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Protein tyrosine phosphatase-1B regulates the
tyrosine phosphorylation of the adapter
Grb2-associated binder 1 (Gab1) in the retina
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Abstract

Background: Gab1 (Grb2-associated binder 1) is a key coordinator that belongs to the insulin receptor substrate-1
like family of adaptor molecules and is tyrosine phosphorylated in response to various growth factors, cytokines,
and numerous other molecules. Tyrosine phosphorylated Gab1 is able to recruit a number of signaling effectors
including PI3K, SHP2 and PLC-γ. In this study, we characterized the localization and regulation of tyrosine
phosphorylation of Gab1 in the retina.

Results: Our immuno localization studies suggest that Gab1 is expressed in rod photoreceptor inner segments. We
found that hydrogen peroxide activates the tyrosine phosphorylation of Gab1 ex vivo and hydrogen peroxide has
been shown to inhibit the protein tyrosine phosphatase PTP1B activity. We found a stable association between the
D181A substrate trap mutant of PTP1B and Gab1. Our studies suggest that PTP1B interacts with Gab1 through
Tyrosine 83 and this residue may be the major PTP1B target residue on Gab1. We also found that Gab1 undergoes
a light-dependent tyrosine phosphorylation and PTP1B regulates the phosphorylation state of Gab1. Consistent with
these observations, we found an enhanced Gab1 tyrosine phosphorylation in PTP1B deficient mice and also in
retinas treated ex vivo with a PTP1B specific allosteric inhibitor.

Conclusions: Our laboratory has previously reported that retinas deficient of PTP1B are resistant to light damage
compared to wild type mice. Since Gab1 is negatively regulated by PTP1B, a part of the retinal neuroprotective
effect we have observed previously in PTP1B deficient mice could be contributed by Gab1 as well. In summary, our
data suggest that PTP1B regulates the phosphorylation state of retinal Gab1 in vivo.
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Background
Gab1 (Grb2-assoicated binder 1) is a member of a small
group of scaffolding adapters that includes Drosophila
melanogaster Dos (Daughter of Sevenless), the
Caneorhabditis elegans homolog Soc1 (Suppressor-Of
Clear), and mammalian Gab2 and Gab3 [1-8]. These
proteins contain an amino-terminal PH domain, several
proline-rich sequences, and multiple binding sites for
SH2-domain containing proteins. Upon stimulation of
appropriate cells with any of a number of receptor
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tyrosine kinase ligands, including epidermal growth fac-
tor (EGF), hepatocyte growth factor (HGF), platelet-
derived growth factor (PDGF), nerve growth factor
(NGF), and insulin or insulin-like growth factor 1 (IGF-
1), Gab1 rapidly becomes tyrosine phosphorylated
[3,8-11]. Tyrosine phosphorylated Gab1 binds multiple
signal-relay molecules, including the p85 subunit of
phosphoinositide 30-kinase, Shc, and the protein tyrosine
phosphatase (PTP) Shp2 [3,8,12,13]. In addition to the
binding sites for SHP2 and p85, both Gab1 and Gab2
contain numerous YxxP motifs, potential binding sites
for the SH2 domain of PLCγ or Crk family proteins [14].
Further, Grb2 binds to Gab proteins via its C-terminal
SH3 domain in a phospho-tyrosine independent manner
[15,16].
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The physical association between p85 and Gab1 or
Gab2 is critical in mediating the PI3K/Akt signaling
pathway induced by a variety of stimuli [9,10,17-22].
Overexpression of Gab potentiates FGF-induced Akt ac-
tivity, whereas overexpression of the p85 binding mutant
of Gab1 results in decreased Akt activation [21]. The
same mutant is also unable to provide anti-apoptotic sig-
nal in response to nerve growth factor stimulation [9].
Mutation in the p85-binding sites of Gab2 was found to
impair the ability of IL-3 to activate Akt and to induce
cell growth [18]. These studies clearly suggest that Gab-
p85 interaction plays an important role in activating the
PI3K/Akt pathway in mammalian cells. The activation of
PI3K leads to the production of PIP3, which in turn can
bind to the PH domain of Gab proteins and presumably
promote further activation of PI3K, a positive feedback
loop which could be formed to amplify the signal
through the Gab proteins [10]. The EGF-dependent
positive feedback loop is negatively regulated by SHP2
by dephosphorylating Gab1-p85 binding sites, thereby
terminating the Gab1-P3K positive loop [23].
Many retinal degenerative diseases show an early loss

of rod cells followed by cone cell loss, and the patho-
logical phenotype for this loss is apoptosis [24-26].
Blocking of photoreceptor apoptosis is one of the pos-
sible therapeutic approaches to protect the morphology
and function of the retina and prolong the period of
useful vision in patients. The mechanisms of protection
are still largely unknown but may involve differential
intercellular signaling cascade. We and others have
shown that PI3K activation is neuroprotective [27,28].
Hepatocyte growth factor (HGF) is shown to protect
light-induced photoreceptor degeneration [29] and ret-
inal ischemia-reperfusion injury [30] and also attenuates
the ceramide-induced apoptosis in retina [31]. All these
studies clearly suggest that HGF possesses both neuro-
protective and anti-oxidant properties [29,31]; however,
the molecular mechanism behind the neuroprotective
effect remains unclear. Both HGF and its receptor c-Met
are expressed in the retina [32]. Interaction between
Gab1 and the cMet receptor tyrosine kinase is respon-
sible for epithelial morphogenesis [33]. Upon interaction
with cMet, Gab1 becomes phosphorylated on several
tyrosine residues which, in turn, recruit a number of sig-
naling effectors, including PI3K, SHP2, and PLC-γ. Gab1
phosphorylation by cMet results in a sustained signal
that mediates most of the downstream signaling path-
ways [34,35]. The association between protein tyrosine
phosphatase-1B (PTP1B) and c-Met receptor in the
modulation of corneal epithelial wound healing has been
reported previously [36]. However, absolutely there are
no data available on the expression and regulation of
tyrosine phosphorylation of Gab1 in the retina. In this
study we have examined the localization of Gab1 and
how the phosphorylation state of Gab1 is regulated in
the retina as the interaction of Gab1 with effector pro-
teins is phosphorylation-dependent. Our studies suggest
that Gab1 is predominantly localized to rod inner seg-
ments under both dark- and light-adapted conditions;
however, the state of Gab1 phosphorylation is light-
dependent. Our studies also suggest that protein tyrosine
phosphatase, PTP1B, regulates the Gab1 phosphorylation
in vivo as we found enhanced phosphorylation of Gab1
in PTP1B deficient mice and retinas treated ex vivo with
a PTP1B specific inhibitor. We also found a region
between 1–280 amino acids in Gab1 encompassing Y83
is required for PTP1B binding.

Results
Localization of Gab1 in the retina
Retinal sections from dark- and light-adapted (300 lux for
30 min) rats were subjected to immunohistochemistry with
Gab1 and arrestin antibodies. Immunolocalization studies
suggest that Gab1 is exclusively localized to rod inner seg-
ments (Figure 1A and F) and co-localizes with arrestin in
dark-adapted retina (Figure 1C). The adaptability of animals
to dark and light conditions is examined with arrestin
immunolocalization. In dark-adapted retinas, arrestin is lo-
calized to the rod inner segments and the outer plexiform
layer (Figure 1B), and upon light illumination arrestin is
translocated to photoreceptor outer segments (Figure 1G).
Our immunohistochemical data suggest that Gab1 pre-
dominantly localized to rod inner segments irrespective of
dark or light adaptation (Figure 1A and F). Rod outer seg-
ments (DROS/LROS), band II (DII/LII) containing
enriched inner segments and other retinal cells, and rest of
the retina (DR/LR) fractions (Figure 2A) from dark- and
light-adapted rats were subjected to immunoblot analysis
with anti-Gab1 (Figure 2B) and anti-arrestin (Figure 2B)
antibodies. In Figure 1 we show arrestin in light adapted
retina in the ROS; however in Figure 2 arrestin was found
in the LII fraction. In dark adapted retina arrestin was
found in the RIS (Figure 1) but not in DII (Figure 2). This
discrepancy is due to the affinity of arrestin towards
photoactivated rhodopsin. It is a well know phenomenon
that arrestin binds to photoactivated rhodopsin upon light
illumination and in a dark-adapted retinas arrestin is sol-
uble. We have employed a discontinuous sucrose density
centrifugation which allows only obtaining membranes,
hence we did not observe the presence of arrestin in DII.
The results indicate that Gab1 is present in Band II and rest
of the retina fractions and very low levels of Gab1 is present
in ROS (Figure 2B). Collectively, these results suggest that
Gab1 is predominantly expressed in rod inner segments.

Light-dependent phosphorylation of Gab1
On the day of an experiment, rats were dark-adapted
overnight and half were subjected to normal room light



Figure 1 Immunofluorescence analysis of Gab1 in rat retina. Prefer-fixed sections of dark- (A-E) and light-adapted (F-J) rat retinas were
stained for Gab1 (A, F), arrestin (B, G) and DAPI (D, I) and the immunofluorescence was analyzed by epifluorescence. Panel C and H represent the
merge images of Gab1 and arrestin whereas panel E and F represent the omission of Gab1 antibody. ROS, rod outer segments; RIS, rod inner
segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.
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(~300 lux) for 30 min. Eyes were enucleated and the
retinas were quickly removed and homogenized in
homogenizing buffer [37]. The retina lysate was
immunoprecipitated with anti-Gab1 antibody, followed
by immunobot analysis with anti-PY99 and anti-Gab1
antibodies. The results indicate an increased level of
Gab1 phosphorylation in light-adapted compared to
dark-adapted retinas (Figure 3A). The blots were
stripped and reprobed with total Gab1 to ensure equal
amounts of Gab1 in both immunoprecipitates (Figure 3A).
Densitometric analysis of PY99 immunoblot was per-
Figure 2 Immunoblot analysis of Gab1 in various fractions of rat retin
and light-adapted rats on a discontinuous sucrose density gradient centrifu
(sucrose 37/42% interface, band II) and rest of the retina (bottom of the gr
anti-arrestin (B) antibodies. LROS, light-adapted ROS; DROS, dark-adapted R
adapted rest of the retina; DR, dark-adapted rest of the retina;
formed in the linear range of detection and absolute values
were then normalized to Gab1 (Figure 3B). These results
suggest that phosphorylation of Gab1 is light-induced
in vivo.

Hydrogen peroxide activates the Gab1 phosphorylation
Previously H2O2 has been shown to induce the phos-
phorylation of Gab1 which results in the binding of
SHP2 [38]. Therefore we have examined the Gab1 phos-
phorylation on Y627 (binding site of SHP2) residue in
response to H2O2 in retinal ex vivo explants. To
a. Rod outer segment membranes (ROS) were prepared from dark-
gation (A). ROS (sucrose 32/37% interface), non-ROS membranes
adient) were subjected to immunoblot analysis with anti-Gab1 and
OS; LII, light-adapted band II; DII, dark-adapted band II; LR, light-



Figure 3 Light-dependent phosphorylation of Gab1 in the
retina. Retina lysates from dark- and light-adapted rats were
immunoprecipitated with Gab1 antibody followed by immunoblot
analysis with anti-PY99 antibody (A). The blot was stripped and
reprobed with anti-Gab1 antibody (A). Densitometric analysis of
PY99 immunoblot was performed in the linear range of detection
and absolute values were then normalized to Gab1 (B). Data are
mean ± SD, n=4. H2O2-stimulated tyrosine phosphorylation of retinal
Gab1. Retinal proteins from (two independent rats) controls and
H2O2 (600 μM) treated ex vivo retinal explants were subjected to
immuno blotting analysis with anti-pGab1, anti-Gab1 and anti-actin
antibodies (C).
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determine the effect of H2O2 on Gab1 phosphorylation,
we incubated mouse retinal ex vivo explants for 10 min
in the presence or absence of 600 μM H2O2. Retinal pro-
teins were prepared and subjected to immunoblot ana-
lysis with anti-pGab1-Tyr627 antibody and the results
indicate an increased phosphorylation of Gab1 was
observed in H2O2 treated retinas compared to control
retinas (Figure 3C) while the total Gab1 levels are un-
changed (Figure 3C). The blot was reprobed with anti-
actin antibody (Figure 3C) to ensure an equal amount of
protein in each lane. These results suggest that H2O2 ac-
tivates the Gab1 phosphorylation.
Binding of Gab1 to p85 (N-SH2) domain of PI3K
To further determine whether the activated Gab1 binds
to p85 subunit of PI3K, we subjected the retinal lysates
from control and H2O2-stimulated retinas to GST pull-
down assay with GST N-SH2 domain of p85. The p85
N-SH2 domain of PI3K was able to pull down Gab1
from H2O2-treated retinas as detected on the immuno-
blot probed with anti-Gab1 antibody (Figure 4A). To
ensure equal amounts of fusion proteins in each pull-
down, Gab1 blot was reprobed with anti-GST antibody
(Figure 4A). These results suggest that the p85 subunit
of PI3K binds to Gab1 in H2O2-induced stress condi-
tions. This experiment also suggests that in addition to
the phosphorylation of SHP2 binding site on Gab1
(Y627), H2O2 also induces the phosphorylation of p85
subunit of PI3K binding sites on Gab1 (Y448; Y473 and
Y590).

Possible mechanism of H2O2-induced Gab1 activation
The exact mechanism of H2O2-induced Gab1 activation
is not known. However, it has been shown previously that
H2O2 inhibits the PTP1B activity [38,39]. We also tested
in this study the H2O2-induced inhibition of PTP1B
activity. We stimulated the rat retinas ex vivo with insu-
lin, and the retinal lysates were immunoprecipitated with
anti-IRβ antibody. The IR immunoprecipitates were
subjected to dephosphorylation assay by PTP1B in the
presence and absence of H2O2 followed by immunoblot
analysis with anti-PY99 antibody. The results indicate
that PTP1B dephosphorylates the IR and the dephos-
phorylation of IR by the PTP1B was partially prevented
in the presence of H2O2 (Figure 4B). The observed acti-
vation of Gab1 in this study could be due to the inhib-
ition of PTP1B activity and that Gab1 could be a
substrate of PTP1B.

Light-dependent inhibition of retinal PTP1B activity
To determine whether light regulates PTP1B activity,
we immunoprecipitated PTP1B from lysates of dark-
and light-adapted rat retinas and measured the PTP1B
activity. The PTP1B activity was significantly greater in
dark-adapted retinas than in the light-adapted retinas
(Figure 4D). To determine whether this greater PTP1B
activity was due to increased protein expression in the
dark-adapted retinas, we subjected the proteins from
dark- and light-adapted retinas to immunoblotting with
anti-PTP1B antibody (Figure 4C). No significant differ-
ences in the expression of PTP1B was found between
the dark- and light-adapted mouse retinas, suggesting
that light regulates PTP1B activity in vivo.

Identification of Gab1 as a substrate of PTP1B in vitro
Previously, Tonks group has discovered a mutation of
the invariant catalytic acid (Asp-181 in PTP1B) that



Figure 4 Interaction of Gab1 with N-SH2 domain of p85
subunit of PI3K. Retinal proteins from (two independent rats)
controls and H2O2 (600 μM) treated ex vivo retinal explants were
subjected to GST pull-down assay with N-SH2 domain of p85,
followed by immunoblot analysis with anti-Gab1 antibody (A). The
blot was reported with GST to ensure equal amount of fusion in
each lane (A). PTP1B dephosphorylates the tyrosine phosphorylation
of IR in vitro. Rat retinas were dissected and incubated at 37°C for
5 min in DMEM medium in the presence or absence of insulin (1
μM). After incubation, the retinas were lysed and subjected to
immunoprecipitation with anti-IRβ antibody. The anti-IRβ immune
complexes were subjected to in vitro dephosphorylation by PTP1B in
the presence or absence of H2O2 for 15 min at 37°C. The reaction
after dephosphorylation was subjected to immunoblot analysis with
anti-PY99 antibody (B). The blot was stripped and reprobed with
anti-IRβ antibody to ensure equal amounts of protein in each
immunoprecipitate (B). Inhibition of PTP1B activity in light-adapted
retina. Retinas from each rat were immunoprecipitated with anti-
PTP1B antibody and PTP1B activity measured (D). Data are mean ±
SD, n=5, *p<0.05. Twenty μg of retinal proteins from dark- and light-
adapted rat retinas (two independent rats) were immunoblotted
with anti-PTP1B and anti-actin antibodies (C).
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converts an extremely active enzyme into a “substrate-
trap,” and with the advent of this mutant several PTP1B
substrates have been identified [40,41]. To determine
whether or not Gab1 is a substrate of PTP1B we transi-
ently transfected the mammalian expression constructs
of pCDNA3-Gab1 into HEK-293 T cells and, prior to
harvesting the proteins, the cells were treated with
pervanadate or retinal ex vivo explants treated with
pervanadate. The cell lysates were subjected to GST
pull-down assay with either GST-PTP1B-WT or GST-
PTP1B-D181A fusion proteins followed by immunoblot
analysis with anti-Gab1 antibody. We observed that
Gab1 specifically bound to PTP1B-D181A mutant, but
not by wild type PTP1B (Figure 5A). These results sug-
gest that Gab1 may be a substrate of PTP1B. In addition,
we have also examined the association between Gab1
and the substrate-trapping mutant of PTP1B by im-
munofluorescence on confocal microscopy as an inde-
pendent confirmation that the association occurred
in vivo and not after lysis (Figure 5B). Our results indi-
cate a colocalization of Gab1 with mutant PTP1B.

PTP1B dephosphorylates Gab1 in vitro
To determine whether PTP1B dephosphorylates Gab1
in vitro, we expressed the Myc-tagged full-length Gab1
in HEK-293 T cells and the proteins were subjected to
immunoprecipitation with anti-Myc tag antibody. The
immune complexes were incubated in the presence of
either wild type PTP1B or catalytically inactive mutant
D181A-PTP1B (GST-fusion proteins) for 30 min at
30°C. At the end of incubation, the immunoprecipitates
were washed and subjected to immunoblot analysis
with anti-PY99 and anti-Myc antibodies. The results
indicate that PTP1B completely dephosphorylated Gab1
and the mutant protein failed to dephosphorylate Gab1
(Figure 5C). The Myc tag blot shows the presence of Gab1
in all the immunoprecipitates (Figure 5C). The blot was
also reprobed with anti-GST antibody to ensure equal
amount of PTP1B fusion protein in all lanes (Figure 5C).
This experiment shows that PTP1B can dephosphorylate
Gab1 in vitro.

Gab1 phosphorylation is required for PTP1B binding
To rule out the possibility that Gab1 is non-specifically
binding to PTP1B-D181A mutant, but not to wild type
PTP1B, we expressed Myc-tagged Gab1 in HEK-293 T cells
and prior to harvesting the proteins the cells were treated
with pervanadate. The lysates were incubated with or with-
out wild type PTP1B prior to pull-down assays with either
wild type PTP1B or PTP1B-D181A mutant. The results in-
dicate that binding of Gab1 to PTP1B-D181A mutant, but
not wild type PTP1B (Figure 6A). However, lysates treated
with wild-type PTP1B followed by pull down assays with
PTP1B-D181A mutant failed to bring down the Gab1



Figure 5 Identification of Gab1 as PTP1B substrate with substrate trapping mutant technique. Pervanadate-treated retinal ex vivo explants
or Gab1 expressed HEK-293 T cell lysates were subjected to GST pull-down assay with either wild type PTP1B or mutant PTP1B-D181A followed
by immuno blot analysis with anti-Gab1 antibody (A). The blot was reprobed with anti-GST antibody to ensure equal amounts of fusion in each
pull-down (A). Lysate, retinal proteins and HEK-293 T cell expressed Gab1 were used as positive controls. Co-localization of D181A-PTP1B and
Gab1. HEK-293 T cells cotransfected with Myc-tagged D181A-PTP1B and Gab1 expression plasmids were fixed with paraformaldehyde and
processed for immunofluorescence and visualized by confocal microscopy. Cells were incubated with anti-Myc (red) and Gab1 (green) antibodies
(B). Overexpressed PTP1B and Gab1 were visualized with fluorescein-conjugated sheep anti-mouse and Texas red-conjugated goat anti-rabbit
antibodies, respectively. Right panel represents the merge image of D181A-PTP1B and Gab1. PTP1B dephosphorylates the Gab1 tyrosine
phosphorylation in vitro. Myc-tagged Gab1 was transfected (four independent transfections) into HEK-293 T cells and the proteins were subjected
to immunoprecipitation with anti-Myc antibody. The immune complexes were incubated with GST fusion proteins of either wild type PTP1B or
catalytically inactive PTP1B (D181A) for 15 min at 30°C. At the end of the reaction, the immune complexes were subjected to SDS-PAGE followed
by immunoblot analysis with anti-PY99 antibody (C). The blot was stripped and reprobed with anti-Myc and anti-GST antibodies (C).
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(Figure 6A). These results clearly suggest that the binding
of Gab1 to PTP1B mutant is phosphorylation-dependent
and it is not due to non-specific interaction.
In the second approach we expressed Myc-tagged

Gab1 in HEK-293 T cells and the cells were treated in
the presence or absence of pervanadate. The lysates were
subjected to GST pull-down assays with either wild type
PTP1B or PTP1B-D181A mutant followed by immune
blot analysis with anti-Myc and anti-pGab1 antibodies.
The results indicate the binding of Gab1 to PTP1B-



Figure 6 Gab1 phosphorylation is required for PTP1B binding.
Myc-tagged Gab1 was expressed into HEK-293 T cells followed by
pervanadate treatment. The proteins were incubated either in the
presence or absence of wild type GST-PTP1B followed by pull-down
assay with either wild type PTP1B or mutant PTP1B. The bound
proteins were subjected to immuno blot analysis with anti-Myc
antibody (A). The blot was reprobed with anti-GST antibody to
ensure equal amount of fusion in each pull-down (A). Myc-tagged
Gab1 expressed in HEK-293 T were either treated or untreated with
pervanadate. Pervanadate treated or untreated samples were
subjected to GST pull-down assay with either wild type PTP1B or
mutant PTP1B followed by immuno blot analysis with either Gab1 or
pGab1 (B). The blot was reprobed with anti-GST antibody to ensure
equal amount of fusion in each pull-down (B).
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D181A mutant only from the cells that were treated with
pervanadate (Figure 6B). Pull-downs immunoblotted
with anti-pGab1 antibody clearly suggest that the bind-
ing of Gab1 to PTP1B mutant is phosphorylation-
dependent as we failed to recover the Gab1in PTP1B-
D181A pull-down in the absence of its phosphorylation
(Figure 6B).

Binding site of PTP1B on Gab1
To determine which phosphorylation site on Gab1 is re-
quired for PTP1B binding; we expressed Myc-tagged wild
type and various phosphorylation deficient mutant Gab1
constructs into HEK-293 T cells. These mutants include
consensus SH2-domain binding sites of Crk/PLCγ
(Y83F; Y285F; Y373F and Y407F), p85 (Y448F; Y473F
and Y590F) and SHP2 (Y628F and Y660F). The results
indicate that none of the mutants could abolish the bind-
ing of Gab1 to PTP1B-D181A mutant (Figure 7A). How-
ever, when we normalized the binding of various tyrosine
mutants of Gab1 to PTP1B with the loading control, the
Gab1-Y83F mutant exhibited a reduced binding inter-
action (35% compared to 100% loading control) with
PTP1B. The binding of other mutants with PTP1B
were either higher or comparable to wild type control
(Figure 7B). These results further suggest that other
regions in the Gab1 may also be required in addition to
the phosphorylation sites.
It has been previously shown that PTP1B displayed

selectivity for the protein substrates containing the (E/
D-pY-pY-(R/K) motif [41]. Examination of the Gab1
sequence clearly indicates that it has a E-Y-Y-K motif be-
tween amino acids 46 and 49 (Table 1). The phosphoryl-
ation site prediction program [42] indicate that this site
is unlikely to be phosphorylated. However, we have cre-
ated mutations in this site and examined the binding of
Gab1 to mutant PTP1B. Substitution of Y47F in Gab1 is
still able to bind to PTP1B-D181A mutant (Figure 8A),
however, substitution of either Y48F or Y47/48 F Gab1
constructs were failed to express the detectable protein
in HEK-293 T cells (data not shown). It has been shown
previously that JAK2 (EYYK), but not JAK1 (EYYT) is
the substrate of PTP1B, suggesting the importance of ly-
sine in the binding interaction with substrate mutant
trap of PTP1B [41]. Therefore, we substituted the lysine
49 with threonine (K49T) or alanine (K49A), and exam-
ined the binding of these Gab1-mutants with PTP1B-181A
mutant. Our results indicate still a very weak binding of
these mutants with PTP1B-D181A mutant (Figure 8A). To
determine whether the EYYK motif in Gab1 is an absolute
requirement for PTP1B binding, we deleted the first 49
amino acids of Gab1 (ΔEYYK ) and expressed the protein
from 50–695 amino acids. The results indicate that
ΔEYYK-Gab1 binds to PTP1B-D181A mutant similar to
wild type Gab1 (Figure 8A). These results suggest that
binding site of PTP1B on Gab1 may be other than EYYK
and the weak binding observed with K49T/A mutant could
be due to competition between PTP1B and EYYK and
other unidentified binding site on Gab1.
To identify the binding site on Gab1, we expressed the

Gab1 protein in HEK-293 T cells from 1–280 amino
acids which contain only one likely phosphorylated tyro-
sine residue 83. This truncated protein is able to interact
with PTP1B-D181A mutant (Figure 8A). Our results on
Y83F mutant did not abolish the binding interaction be-
tween Gab1 and PTP1B-D181A mutant; it is likely that
the binding is dictated by the cooperative tyrosine phos-
phorylation and a region between 50–280 amino acids
in Gab1. Examinations of region between 50–280 amino
acids clearly indicate the presence of PH domain (1–116
amino acids). When we deleted the PH domain from the
Gab1, we failed to observe the interaction with the
PTP1B-D181A mutant (Figure 8B), even though the de-
leted PH domain of Gab1 is tyrosine phosphorylated
(Figure 8B, bottom panel). These results clearly suggest
that the tyrosine phosphorylation and PH domain of
Gab1 is required for substrate recognition of PTP1B.



Figure 7 Interaction of wild type and phosphorylation deficient
mutants of Gab1 with substrate trapping mutant of PTP1B.
Myc-tagged wild type and various phosphorylation deficient
mutants (Y83F; Y285F; Y373F; Y407F; Y448F; Y473F; Y590F; Y628F;
Y660F) were expressed in HEK-293 T cells followed by pervanadate
treatment of cells as described in methods. Proteins from wild type
and various mutants of Gab1 were incubated with either wild type
or mutant PTP1B followed by GST pull-down assay and the bound
proteins were subjected to immunoblot analysis with anti-Myc
antibody (A). The blot was reprobed with anti-GST antibody to
ensure equal amount of fusion in each pull-down (A). Denistomeric
analysis of immunoblots was performed in the linear range of
detection and the binding of various tyrosine mutants of Gab1 to
mutant PTP1B was normalized to their respective loading control
(lysate) (B). The wild type Gab1 binding to mutant PTP1B was set as
100% (B).
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Increased Gab1 phosphorylation in PTP1B knockout
mouse retinas and a PTP1B inhibitor-treated retinas
Insulin-induced Gab1 tyrosine phosphorylation and as-
sociation of Gab1 with Src homology-2 (SH2) domain-
containing proteins has been reported [43]. In this study
we examined the effect of insulin on Gab1 tyrosine
phosphorylation by incubating retinal ex vivo explants
from dark-adapted rats with insulin for 5 min. Retinal
proteins were subjected to immunoprecipitation with ei-
ther anti-Gab1 or anti-IRβ antibodies followed by immu-
noblot analysis with PY99 antibody. The blot was
reprobed with anti-Gab1 and anti-IRβ antibodies. The
results indicate that insulin failed to induce the tyrosine
phosphorylation of Gab1 in retinal ex vivo explants
(Figure 9B). Insulin-induced tyrosine phosphorylation of
insulin receptor confirms that the insulin used in the
retinal ex vivo system is functional (Figure 9A). To de-
termine the effect of PTP1B inhibition on tyrosine phos-
phorylation of Gab1, we incubated the retinal ex vivo
explants from dark-adapted rats with PTP1B specific in-
hibitor for 30 min. Retinal proteins were subjected to
immunoprecipitation with anti-Gab1 followed by immu-
noblot analysis with PY99 antibody. The blot was
reprobed with anti-Gab1 antibody. The results indicate
that inhibition of PTP1B resulted in increased tyrosine
phosphorylation of Gab1 and the total levels of Gab1 re-
mains same in both inhibitor treated and un-treated
(DMSO) conditions (Figure 9C). This experiment sug-
gests that PTP1B regulates the phosphorylation state of
Gab1. In a separate approach, wild type and PTP1B
knockout mouse retinal proteins were subjected to im-
munoblot analysis with anti-pGab1-Tyr627 and anti-
Gab1 antibodies. The results indicate an increased level
of Gab1 phosphorylation in PTP1B knockout mouse ret-
inas compared to wild type retinas (Figure 9D). The ef-
fect of PTP1B on Gab1 phosphorylation is specific as
immunoblots carried out with Akt2 knockout mouse
retinas did not show any increase in Gab1 phosphoryl-
ation from its wild type littermates (Figure 9E). These



Table 1 Prediction of tyrosine phosphorylation on
tyrosine residues in Gab1

Position of Tyr Sequence1 Score2 Prediction

24 KLKRYAWKR 0.050

47 DVLEYYKND 0.279

48 VLEYYKNDH 0.279

83 FENSYIFDI 0.687 “Y”

95 DRIFYLVAD 0.040

162 DPPPYQVIS 0.145

183 DPQDYLLLI 0.078

242 QQMMYDCPP 0.070

259 ESSLYNLPR 0.377

265 LPRSYSHDV 0.007

285 DGELYTFNT 0.896 “Y”

307 VSISYDIPP 0.487

317 PGNTYQIPR 0.498

373 TDSSYCIPP 0.909 “Y”

407 SQDCYDIPR 0.908 “Y”

428 FHSQYKIKS 0.419

448 LDENYVPMN 0.932 “Y”

473 QEPNYVPMT 0.980 “Y”

590 SEENYVPMN 0.991 “Y”

628 KQVEYLDLD 0.792 “Y”

660 ERVDYVVVD 0.961 “Y”
1The amino acid sequence surrounding the Tyr (Y).
2Phosphorylation scores were calculated based on the phosphorylation site
prediction program [42]. Scores above 0.5 are deemed to be possible
phosphorylation sites and the higher the score, the more likely a particular site
will be phosphorylated. Mus musculus Gab1 protein sequence was used for the
analysis [accession number AJ 250669].

Figure 8 Interaction of various mutants and deletion constructs
of Gab1 with substrate trapping mutant of PTP1B. Wild type
Myc-tagged Gab1, Myc-Gab1 (Y47F), Myc-Gab1 (K49T), Myc-Gab1
(K49A), Myc-Gab1 (ΔEYYK) and truncated version of Myc-Gab1 (1–
280 amino acids) constructs were expressed in HEK-293 T cells
followed by pervanadate treatment. Pervanadate treated samples
were subjected to GST pull-down assay with either wild type PTP1B
or mutant PTP1B followed by immunoblot analysis with anti-Myc
antibody (A). The blot was reprobed with anti-GST antibody to
ensure equal amount of fusion in each pull-down (A). PH domain is
necessary for the interaction of Gab1 with substrate trapping mutant
of PTP1B. Myc-tagged ΔPH-Gab1 was expressed in HEK-293 T cells
followed by pervanadate treatment. Pervanadate treated samples
were subjected to GST pull-down assay with either wild type PTP1B
or mutant PTP1B followed by immunoblot analysis with anti-Myc
antibody (B). The blot was reprobed with anti-GST antibody to
ensure equal amount of fusion in each pull-down (B). Proteins from
wild type and ΔPH-Gab1 was subjected to immunoprecipitation
with anti-Myc antibody followed by immunoblot analysis with anti-
pGab1 antibody (B, bottom panel).
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results suggest that PTP1B regulates the Gab1 phos-
phorylation in vivo.

Discussion
Tyrosine kinase receptors and downstream pathways
used in growth factor signaling are shared by oxygen free
radical signaling [44]. Different growth factor receptors
and cytokines are known to activate the tyrosine phos-
phorylation of Gab1 which in turn activates different sig-
naling pathways, including PI3K/Akt [3,9,45,46], ERK
[13,33] and JNK [10,47]. In this study we observed that
H2O2 stimulates the tyrosine phosphorylation of retinal
Gab1. On the other hand, light stress decreased the
binding of PI3K to Gab1 (data not shown) suggesting a
loss of Gab1 phosphorylation under light stress. It has
been shown previously that H2O2 stimulates the tyrosine
phosphorylation of Gab1 in wild type mouse embryonic
fibroblasts and the activated Gab1 recruits molecules
such as SHP2, PI3K, and Shc [38]. These studies clearly
indicate that Gab1 is a component of oxidative stress
signaling [38]. Gab1 is also associated with similar
proteins following stimulation with EGF, insulin, NGF,
or HGF [3,8-11]. The Gab1/PI3K interaction with subse-
quent activation of Akt activation has been shown to
protect the PC12 cells or sympathetic neurons from
apoptosis induced by serum deprivation [9,46].
The phosphorylation status of Gab1 after H2O2 treat-

ment has been previously explained due to the activation
of EGFR [38]. It is interesting to note in this study that



Figure 9 Enhanced Gab1 tyrosine phosphorylation in PTP1B
inhibitor-treated and PTP1B knockout mouse retinas. Retinal
ex vivo explants from dark adapted rats were incubated with or
without 1 μM insulin (5 min at RT) or DMSO (30 min at RT) or
100 μM PTP1B inhibitor (30 min at RT). Anti-IRβ and anti-Gab1
immunoprecipitates were immunoblotted with PY99 (A, B, C) and
reprobed the blots with IRβ (A) or Gab1 (B, C) antibodies. Wild type,
PTP1B and Akt2 knockout mouse retinal proteins were subjected to
immunoblot analysis with anti-pGab1 and Gab1 (D, E) antibodies.
The panel D, upper portion was stitched together from two areas of
the blot representing the same migration window. Two
independent mouse retinas were used in experiments described in
Panel B, C, D and E.
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Gab1 is expressed in rod inner segments and its state of
phosphorylation is light-dependent. In retina, EGFR ex-
pression has shown to be during the first two postnatal
weeks in Müller glia and declines as the retina matures;
in response to light-damage, EGFR expression is
upregulated which has shown to be close to neonatal
retina [48]. Insulin-induced Gab1 tyrosine phosphoryl-
ation and association of Gab1 with Src homology-2
(SH2) domain-containing proteins has been reported
[43]. Retinal ex vivo explants treated with insulin did not
induce the tyrosine phosphorylation of Gab1. These
studies suggest that light-induced tyrosine phosphoryl-
ation of Gab is regulated through an unknown mechan-
ism not known at this time.
It has also been suggested that there is also inactivation

of phosphatases in oxidative signaling [38]. Hydrogen
peroxide can irreversibly inactivate PTP1B in vivo and
contribute to EGFR phosphorylation after EGF treatment
[49]. Several studies in literature indicate that PTP1B is
somewhat promiscuous in its substrate preference
in vitro, dephosphorylating a wide variety of protein and
peptide substrates with widely varying Km values [50-52].
Substrate-trapping mutants of PTPs have been shown
to be ideal reagents for substrate identification. It was
demonstrated that such mutants of PTPs can be pro-
duced by mutation of Asp to Ala in the conserved WPD
loop [40]. The Asp to Ala mutants of PTP1B, TC-PTP,
PTPH1, and PTP-PEST helped identify EGFR, p52shc,
VCP (p97/CDC48), TYK2 and JAK2, and p130Cas as can-
didate substrates, respectively [40,41,53-55]. We found
that Gab1 stably associates with mutant PTP1B in a tyro-
sine phosphorylation-dependent manner. These observa-
tions suggest that Gab1 could be a putative substrate of
PTP1B. Consistent with this observation, Gab1 has previ-
ously been identified as one of the PTP1B substrates by
Bayesian Integration of Proteome [56].
Mutational analysis of various tyrosine residues in

Gab1 indicated that none of the mutants abolished the
binding interaction with PTP1B. However, we found a
decreased binding of Y83F with PTP1B. This result is of
particular interest since one of the only two Gab1 muta-
tions associated with cancer is Y83C [57-59]. Further
studies are required to understand the interaction be-
tween PTP1B and Gab1-Y83 in tumorigenesis. Our stud-
ies also suggest that a region from 1–280 amino acids in
Gab1 is required for PTP1B binding.
It is interesting to note that there are no studies available

on the role of Gab1 in the retina, however, deletion of
Gab1 binding protein Shp2 (src-homology phosphotyrosyl
phosphatase 2) has been shown result in retinal degener-
ation [60]. Experiments described in this manuscript
suggest that PTP1B negatively regulates the Gab1 phos-
phorylation. Clear evidence comes from the light/dark
experiments where higher phosphorylation of Gab1 in
light-adapted conditions was correlated with significantly
decreased levels of PTP1B and in dark-adapted conditions,
higher PTP1B levels correlated with decreased levels of
Gab1 phosphorylation. Such a negative relationship has
been observed previously between PTP1B and Gab1 in
which PTP1B-mediated dephosphorylation of Gab1 has
been shown to affect its EGF-induced association with the
phosphatase SHP2 [56]. Increased Gab1 phosphorylation
in PTP1B inhibitor-treated retinas and PTP1B knockout
mouse retinas further strengthen the evidence that PTP1B
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regulates the phosphorylation state of Gab1 in vivo. Our la-
boratory has previously reported that retinas deficient of
PTP1B are resistant to light damage compared to wild type
mice [61]. We have also reported that intravenous injection
of an allosteric inhibitor of PTP1B protects rats against
light stress-induced retinal degeneration through the pro-
tection of IR phosphorylation [61]. We have also reported
enhanced insulin receptor neuroprective signaling in
PTP1B deficient mice [61]. Since Gab1 is negatively regu-
lated by PTP1B, a part of the retinal neuroprotective effect
we have observed previously in PTP1B deficient mice
could be contributed by Gab1 as well. Further studies are
required to determine the Gab1-medited neuroprotective
survival signaling in the retina.

Conclusions
In this study we have identified a physical and functional
interaction between Gab1 and PTP1B. We also found
that Gab1 undergoes a light-dependent phosphorylation
and PTP1B regulates the phosphorylation state of Gab1.
Consistent with these observations, we found an enhanced
Gab1 tyrosine phosphorylation in PTP1B deficient mice
and PTP1B-inhibitor treated retinas. Collectively, our data
suggest that Gab1 is an endogenous physiological protein
substrate of PTP1B.

Methods
Materials
Anti-PTP1B antibody was obtained from Epitomics
(Burlingame, CA). Polyclonal anti-PTP1B, anti-Gab1
antibodies and phosphatase assay reagents were obtained
from Upstate Biotechnology (Lake Placid, NY). Mono-
clonal PY-99 and polyclonal IR antibody was obtained
from Santa Cruz Biotechnology (Santa Cruz, CA). An
anti-pGab1 antibody was obtained from Cell Signaling
(Beverly, MA). The actin antibody was obtained from
Affinity BioReagents (Golden, CO). Quick change site-
directed mutagenesis kit was obtained from Stratagene
(La Jolla, CA). All other reagents were of analytical grade
and from Sigma. The PTP1B inhibitor (3-(3,5-Dibromo-
4-hydroxy-benzoyl)-2-ethyl-benzofuran-6-sulfonicacid-
(4-(thiazol-2- ylsulfamyl)-phenyl)-amide) was obtained
from Calbiochem (San Diego, CA).

Animals
All animal work was done in strict accordance with the
NIH Guide for the Care and Use of Laboratory Animals
and the Association for Research in Vision and Ophthal-
mology on the Use of Animals in Vision Research. All
protocols were approved by the IACUC at the University
of Oklahoma Health Sciences Center and the Dean
McGee Eye Institute. In all experiments, rats and mice
were killed by asphyxiation with carbon dioxide before
the retinas were harvested. A breeding colony of albino
Sprague–Dawley (SD) rats is maintained in our vivarium
in cyclic light (5 lux; 12 h on/12 h off ). Experiments
were carried out on both male and female rats (150–
200 g). Breeding colonies of PTP1B and Akt2 knockout
mice are maintained in our vivarium. The source of glo-
bal PTP1B [62] and Akt2 [37] knockout mice have been
reported earlier.

Plasmid construction and transfection
The mammalian expression construct of Gab1 was
kindly provided by Dr. Ute Schaeper (Berlin, Germany).
The Myc-tagged form of full-length Gab1 was generated
by adding the Myc-epitope at its C-terminus by PCR
and the cDNA encoding Myc-tagged Gab1 was cloned
into pCDNA3 vector. All constructs that involved PCR
were verified by DNA sequencing. Human embryonic
kidney cells (HEK-293 T) were grown in 10% FBS and
transfected with 10 μg of DNA in 10-cm plates by cal-
cium phosphate method [63]. Retinal PTP1B was
obtained by PCR of reverse transcribed mouse retinal
RNA using a 50 and 30 oligonucleotide designed based
on mouse PTP1B cDNA sequence [64] (accession num-
ber NP_035331) (sense: GAA TTC ATG GAG ATG
GAG AAG GAG TTC GAG; antisense: GTC GAC TCA
GTG AAA ACA CAC CCG GTA GC). Site-directed
mutagenesis was carried out according to the method
described earlier [65]. Gab1-Y83F; sense: TTT GAA
AAC AGC TTT ATC TTT GAT ATC AAC; antisense:
GTT GAT ATC AAA GAT AAA GCT GTT TTC AAA;
Gab1-Y285F; sense GAC GGG GAG CTG TTC ACC
TTT AAC ACC CCA; antisense: TGG GGT GTT AAA
GGT GAA CAG CTC CCC GTC; Gab1-Y373F; sense
ACT GAC AGC AGT TTC TGT ATC CCT CCT CCA;
antisense: TGG AGG AGG GAT ACA GAA ACT GCT
GTC AGT; Gab1-Y407F; sense TCT CAA GAT TGC
TTT GAT ATT CCA CGG ACC; antisense: GGT CCG
TGG AAT ATC AAA GCA ATC TTG AGA; Gab1-
Y448F; sense: CTG GAT GAG AAC TTC GTT CCC
ATG AAC CCC; antisense: GGG GTT CAT GGG AAC
GAA GTT CTC ATC CAG; Gab1-Y473F, sense: CAG
GAG CCA AAC TTT GTG CCA AATG ACC CCA;
antisense: TGG GGT CAT TGG CAC AAA GTT TGG
CTC CTG; Gab1-Y590F; sense: AGT GAA GAG AAC
TTT GTC CCC ATG AAT CCA; antisense: TGG ATT
CAT GGG GAC AAA GTT CTC TTC ACT; Gab1-
Y628F; sense AAA CAA GTC GAA TTC CTG GAT
TTA GAC; antisense: GTC TAA ATC CAG GAA TTC
GAC TTG TTT; Gab1-Y660F; GAG AGG GTG GAT
TTC GTT GTG GTG GAC CAA; antisense: TTG GTC
CAC CAC AAC GAA ATC CAC CCT CTC; Gab1-
R49T; sense GTC CTG GAG TAT TAC ACA AAC
GAT CAT GCC GCA; antisense: GGC ATG ATC GTT
TGT GTA ATA CTC CAG GAC; Gab1-R49A; sense:
GTC CTG GAG TAT TAC GCA AAC GAT CAT GCC;
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antisense: GGC ATG ATC GTT TGC GTA ATA CTC
CAG GAC; Gab1-Y47F: sense GAT GTC CTG GAG
TTT TAC AAA AAC GAT CAT; antisense: ATG ATC
GTT TTT GTA AAA CTC CAG GAC ATC. The
PTP1B binding motif on Gab1 (ΔEYYK) was deleted and
the expression construct (49–695 amino acids) was gen-
erated using the following primers: sense: GAA TTC
ACC ATG GAC ATC TGT GGA TTC AAT CCC ACA
G GAA TTC ACC ATG AAC GAT CAT GCC AAG
AAG CC and antisense: GGA TCC CTT CAC ATT
CTT GGT GGG TGT CTC GG. Truncated versions of
Gab1 were also generated using the following primers:
Gab1 (1–280 amino acids) sense, GAA TTC C ACC
ATG AGC GGC GGC GAA GTG GTT TGC TCG GG
and antisense: GGA TCC GGC CTC CGT GCT TGA
TGG GGA TTC C. The PCR products were cloned into
TOPO sequencing vector (Invitrogen) and the sequences
were verified by DNA sequencing. The inserts were excised
as EcoRI/BamHI and cloned into C-terminal Myc-tagged
pCDNA3 vector. The primers used in the site-directed
mutagenesis are as follows: PTP1B-D181A (sense: ACC
ACA TGG CCT GCC TTT GGA GTC CCC; antisense:
GGG GAC TCC AAA GGC AGG CCA TGT GGT). The
PCR products were cloned into TOPO sequencing vector
(Invitrogen) and the sequences were verified by DNA se-
quencing. The WT and mutant cDNA were excised from
the sequencing vector as EcoRI/SalI and cloned into GST
fusion vector, pGEX-4 T1. Site-directed mutagenesis was
carried out according to the method described earlier [65].
The cloning and expression of N-SH2 domain of p85 sub-
unit of PI3K has been reported previously [66].

Expression of GST-fusion proteins
An overnight culture of E.coli BL21 (DE3) (pGEX-PTP1B
and pGEX-PTP1B-D181A) was diluted 1:10 with 100 μg/
ml ampicillin, grown for 1 hr at 37°C, and induced for an-
other hour by addition of IPTG to 1 mM. Bacteria were
sonicated three times for 20 s each time in lysis buffer
containing 10 mM imidazole-HCl (pH7.2), 1 mM EDTA,
100 mM NaCl, 1 mM dithiothreitol, and 1% Triton X-100.
Lysates were clarified by centrifugation, and the superna-
tants were incubated with 500 μl of 50% glutathione-
coupled beads (Amersham Pharmacia) for 30 min at 4°C.
The GST-PTP1B fusion proteins were washed in lysis
buffer and eluted twice with 1 ml of 5 mM reduced gluta-
thione (Sigma) in phosphatase buffer [20 mM Tris
(pH 7.4), 5% glycerol, 0.05% Triton X-100, 2.5 mM MgCl2,
aprotinin (2 μg/ml) and leupeptin (5 μg/ml)]. Glycerol
was added to a final concentration of 33% (vol/vol), and
aliquots of enzyme were stored at −20°C.

Substrate trapping in vitro
The GST fusion proteins were expressed in E.coli and
purified on glutathione-Sepharose beads according to
the manufacturer’s instructions. Pervanadate stock solu-
tion (1 mM) was prepared [67] by adding 10 μl of
100 mM vanadate and 50 μl of 100 mM hydrogen per-
oxide (diluted from 30% stock in 20 mM HEPES,
pH 7.3) to 940 μl of H2O. Excess hydrogen peroxide was
removed by adding catalase (100 μg/ml; final concentra-
tion = 260 units/ml) 5 min after mixing the vanadate
and hydrogen peroxide. The pervanadate solutions were
used within 5 min to minimize decomposition of the
vanadate-hydrogen peroxide complex. Retinal ex vivo ex-
plants or mammalian cells were treated with 1 mM
pervanadate for 30 min, washed with phosphate-
buffered saline, and lysed in substrate-trapping buffer
[40]. The lysates were incubated for 2 h at 4°C with ei-
ther GST or GST-PTP1B-WT or GST-PTP1B-D181A
mutant fusion proteins bound on beads, then the beads
were washed 4 times with trapping buffer. Bound pro-
teins were resolved by SDS-PAGE and blotted onto
nitrocellulose membranes. Blots were then incubated
with anti-PY99 or anti-Gab1 antibodies and developed
by ECL.

PTP1B Activity assay
The in vitro PTP activity assay was conducted based on
a previously published protocol using the peptide
RRLIEDAEPYAARG (Upstate Biotechnology) [68]. The
reaction was carried out in a 60 μL volume of PTP assay
buffer [100 mm HEPES (pH 7.6), 2 mm EDTA, 1 mm
dithiothreitol, 150 mm NaCl, 0.5 mg/ml bovine serum
albumin] at 30°C. At the end of the reaction, 40 μL ali-
quots were placed in a 96-well plate, 100 μL of Malach-
ite Green Phosphatase reagent (Upstate Biotechnology)
were added, and absorbance was measured at 630 nm.

Retinal Ex-vivo organ cultures
Retinal ex vivo organ cultures were carried out as previ-
ously described [65]. Retinas were removed from Sprague–
Dawley albino rats that were born and raised in dim cyclic
light (5 lux; 12 h ON: 12 h OFF) and incubated for 5 min
at 37°C in Dulbecco’s modified Eagle’s (DMEM) medium
(Gibco BRL) in the presence or absence of 600 μM H2O2

or 100 μM PTP1B inhibitor (3-(3,5-Dibromo-4-hydroxy-
benzoyl)-2-ethyl-benzofuran-6-sulfonicacid-(4-(thiazol-
2- ylsulfamyl)-phenyl)-amide) [61] or DMSO. At the
indicated times, retinas were snap-frozen in liquid nitrogen
and stored at −80°C until analyzed or lysed in lysis buffer
[1% NP 40, 20 mM HEPES (pH 7.4), 2 mM EDTA, phos-
phatase inhibitors (100 mM NaF, 10 mM Na4P2O7, 1 mM
NaVO3, and 1 mM molybdate), and protease inhibitors
(10 μM leupeptin, 10 μg/ml aprotinin and 1 mM PMSF)].

Preparation of Rod outer segments
ROS were prepared from rat retinas using a discontinu-
ous sucrose gradient as previously described [66].
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Retinas were homogenized in 4.0 ml of ice-cold 47% su-
crose solution containing 100 mM NaCl, 1 mM EDTA,
1 mM PMSF, and 10 mM Tris–HCl (pH 7.4). Retinal ho-
mogenates were transferred to 15-ml centrifuge tubes
and sequentially overlaid with 3.0 ml of 42%, 3.0 ml of
37%, and 4.0 ml of 32% sucrose dissolved in buffer A
[10 mM Tris–HCl (pH 7.4) containing 100 mM NaCl
and 1 mM EDTA]. The gradients were spun at 82,000 ×
g for 1 h at 4°C. The 32/37% interfacial sucrose band
containing ROS membranes was harvested and diluted
with buffer A, and centrifuged at 27,000 × g for 30 min.
The ROS pellets were resuspended in buffer A, and
stored at −20°C. All protein concentrations were deter-
mined by the BCA reagent following the manufacturer’s
instructions.
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