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Peroxiredoxin 6 promotes upregulation of the
prion protein (PrP) in neuronal cells of
prion-infected mice
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Abstract

Background: It has been widely established that the conversion of the cellular prion protein (PrPC) into its
abnormal isoform (PrPSc) is responsible for the development of transmissible spongiform encephalopathies (TSEs).
However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell
is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion
pathogenesis.

Findings: Apolipoprotein E and peroxiredoxin 6 (PRDX6) were identified as upregulated proteins in brains of
scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA
did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of
PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells.

Conclusions: Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an
attractive target molecule in putative pharmacological intervention strategies in the future.
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Findings
Transmissible spongiform encephalopathies (TSEs) are
fatal neurodegenerative disorders, which include scrapie
in sheep, bovine spongiform encephalopathy (BSE) in
cattle, and Creutzfeldt-Jacob disease (CJD) in humans
[1]. The molecular hallmark of these disorders is a struc-
tural conversion in folding of the normal cellular prion
protein (PrPC) into a disease-associated, protease-
resistant isoform (PrPSc) [2]. Neuropathological charac-
teristics of these diseases include neuronal loss, vacuolar
degeneration, astrogliosis and amyloid plaque formation
caused by accumulation of PrPSc [3]. However, the
mechanism whereby PrPC→ PrPSc conversion triggers
cellular neurotoxicity and neurodegeneration is not well
understood.
PrPC is a multifunctional plasma membrane glycosyl-

phosphatidylinositol (GPI)-anchored protein on a wide
range of different cell types where it is involved in
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reproduction in any medium, provided the or
adhesion, signal transduction, differentiation, survival or
stress protection [4-6]. Obviously, neurodegenerative
disorders interconnect several cellular signal transduction
pathways to cause oxidative stress in the brain, including
increased oxidative damage, impaired mitochondrial func-
tion, defects of the proteasome system, the presence of
aggregated proteins, and many more [7]. There are a
number of cellular antioxidant defenses to convert react-
ive oxygen species (ROS) into unreactive compounds, e.g.
superoxide dismutase (SOD) and the peroxiredoxin
(PRDX) family. Proteins of the PRDX family are widely
expressed and exhibit crucial protective functions in
neurological disorders such as Parkinson's and Alzhei-
mer's diseases [8]. Accordingly, upregulation of PRDX
protein was observed in the brain of patients with Parkin-
son and Alzheimer’s disease, and also during experimental
prion infection in mice [9-11]. The PRDX family of mam-
mals comprises six isoforms (PRDX1-6), which are classi-
fied into the three subgroups typical 2-Cys PRDX
(PRDX1–4), atypical 2-Cys PRDX (PRDX5) and 1-Cys
PRDX (PRDX6) [12]. Peroxiredoxin 6 is the only 1-Cys
member and exhibits bifunctional activities as a
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glutathione (GSH) peroxidase and calcium-independent
phospholipase A2 (PLA2) [13], which might contribute to
neurological disorders. In experimental in vivo models for
neurological disorders such as Huntington0s disease and
scrapie, PRDX1 was slightly enhanced [11]. However, the
function of distinct PRDX isoforms in prion diseases has
not been investigated.

Upregulation of PRDX6 in scrapie-infected brains
For a better understanding of the proteomic alterations
during in vivo prion pathogenesis, C57Bl/6 mice were
intracerebrally inoculated with a 10% brain homogenate
containing the prion strain 139A (Additional file 1).
Mice were sacrificed after 40, 80, 120 and 150 days, and
brain homogenates were prepared. To confirm prion in-
fection, PrP expression was analyzed by Western blot
(Figure 1A). PrPC was detected in non-infected brain
homogenates in equal amounts 40, 80, 120 and 150 days
post infection (p.i.) (Figure 1A, lanes 1, 3, 5, 7), while
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Figure 1 Upregulation of PRDX6 in scrapie-infected mice. (A) C57Bl/6
or 10% brain homogenate of the prion strain 139A (scrapie-infected, lanes
were prepared and incubated with 20 μg/ml proteinase K (+, PK) or left un
monoclonal antibody showing the typical migration pattern of PrP and PK
protein of brain homogenates were separated by two-dimensional gel elec
indicate differentially expressed proteins (spots 1 and 2) observed in four te
separated by SDS-PAGE followed by Western blot. PRDX6, PRDX1-4, PRDX2
of protein expression was performed using four independent Western blot
homogenates of four different mice, respectively. PRDX6 expression was by
total PrP of scrapie-infected brain homogenates slightly
increased during infection (Figure 1A, lanes 9, 11, 13,
15), caused by the accumulation of PrPSc as demon-
strated by proteinase K (PK)-digestion (Figure 1A, lanes
10, 12, 14, 16).
To identify differentially regulated proteins in

scrapie-infected mice, equal protein amounts of brain
homogenates were separated by two-dimensional gel
electrophoresis followed by Coomassie blue staining
(Figure 1B). Only two up-regulated protein spots were
reproducibly detected in four individual mice infected
by scrapie, which were then identified by mass spec-
trometry (Table 1). Apolipoprotein E was found in
three out of four investigated samples, while peroxire-
doxin 6 (PRDX6) was identified with an overall se-
quence coverage of 71.4% in all four tested samples
(Table 1). Upregulation of apolipoprotein E has already
been described in activated astrocytes in Alzheimer0s
and prion disease [14] and is considered as one of the
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Table 1 Identification of apolipoprotein E and peroxiredoxin 6 by mass spectrometry

Spot Mouse Acc.nr. Protein name Score Peptide Sequence
coverage (%)

1 1 P08226 Apolipoprotein E OS Mus musculus GN Apoe PE 1 SV 2 470.7 5 19.3

1 3 P08226 Apolipoprotein E OS Mus musculus GN Apoe PE 1 SV 2 220.7 3 13.5

1 4 P08226 Apolipoprotein E OS Mus musculus GN Apoe PE 1 SV 2 215.3 4 16.4

2 1 O08709 Peroxiredoxin 6 OS Mus musculus GN Prd × 6 PE 1 SV 3 1023.0 10 59.4

2 2 O08709 Peroxiredoxin 6 OS Mus musculus GN Prd × 6 PE 1 SV 3 1176.2 11 69.6

2 3 O08709 Peroxiredoxin 6 OS Mus musculus GN Prd × 6 PE 1 SV 3 1737.0 11 59.8

2 4 O08709 Peroxiredoxin 6 OS Mus musculus GN Prd × 6 PE 1 SV 3 779.9 7 33.5
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strongest genetic risk factors in Alzheimer disease [15].
Contrastingly, only marginal information is available
on the expression of peroxiredoxins in prion disease.
Peroxiredoxin protein was preferentially upregulated in
astrocytes of prion-infected mouse brains [10], but it
remained unknown whether all PRDX family members
or a single isoform accumulated. Furthermore, PRDX6
protein expression in astrocytes has already been asso-
ciated with Alzheimer disease where it might function
as an antioxidant enzyme [9] suggesting that PRDX6
might be involved in neurological diseases.
To investigate this in more detail, we followed PRDX6

expression during scrapie infection in mice and com-
pared it with PRDX1-4 amounts by Western blot ana-
lyses (Figure 1C). In contrast to non-infected mice
(Figure 1C, lane 1–4), the level of PRDX6 steadily
increased within 150 days post infection (Figure 1C, lane
5–8). This appears to be highly specific, since amounts
of PRDX1-4 or PRDX2 did not change during infection
(Figure 1C, lane 5–8). Although we cannot exclude the
possibility that PRDX1, 3 or 4 of the 2-Cys PRDX sub-
group were slightly regulated, it is obvious that PRDX6
was strongly affected in scrapie-infected mice brains.
Quantification of PRDX6 protein expression in brains of
four individual mice at each time point after infection
indicated that the observed effect was statistically signifi-
cant and reproducibly observed in scrapie-infected mice
(Figure 1D).

Expression of peroxiredoxin 6 in PrP deficient and PrPC

expressing neuronal precursor cells
To investigate PRDX6 expression in more detail,
endogenous PRDX6 expression in PrP-deficient and
PrPC-expressing cells was analyzed. The immortalized
neuronal precursor cell line PrP0/0 ML derived from
PrP0/0 ZrchI mice was stably transfected with wild type
murine PrP (PrP A109) [16]. Western blots of these cell
lines were performed for detection of PrP and PRDX6.
As expected, PrP A109 cells expressed PrPC, whereas the
PrP0/0 ML cells did not (Figure 2A, upper panel). Corre-
sponding to in vivo studies, PRDX6 expression was
increased in PrP A109 cells (Figure 2A, middle panel)
while detection of β-actin indicated equal protein load-
ing (Figure 2A, lower panel). Analyzing mRNA synthesis
of prdx6 and prnp, no significant alterations were
observed indicating that PRDX6 protein expression was
not transcriptionally dependent on PrP (Figure 2B). To
clarify whether PrP protein expression led to PRDX6
accumulation, PrP was downregulated using specific
siRNAs and the amount of PRDX6 protein was analyzed
by Western blotting. Interestingly, successful downregu-
lation of PrP (Figure 2C, lane 4) did not result in a de-
tectable decrease in PRDX6 protein amount (Figure 2C,
lane 4). This finding was further supported by the inhib-
ition of protein translation using cycloheximide. Twenty-
four hours incubation of the cells with cycloheximide led
to a drastic decrease in PrP expression, while leaving
PRDX6 protein amounts unaffected (Figure 2D, lanes 8–
14). Although downregulation of PrP was not complete,
these data imply that enhanced PrP expression does not
induce PRDX6 expression and that PRXD6 is highly
stable in neuronal cells.

PRDX6 induces upregulation of PrP in neuronal cells
Next, we aimed at the investigation of PRDX6 expression
in scrapie-infected neuronal cells. Uninfected PrPC

expressing N2a58# cells were compared to scrapie-
infected N2a58/22L cells. Correspondingly to scrapie-
infected mice, an upregulation of PRDX6 was observed
in scrapie-infected N2a58/22L cells as shown by Western
blot analysis (Figure 3A, upper panel). Signal intensities
from four independent experiments were quantified and
expressed as fold PRXD6 expression normalized to β-
actin expression (Figure 3A, lower panel). Increased
PRXD6 protein amounts were also detected by immuno-
fluorescence analyses underlining enhanced protein oc-
currence in the cytoplasm, while PrP was mainly
localized at the plasma membrane (Figure 3B).
Since PRDX6 was upregulated in PrPC-expressing and

PrPSc-infected cells, but not in cells in which PrPC ex-
pression was downregulated, we tested the hypothesis if
PRDX6 is involved in PrP upregulation in turn. In
N2a58# and N2a58/22L cells PRDX6 was successfully
downregulated using PRDX6 specific siRNA that did not
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Figure 2 PRDX6 upregulation is not strictly dependent on PrP expression. (A) Lysates of PrP-deficient (PrP0/0) and PrPC-expressing cells (PrP)
were analyzed for PrPC, PRDX6 and β-actin. (B) Semi-quantitative PCR was performed with specific primers for murine prdx6, prnp and gapdh with
(+) or without (−) reverse transcriptase (RT). (C) PrP0/0 and PrP cells were transfected with control siRNA (Ctr. siRNA) or siRNAs specific for murine
PrP (PrP siRNA). 72 h after transfection cell lysates were prepared and Western blot analysis using the specific anti-PrP antibody SAF32 and anti-
PRDX6 antibody were performed. β-actin was shown as a loading control. (D) Cells were incubated with 5 μg/ml cycloheximide and lysed after
indicated time points. Equal amounts of cell lysates were separated by SDS-PAGE and detection of PRDX6, PrP and β-actin was carried out using
specific antibodies.
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affect PRDX1-4 expression. Interestingly, PrPC in
N2a58# cells was slightly decreased and PK-resistant
PrPSc was strongly reduced in N2a58/22L upon siRNA
treatment to inhibit PRXD6 expression (Figure 3C).
These data led to the suggestion that there is a func-
tional connection between PrP and PRDX6 expression.
Therefore, flag-tagged PRDX6 was overexpressed in
N2a58# and N2a58/22L cells and the amount of PrPC

and PrPSc was examined. Overexpression of PRDX6-flag
had no influence on expression of PRDX1-4 (Figure 3D).
However, PRDX6-flag resulted in a slightly increased
amount of PrPC in uninfected N2a58# (Figure 3D, lanes
1–4) and subsequently to an obvious accumulation of
PK-sensitive PrPC and PK-resistant PrPSc in infected
N2a58/22L (Figure 3D, lanes 5–8). PRDX6 exhibits a
calcium-independent phospholipase A2 (iPLA2) activity
[17]. In N2a58/22L cells, iPLA2 activity was significantly
increased compared to N2a58# cells. Importantly the
difference was completely diminished after down-
regulation of PRDX6 in both cell lines (Figure 3E). In
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Figure 3 PRDX6 induces PrP upregulation. (A) Detection of endogenous PRDX6 in uninfected N2a58# and scrapie-infected N2a58/22L cells
was performed by Western blot using specific anti-PRDX6 and anti-β-actin antibodies (upper panel). Quantification of PRDX6 expression was
carried out of four independent experiments (lower panel; *, p < 0.05). (B) PrP (red) and PRDX6 (green) in uninfected N2a58# and scrapie-infected
N2a58/22L cells were detected by laser scanning microscopy using PrP-specific 6H4 and PRDX6 antibodies. Nuclei (blue) were stained by DAPI.
Scale bar, 10 μm (left panel); scale bar, 5 μm. (C) Downregulation of PRDX6 was performed by reverse transfection of a control siRNA (Ctr. siRNA)
or a combination of two siRNAs specific for PRDX6 (PRDX6 siRNA). 48 h after transfection cells were lysed and either incubated with 20 μg/ml PK
(+) or left untreated (−). Western blot was performed using specific antibodies against PRDX6, PRDX1-4, PrP (8H4) and anti-β-actin antibodies. (D)
Cells were transfected with an empty vector control or a PRDX6 expression plasmid (PRDX6-flag) and lysed 24 h after transfection. Equal amounts
of cell lysates were treated with PK (+) or left untreated (−) following SDS-PAGE and immunoblotting using anti-flag, anti-PRDX6, anti-PRDX1-4,
anti-PrP (8H4) and anti-β-actin antibodies. (E) The activity of iPLA2 was analyzed in N2a58# (black bars) and scrapie-infected N2a58/22L cells (grey
bars), which were either treated with siRNA targeting PRDX6 or control siRNA (Ctrl) (*, p < 0.05; ***, p < 0.001).
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conclusion, these results suggest that the expression
level and activity of PRDX6 might be involved in the
control of the level of PrPC and subsequently PrPSc

conversion.
In this study, enhanced amounts of PRDX6 was select-

ively identified in brains of prion-infected mice and
neuronal cell lines concomitant with an increased
amount of PrPC and consequently of PrPSc. This inter-
action appears very complex, since PrPC expression in
PrP knock-out cells has also been observed to increase
the amount of PRDX6 in turn, but downregulation of
PrP did not alter PRDX6 appearance. This effect could
be explained by the observation that the PRDX6 protein
was more stable than PrP. Hence, the molecular basis
for this phenomenon remains unknown, but might indi-
cate a complex “tandem”-regulation of PRDX6 and PrP.
PRDX6 is a moonlighting protein containing peroxid-

ase and PLA2 activities [18]. Specific pharmacological
inhibitors for cellular studies are not available, but it is
tempting to speculate whether PRDX6 activities are
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involved in PrP regulation. In fact, data are accumulating
that PLA2 contributes to prion diseases. Functionally,
PLA2 is an important promoter of phospholipid metab-
olism and cleaves membrane phospholipids to produce
arachidonic acid and lysophopholipids as major products
[19]. Under normal conditions, arachidonic acid is either
re-incorporated into phospholipids, converted to inflam-
matory mediators in the brain or modulates neuronal
functions [20]. It has been demonstrated that PrPSc and
the neurotoxic PrP106-126 prion peptide stimulated the
N-methyl-D-aspartate (NMDA) receptor [21], which is
accompanied by the release of arachidonic acid, suggest-
ing an involvement of PLA2 in prion pathogenesis [22].
This has been supported by neuronal cell culture studies
showing that PLA2 is activated by glycosylphosphatidyli-
nositols (GPIs) isolated from PrPC and PrPSc [23]. Inter-
estingly, treatment of CJD using the non-specific PLA2

inhibitor quinacrine resulted in an inhibition of PrPSc

formation [24] and reduced toxicity of PrP106-126 [25].
Together with our study, those data point to PRDX6 ac-
tivities as new important players in the pathogenesis of
prion diseases.
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