl Acad Sci USA 2012, 109:10855-10860.
Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K,
Fujimori T, Nabeshima Y, Noda T, et al: Deficiency of zonula occludens-1
causes embryonic lethal phenotype associated with defected yolk sac
angiongenesis and apoptosis of embryonic cells. Mol Biol Cell 2008,
19:2465-2475.

Umeda K, lkenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M,
Matsui T, Tsukita S, Furuse M, Tsukita S: ZO-1 and ZO-2 independently
determine where claudins are polymerized in tight-junction strand
formation. Cell 2006, 126:741-754.

Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S:
Establishment and characterization of cultured epithelial cells lacking
expression of ZO-1. J Biol Chem 2004, 279:44785-44794.

Xu J, Kausalya PJ, Phua DCY, Ali SM, Hossein Z, Hunziker W: Early
embryonic lethality of mice lacking ZO-2, but not ZO-3, reveals critical
and nonredundant roles for individual zonula occludens proteins in
mammalian development. Mol Cell Biol 2008, 28:1669-1678.

Balda MS, Matter K: Tight junctions and the regulation of gene
expression. Biochim Biophys Acta 2008, 1788:761-767.

Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC:
The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010,
2010:402593.

Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, Huber O,
Gonzalez-Mariscal L: ZO-2 inhibits cyclin D1 expression and cell proliferation
and exhibits changes in localization along the cell cycle. Mol Biol Cell 2009,
20:1102-1117.

Walter JK, Rueckert C, Voss M, Mueller SL, Piontek J, Gast K, Blasig IE: The
oligomerization of the coiled coil-domain of occludin is redox sensitive.
Ann N Y Acad Sci 2009, 1165:19-27.

Yaffe Y, Shepshelovitch J, Nevo-Yassaf |, Yeheskel A, Shmerling H, Kwiatek JM,
Gaus K, Pasmanik-Chor M, Hirschberg K: The MARVEL transmembrane motif
of occludin mediates oligomerization and targeting to the basolateral
surface in epithelia. J Cell Sci 2012, 125:3545-3556.

Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S:
Direct association of occludin with ZO-1 and its possible involvement in
the localization of occludin at tight junctions. J Cell Biol 1994,
127:1617-1626.

van Itallie CM, Fanning AS, Bridges A, Anderson JM: ZO-1 stabilizes the
tight junction solute barrier through coupling to the perijunctional
cytoskeleton. Mol Biol Cell 2009, 20:3930-3940.

Yamazaki Y, Tokumasu R, Kimura H, Tsukita S: Role of claudin species-specific
dynamics in reconstitution and remodeling of the zonula occludens.

Mol Biol Cell 2011, 22:1495-1504.

Sheth B, Moran B, Anderson JM, Fleming TP: Post-translational control of
occludin membrane assembly in mouse trophectoderm: a mechanism to
regulate timing of tight junction biogenesis and blastocyst formation.
Development 2000, 127:831-840.

Ramirez SH, Fan S, Dykstra H, Rom S, Mercer A, Reichenbach NL, Gofman L,
Persidsky Y: Inhibition of glycogen synthase kinase 3 promotes tight
junction stability in brain endothelial cells by half-life extension of
occludin and claudin-5. PLoS One 2013, 8(2):¢559972.

Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W,
Eastburn KK, Madara JL: Tight junctions are membrane microdomains.

J Cell Sci 2000, 113:1771-1781.

Darfel MJ, Huber O: A phosphorylation hotspot within the occludin
C-terminal domain. Ann N Y Acad Sci 2012, 1257:38-44.

Westphal JK, Dérfel MJ, Krug SM, Cording JD, Piontek J, Blasig IE, Tauber R,
Fromm M, Huber O: Tricellulin forms homomeric and heteromeric tight
junctional complexes. Cell Mol Life Sci 2010, 67:2057-2068.

Page 16 of 16

63. Bojarski C, Weiske J, Schéneberg T, Schréder W, Mankertz J, Schulzke JD,
Florian P, Fromm M, Tauber R, Huber O: The specific fates of tight junction
proteins in apoptotic epithelial cells. J Cell Sci 2004, 117:2097-2107.

64. Hammerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated
step negatively regulates Wnt signalling by disrupting the lymphocyte
enhancer factor-1/B-catenin complex. Cell Mol Life Sci 2005, 62:606-618.

65.  Abramoff MD, Magelhaes PJ, Ram SJ: Image processing with Image J.
Biophotonics International 2004, 11:36-42.

66. Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, Krause G,
Gast K, Kolbe M, Piontek J: On the self-association of transmembrane
tight junction proteins. Cell Mol Life Sci 2006, 63:505-514.

67. Krug SM, Amasheh S, Richter JF, Milatz S, Glnzel D, Westphal JK, Huber O,
Schulzke JD, Fromm M: Tricellulin forms a barrier to macromolecules in
tricellular tight junctions without affecting ion permeability. Mol Biol Cell
2009, 20:3713-3724.

doi:10.1186/1478-811X-11-40

Cite this article as: Dorfel et al.: CK2-dependent phosphorylation of
occludin regulates the interaction with ZO-proteins and tight junction
integrity. Cell Communication and Signaling 2013 11:40.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Occludin directly interacts with CK2
	Phosphomimetic mutation of the CK2-phosphorylation sites in occludin attenuates interaction with ZO proteins
	CK2-dependent phosphorylation of occludin does not affect its localization to tight junctions
	CK2-dependent phosphorylation affects occludin distribution and dimerization
	CK2-dependent phosphorylation of occludin affects TJ-disassembly/assembly in Ca2+-switch experiments
	OccludinT400E/T404E/S408E increases paracellular resistance

	Discussion
	Conclusions
	Methods
	Cell culture
	Reagents, enzymes and antibodies
	Plasmids
	Recombinant protein expression and purification
	In vitro-association assays
	Co-immunoprecipitation assays
	FRET analyses
	Immunofluorescence microscopy
	Cell proliferation
	Ca2+-switch experiments
	In vitro-phosphorylation assays
	Two-path impedance spectroscopy
	Statistics

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

